// Copyright (C) 2018-2022 Intel Corporation // SPDX-License-Identifier: Apache-2.0 // #include #include #include #include #include #include #include // clang-format off #include "openvino/openvino.hpp" #include "openvino/pass/serialize.hpp" #include "gna/gna_config.hpp" #include "gpu/gpu_config.hpp" #include "samples/args_helper.hpp" #include "samples/common.hpp" #include "samples/slog.hpp" #include "benchmark_app.hpp" #include "infer_request_wrap.hpp" #include "inputs_filling.hpp" #include "progress_bar.hpp" #include "remote_tensors_filling.hpp" #include "statistics_report.hpp" #include "utils.hpp" // clang-format on static const size_t progressBarDefaultTotalCount = 1000; bool parse_and_check_command_line(int argc, char* argv[]) { // ---------------------------Parsing and validating input // arguments-------------------------------------- slog::info << "Parsing input parameters" << slog::endl; gflags::ParseCommandLineNonHelpFlags(&argc, &argv, true); if (FLAGS_help || FLAGS_h) { show_usage(); showAvailableDevices(); return false; } if (FLAGS_m.empty()) { show_usage(); throw std::logic_error("Model is required but not set. Please set -m option."); } if (FLAGS_latency_percentile > 100 || FLAGS_latency_percentile < 1) { show_usage(); throw std::logic_error("The percentile value is incorrect. The applicable values range is [1, 100]."); } if (FLAGS_api != "async" && FLAGS_api != "sync") { throw std::logic_error("Incorrect API. Please set -api option to `sync` or `async` value."); } if (!FLAGS_hint.empty() && FLAGS_hint != "throughput" && FLAGS_hint != "tput" && FLAGS_hint != "latency" && FLAGS_hint != "cumulative_throughput" && FLAGS_hint != "ctput" && FLAGS_hint != "none") { throw std::logic_error("Incorrect performance hint. Please set -hint option to" "`throughput`(tput), `latency', 'cumulative_throughput'(ctput) value or 'none'."); } if (FLAGS_hint != "none" && (FLAGS_nstreams != "" || FLAGS_nthreads != 0 || FLAGS_pin != "")) { throw std::logic_error("-nstreams, -nthreads and -pin options are fine tune options. To use them you " "should explicitely set -hint option to none. This is not OpenVINO limitation " "(those options can be used in OpenVINO together), but a benchmark_app UI rule."); } if (!FLAGS_report_type.empty() && FLAGS_report_type != noCntReport && FLAGS_report_type != averageCntReport && FLAGS_report_type != detailedCntReport) { std::string err = "only " + std::string(noCntReport) + "/" + std::string(averageCntReport) + "/" + std::string(detailedCntReport) + " report types are supported (invalid -report_type option value)"; throw std::logic_error(err); } if ((FLAGS_report_type == averageCntReport) && ((FLAGS_d.find("MULTI") != std::string::npos))) { throw std::logic_error("only " + std::string(detailedCntReport) + " report type is supported for MULTI device"); } bool isNetworkCompiled = fileExt(FLAGS_m) == "blob"; bool isPrecisionSet = !(FLAGS_ip.empty() && FLAGS_op.empty() && FLAGS_iop.empty()); if (isNetworkCompiled && isPrecisionSet) { std::string err = std::string("Cannot set precision for a compiled network. ") + std::string("Please re-compile your network with required precision " "using compile_tool"); throw std::logic_error(err); } return true; } static void next_step(const std::string additional_info = "") { static size_t step_id = 0; static const std::map step_names = { {1, "Parsing and validating input arguments"}, {2, "Loading OpenVINO Runtime"}, {3, "Setting device configuration"}, {4, "Reading network files"}, {5, "Resizing network to match image sizes and given batch"}, {6, "Configuring input of the model"}, {7, "Loading the model to the device"}, {8, "Setting optimal runtime parameters"}, {9, "Creating infer requests and preparing input blobs with data"}, {10, "Measuring performance"}, {11, "Dumping statistics report"}}; step_id++; OPENVINO_ASSERT(step_names.count(step_id) != 0, "Step ID ", step_id, " is out of total steps number ", step_names.size()); std::cout << "[Step " << step_id << "/" << step_names.size() << "] " << step_names.at(step_id) << (additional_info.empty() ? "" : " (" + additional_info + ")") << std::endl; } ov::hint::PerformanceMode get_performance_hint(const std::string& device, const ov::Core& core) { ov::hint::PerformanceMode