# RNNCell {#openvino_docs_ops_sequence_RNNCell_3} @sphinxdirective **Versioned name**: *RNNCell-3* **Category**: *Sequence processing* **Short description**: *RNNCell* represents a single RNN cell that computes the output using the formula described in the `article `__. **Detailed description**: *RNNCell* represents a single RNN cell and is part of :doc:`RNNSequence ` operation. .. code-block:: cpp Formula: * - matrix multiplication ^T - matrix transpose f - activation function Ht = f(Xt*(Wi^T) + Ht-1*(Ri^T) + Wbi + Rbi) **Attributes** * *hidden_size* * **Description**: *hidden_size* specifies hidden state size. * **Range of values**: a positive integer * **Type**: ``int`` * **Required**: *yes* * *activations* * **Description**: activation functions for gates * **Range of values**: any combination of *relu*, *sigmoid*, *tanh* * **Type**: a list of strings * **Default value**: *tanh* * **Required**: *no* * *activations_alpha, activations_beta* * **Description**: *activations_alpha, activations_beta* functions attributes * **Range of values**: a list of floating-point numbers * **Type**: ``float[]`` * **Default value**: None * **Required**: *no* * *clip* * **Description**: *clip* specifies value for tensor clipping to be in *[-C, C]* before activations * **Range of values**: a positive floating-point number * **Type**: ``float`` * **Default value**: *infinity* that means that the clipping is not applied * **Required**: *no* **Inputs** * **1**: ``X`` - 2D tensor of type *T* ``[batch_size, input_size]``, input data. **Required.** * **2**: ``H`` - 2D tensor of type *T* ``[batch_size, hidden_size]``, initial hidden state. **Required.** * **3**: ``W`` - 2D tensor of type *T* ``[hidden_size, input_size]``, the weights for matrix multiplication. **Required.** * **4**: ``R`` - 2D tensor of type *T* ``[hidden_size, hidden_size]``, the recurrence weights for matrix multiplication. **Required.** * **5**: ``B`` 1D tensor of type *T* ``[hidden_size]``, the sum of biases (weights and recurrence weights). **Required.** **Outputs** * **1**: ``Ho`` - 2D tensor of type *T* ``[batch_size, hidden_size]``, the last output value of hidden state. **Types** * *T*: any supported floating-point type. **Example** .. code-block:: cpp 1 16 1 128 128 16 128 128 128 1 128 @endsphinxdirective