ov_perf_hint = ov::hint::PerformanceMode::UNDEFINED; auto supported_properties = core.get_property(device, ov::supported_properties); if (std::find(supported_properties.begin(), supported_properties.end(), ov::hint::performance_mode) != supported_properties.end()) { if (FLAGS_hint != "") { if (FLAGS_hint == "throughput" || FLAGS_hint == "tput") { slog::warn << "Device(" << device << ") performance hint is set to THROUGHPUT" << slog::endl; ov_perf_hint = ov::hint::PerformanceMode::THROUGHPUT; } else if (FLAGS_hint == "latency") { slog::warn << "Device(" << device << ") performance hint is set to LATENCY" << slog::endl; ov_perf_hint = ov::hint::PerformanceMode::LATENCY; } else if (FLAGS_hint == "cumulative_throughput" || FLAGS_hint == "ctput") { slog::warn << "Device(" << device << ") performance hint is set to CUMULATIVE_THROUGHPUT" << slog::endl; ov_perf_hint = ov::hint::PerformanceMode::CUMULATIVE_THROUGHPUT; } else if (FLAGS_hint == "none") { slog::warn << "No device(" << device << ") performance hint is set" << slog::endl; ov_perf_hint = ov::hint::PerformanceMode::UNDEFINED; } } else { ov_perf_hint = FLAGS_api == "sync" ? ov::hint::PerformanceMode::LATENCY : ov::hint::PerformanceMode::THROUGHPUT; slog::warn << "Performance hint was not explicitly specified in command line. " "Device(" << device << ") performance hint will be set to " << ov_perf_hint << "." << slog::endl; } } else { if (FLAGS_hint != "") { slog::warn << "Device(" << device << ") does not support performance hint property(-hint)." << slog::endl; } } return ov_perf_hint; } /** * @brief The entry point of the benchmark application */ int main(int argc, char* argv[]) { std::shared_ptr statistics; try { ov::CompiledModel compiledModel; // ----------------- 1. Parsing and validating input arguments // ------------------------------------------------- next_step(); if (!parse_and_check_command_line(argc, argv)) { return 0; } bool isNetworkCompiled = fileExt(FLAGS_m) == "blob"; if (isNetworkCompiled) { slog::info << "Network is compiled" << slog::endl; } std::vector flags; StatisticsReport::Parameters command_line_arguments; gflags::GetAllFlags(&flags); for (auto& flag : flags) { if (!flag.is_default) { command_line_arguments.emplace_back(flag.name, flag.name, flag.current_value); } } if (!FLAGS_report_type.empty()) { statistics = FLAGS_json_stats ? std::make_shared( StatisticsReport::Config{FLAGS_report_type, FLAGS_report_folder}) : std::make_shared( StatisticsReport::Config{FLAGS_report_type, FLAGS_report_folder}); statistics->add_parameters(StatisticsReport::Category::COMMAND_LINE_PARAMETERS, command_line_arguments); } auto isFlagSetInCommandLine = [&command_line_arguments](const std::string& name) { return (std::find_if(command_line_arguments.begin(), command_line_arguments.end(), [name](const StatisticsVariant& p) { return p.json_name == name; }) != command_line_arguments.end()); }; std::string device_name = FLAGS_d; // Parse devices auto devices = parse_devices(device_name); // Parse nstreams per device std::map device_nstreams = parse_value_per_device(devices, FLAGS_nstreams); std::map device_infer_precision = parse_value_per_device(devices, FLAGS_infer_precision); // Load device config file if specified std::map config; if (!FLAGS_load_config.empty()) { load_config(FLAGS_load_config, config); } /** This vector stores paths to the processed images with input names**/ auto inputFiles = parse_input_arguments(gflags::GetArgvs()); // ----------------- 2. Loading the OpenVINO Runtime // ----------------------------------------------------------- next_step(); ov::Core core; if (!FLAGS_extensions.empty()) { // Extensions are loaded as a shared library core.add_extension(FLAGS_extensions); slog::info << "Extensions are loaded: " << FLAGS_extensions << slog::endl; } // Load clDNN Extensions if ((FLAGS_d.find("GPU") != std::string::npos) && !FLAGS_c.empty()) { // Override config if command line parameter is specified if (!config.count("GPU")) config["GPU"] = {}; config["GPU"][CONFIG_KEY(CONFIG_FILE)] = FLAGS_c; } if (config.count("GPU") && config.at("GPU").count(CONFIG_KEY(CONFIG_FILE))) { auto ext = config.at("GPU").at(CONFIG_KEY(CONFIG_FILE)).as(); core.set_property("GPU", {{CONFIG_KEY(CONFIG_FILE), ext}}); slog::info << "GPU extensions are loaded: " << ext << slog::endl; } slog::info << "OpenVINO: " << ov::get_openvino_version() << slog::endl; slog::info << "Device info: " << slog::endl; slog::info << core.get_versions(device_name) << slog::endl; // ----------------- 3. Setting device configuration // ----------------------------------------------------------- next_step(); auto getDeviceTypeFromName = [](std::string device) -> std::string { return device.substr(0, device.find_first_of(".(")); }; // Set default values from dumped config std::set default_devices; for (auto& device : devices) { auto default_config = config.find(getDeviceTypeFromName(device)); if (default_config != config.end()) { if (!config.count(device)) { config[device] = default_config->second; default_devices.emplace(default_config->first); } } } for (auto& device : default_devices) { config.erase(device); } bool perf_counts = false; // check if using the virtual device auto if_auto = std::find(devices.begin(), devices.end(), "AUTO") != devices.end(); auto if_multi = std::find(devices.begin(), devices.end(), "MULTI") != devices.end(); // Remove the hardware devices if AUTO/MULTI appears in the devices list. if (if_auto || if_multi) { devices.clear(); std::string virtual_device; if (if_auto) { virtual_device = "AUTO"; devices.push_back("AUTO"); } if (if_multi) { virtual_device = "MULTI"; devices.push_back("MULTI"); } parse_value_for_virtual_device(virtual_device, device_nstreams); parse_value_for_virtual_device(virtual_device, device_infer_precision); } // Update config per device according to command line parameters for (auto& device : devices) { auto& device_config = config[device]; // high-level performance modes auto ov_perf_hint = get_performance_hint(device, core); if (ov_perf_hint != ov::hint::PerformanceMode::UNDEFINED) { device_config.emplace(ov::hint::performance_mode(ov_perf_hint)); if (FLAGS_nireq != 0) device_config.emplace(ov::hint::num_requests(FLAGS_nireq)); } // Set performance counter if (isFlagSetInCommandLine("pc")) { // set to user defined value device_config.emplace(ov::enable_profiling(FLAGS_pc)); } else if (device_config.count(ov::enable_profiling.name()) && (device_config.at(ov::enable_profiling.name()).as())) { slog::warn << "Performance counters for " << device << " device is turned on. To print results use -pc option." << slog::endl; } else if (FLAGS_report_type == detailedCntReport || FLAGS_report_type == averageCntReport) { slog::warn << "Turn on performance counters for " << device << " device since report type is " << FLAGS_report_type << "." << slog::endl; device_config.emplace(ov::enable_profiling(true)); } else if (!FLAGS_exec_graph_path.empty()) { slog::warn << "Turn on performance counters for " << device << " device due to execution graph dumping." << slog::endl; device_config.emplace(ov::enable_profiling(true)); } else { // set to default value device_config.emplace(ov::enable_profiling(FLAGS_pc)); } perf_counts = (device_config.at(ov::enable_profiling.name()).as()) ? true : perf_counts; auto supported_properties = core.get_property(device, ov::supported_properties); auto supported = [&](const std::string& key) { return std::find(std::begin(supported_properties), std::end(supported_properties), key) != std::end(supported_properties); }; // the rest are individual per-device settings (overriding the values set with perf modes) auto setThroughputStreams = [&]() { std::string key = getDeviceTypeFromName(device) + "_THROUGHPUT_STREAMS"; auto it_device_nstreams = device_nstreams.find(device); if (it_device_nstreams != device_nstreams.end()) { // set to user defined value if (supported(key)) { device_config[key] = it_device_nstreams->second; } else if (supported(ov::num_streams.name())) { // Use API 2.0 key for streams key = ov::num_streams.name(); device_config[key] = it_device_nstreams->second; } else if (device == "MULTI" || device == "AUTO") { // check if the element contains the hardware device property auto value_vec = split(it_device_nstreams->second, ' '); if (value_vec.size() == 1) { key = ov::num_streams.name(); device_config[key] = it_device_nstreams->second; } else { // set device nstreams properties in the AUTO/MULTI plugin std::stringstream strm(it_device_nstreams->second); std::map devices_property; ov::util::Read>{}(strm, devices_property); for (auto it : devices_property) { device_config.insert( ov::device::properties(it.first, ov::num_streams(std::stoi(it.second)))); } } } else { throw std::logic_error("Device " + device + " doesn't support config key '" + key + "' " + "and '" + ov::num_streams.name() + "'!" + "Please specify -nstreams for correct devices in format " ":,:" + " or via configuration file."); } } else if (ov_perf_hint == ov::hint::PerformanceMode::UNDEFINED && !device_config.count(key) && (FLAGS_api == "async")) { slog::warn << "-nstreams default value is determined automatically for " << device << " device. " "Although the automatic selection usually provides a " "reasonable performance, " "but it still may be non-optimal for some cases, for more " "information look at README." << slog::endl; if (std::string::npos == device.find("MYRIAD")) { // MYRIAD sets the default number of // streams implicitly (without _AUTO) if (supported(key)) { device_config[key] = std::string(getDeviceTypeFromName(device) + "_THROUGHPUT_AUTO"); } else if (supported(ov::num_streams.name())) { // Use API 2.0 key for streams key = ov::num_streams.name(); device_config[key] = ov::streams::AUTO; } } } auto it_streams = device_config.find(ov::num_streams.name()); if (it_streams != device_config.end()) device_nstreams[device] = it_streams->second.as(); }; auto set_infer_precision = [&] { auto it_device_infer_precision = device_infer_precision.find(device); if (it_device_infer_precision != device_infer_precision.end()) { // set to user defined value if (!supported(ov::hint::inference_precision.name())) { throw std::logic_error("Device " + device + " doesn't support config key '" + ov::hint::inference_precision.name() + "'! " + "Please specify -infer_precision for correct devices in format " ":,:" + " or via configuration file."); } device_config.emplace(ov::hint::inference_precision(it_device_infer_precision->second)); } }; auto fix_pin_option = [](const std::string& str) -> std::string { if (str == "NO") return "NONE"; else if (str == "YES") return "CORE"; else return str; }; if (supported(ov::inference_num_threads.name()) && isFlagSetInCommandLine("nthreads")) { device_config.emplace(ov::inference_num_threads(FLAGS_nthreads)); } if (supported(ov::affinity.name()) && isFlagSetInCommandLine("pin")) { device_config.emplace(ov::affinity(fix_pin_option(FLAGS_pin))); } if (device.find("CPU") != std::string::npos || device.find("GPU") != std::string::npos) { // CPU supports few special performance-oriented keys // for CPU and GPU execution, more throughput-oriented execution via streams setThroughputStreams(); set_infer_precision(); } else if (device.find("MYRIAD") != std::string::npos) { device_config.emplace(ov::log::level(ov::log::Level::WARNING)); setThroughputStreams(); } else if (device.find("GNA") != std::string::npos) { set_infer_precision(); } else if (device.find("AUTO") != std::string::npos) { setThroughputStreams(); set_infer_precision(); device_nstreams.erase(device); } else if (device.find("MULTI") != std::string::npos) { setThroughputStreams(); set_infer_precision(); if ((device_name.find("GPU") != std::string::npos) && (device_name.find("CPU") != std::string::npos)) { slog::warn << "GPU throttling is turned on. Multi-device execution with " "the CPU + GPU performs best with GPU throttling hint, " << "which releases another CPU thread (that is otherwise " "used by the GPU driver for active polling)." << slog::endl; device_config.insert(ov::device::properties("GPU", {{GPU_CONFIG_KEY(PLUGIN_THROTTLE), 1}})); // limit threading for CPU portion of inference if (!isFlagSetInCommandLine("pin")) { auto it_affinity = device_config.find(ov::affinity.name()); if (it_affinity != device_config.end()) { slog::warn << "Turn off threads pinning for " << device << " device since multi-scenario with GPU device is used." << slog::endl; it_affinity->second = ov::Affinity::NONE; } } } device_nstreams.erase(device); } } for (auto&& item : config) { core.set_property(item.first, item.second); } size_t batchSize = FLAGS_b; ov::element::Type type = ov::element::undefined; std::string topology_name = ""; std::vector app_inputs_info; std::string output_name; // Takes priority over config from file if (!FLAGS_cache_dir.empty()) { core.set_property(ov::cache_dir(FLAGS_cache_dir)); } // If set batch size, disable the auto batching if (FLAGS_b > 0) { core.set_property(ov::hint::allow_auto_batching(false)); } bool isDynamicNetwork = false; if (FLAGS_load_from_file && !isNetworkCompiled) { next_step(); slog::info << "Skipping the step for loading network from file" << slog::endl; next_step(); slog::info << "Skipping the step for loading network from file" << slog::endl; next_step(); slog::info << "Skipping the step for loading network from file" << slog::endl; auto startTime = Time::now(); compiledModel = core.compile_model(FLAGS_m, device_name); auto duration_ms = get_duration_ms_till_now(startTime); slog::info << "Load network took " << double_to_string(duration_ms) << " ms" << slog::endl; slog::info << "Original network I/O parameters:" << slog::endl; printInputAndOutputsInfoShort(compiledModel); if (statistics) statistics->add_parameters( StatisticsReport::Category::EXECUTION_RESULTS, {StatisticsVariant("load network time (ms)", "load_network_time", duration_ms)}); convert_io_names_in_map(inputFiles, compiledModel.inputs()); app_inputs_info = get_inputs_info(FLAGS_shape, FLAGS_layout, batchSize, FLAGS_data_shape, inputFiles, FLAGS_iscale, FLAGS_imean, compiledModel.inputs()); if (batchSize == 0) { batchSize = 1; } } else if (!isNetworkCompiled) { // ----------------- 4. Reading the Intermediate Representation network // ---------------------------------------- next_step(); slog::info << "Loading network files" << slog::endl; auto startTime = Time::now(); auto model = core.read_model(FLAGS_m); auto duration_ms = get_duration_ms_till_now(startTime); slog::info << "Read network took " << double_to_string(duration_ms) << " ms" << slog::endl; slog::info << "Original network I/O parameters:" << slog::endl; printInputAndOutputsInfoShort(*model); if (statistics) statistics->add_parameters( StatisticsReport::Category::EXECUTION_RESULTS, {StatisticsVariant("read network time (ms)", "read_network_time", duration_ms)}); const auto& inputInfo = std::const_pointer_cast(model)->inputs(); if (inputInfo.empty()) { throw std::logic_error("no inputs info is provided"); } // ----------------- 5. Resizing network to match image sizes and given // batch ---------------------------------- for (auto& item : model->inputs()) { if (item.get_tensor().get_names().empty()) { item.get_tensor_ptr()->set_names( std::unordered_set{item.get_node_shared_ptr()->get_name()}); } } next_step(); convert_io_names_in_map(inputFiles, std::const_pointer_cast(model)->inputs()); // Parse input shapes if specified bool reshape = false; app_inputs_info = get_inputs_info(FLAGS_shape, FLAGS_layout, FLAGS_b, FLAGS_data_shape, inputFiles, FLAGS_iscale, FLAGS_imean, inputInfo, reshape); if (reshape) { benchmark_app::PartialShapes shapes = {}; for (auto& item : app_inputs_info[0]) shapes[item.first] = item.second.partialShape; slog::info << "Reshaping network: " << get_shapes_string(shapes) << slog::endl; startTime = Time::now(); model->reshape(shapes); duration_ms = get_duration_ms_till_now(startTime); slog::info << "Reshape network took " << double_to_string(duration_ms) << " ms" << slog::endl; if (statistics) statistics->add_parameters( StatisticsReport::Category::EXECUTION_RESULTS, {StatisticsVariant("reshape network time (ms)", "reshape_network_time", duration_ms)}); } // ----------------- 6. Configuring inputs and outputs // ---------------------------------------------------------------------- next_step(); auto preproc = ov::preprocess::PrePostProcessor(model); std::map user_precisions_map; if (!FLAGS_iop.empty()) { user_precisions_map = parseArgMap(FLAGS_iop); convert_io_names_in_map(user_precisions_map, std::const_pointer_cast(model)->inputs(), std::const_pointer_cast(model)->outputs()); } const auto input_precision = FLAGS_ip.empty() ? ov::element::undefined : getPrecision2(FLAGS_ip); const auto output_precision = FLAGS_op.empty() ? ov::element::undefined : getPrecision2(FLAGS_op); const auto& inputs = model->inputs(); for (int i = 0; i < inputs.size(); i++) { const auto& item = inputs[i]; auto iop_precision = ov::element::undefined; auto type_to_set = ov::element::undefined; std::string name; try { // Some tensors might have no names, get_any_name will throw exception in that case. // -iop option will not work for those tensors. name = item.get_any_name(); iop_precision = getPrecision2(user_precisions_map.at(item.get_any_name())); } catch (...) { } if (iop_precision != ov::element::undefined) { type_to_set = iop_precision; } else if (input_precision != ov::element::undefined) { type_to_set = input_precision; } else if (!name.empty() && app_inputs_info[0].at(name).is_image()) { // image input, set U8 type_to_set = ov::element::u8; } auto& in = preproc.input(item.get_any_name()); if (type_to_set != ov::element::undefined) { in.tensor().set_element_type(type_to_set); if (!name.empty()) { for (auto& info : app_inputs_info) { info.at(name).type = type_to_set; } } } // Explicitly set inputs layout. if (!name.empty() && !app_inputs_info[0].at(name).layout.empty()) { in.model().set_layout(app_inputs_info[0].at(name).layout); } } const auto& outs = model->outputs(); for (int i = 0; i < outs.size(); i++) { const auto& item = outs[i]; auto iop_precision = ov::element::undefined; try { // Some tensors might have no names, get_any_name will throw exception in that case. // -iop option will not work for those tensors. iop_precision = getPrecision2(user_precisions_map.at(item.get_any_name())); } catch (...) { } if (iop_precision != ov::element::undefined) { preproc.output(i).tensor().set_element_type(iop_precision); } else if (output_precision != ov::element::undefined) { preproc.output(i).tensor().set_element_type(output_precision); } } model = preproc.build(); // Check if network has dynamic shapes auto input_info = app_inputs_info[0]; isDynamicNetwork = std::any_of(input_info.begin(), input_info.end(), [](const std::pair& i) { return i.second.partialShape.is_dynamic(); }); topology_name = model->get_friendly_name(); // Calculate batch size according to provided layout and shapes (static case) if (!isDynamicNetwork && app_inputs_info.size()) { batchSize = get_batch_size(app_inputs_info.front()); slog::info << "Network batch size: " << batchSize << slog::endl; } else if (batchSize == 0) { batchSize = 1; } printInputAndOutputsInfoShort(*model); // ----------------- 7. Loading the model to the device // -------------------------------------------------------- next_step(); startTime = Time::now(); compiledModel = core.compile_model(model, device_name); duration_ms = get_duration_ms_till_now(startTime); slog::info << "Load network took " << double_to_string(duration_ms) << " ms" << slog::endl; if (statistics) statistics->add_parameters( StatisticsReport::Category::EXECUTION_RESULTS, {StatisticsVariant("load network time (ms)", "load_network_time", duration_ms)}); } else { next_step(); slog::info << "Skipping the step for compiled network" << slog::endl; next_step(); slog::info << "Skipping the step for compiled network" << slog::endl; next_step(); slog::info << "Skipping the step for compiled network" << slog::endl; // ----------------- 7. Loading the model to the device // -------------------------------------------------------- next_step(); auto startTime = Time::now(); std::ifstream modelStream(FLAGS_m, std::ios_base::binary | std::ios_base::in); if (!modelStream.is_open()) { throw std::runtime_error("Cannot open model file " + FLAGS_m); } compiledModel = core.import_model(modelStream, device_name, {}); modelStream.close(); auto duration_ms = get_duration_ms_till_now(startTime); slog::info << "Import network took " << double_to_string(duration_ms) << " ms" << slog::endl; slog::info << "Original network I/O paramteters:" << slog::endl; printInputAndOutputsInfoShort(compiledModel); if (statistics) statistics->add_parameters( StatisticsReport::Category::EXECUTION_RESULTS, {StatisticsVariant("import network time (ms)", "import_network_time", duration_ms)}); convert_io_names_in_map(inputFiles, compiledModel.inputs()); app_inputs_info = get_inputs_info(FLAGS_shape, FLAGS_layout, FLAGS_b, FLAGS_data_shape, inputFiles, FLAGS_iscale, FLAGS_imean, compiledModel.inputs()); if (batchSize == 0) { batchSize = 1; } } if (isDynamicNetwork && FLAGS_api == "sync") { throw std::logic_error("Benchmarking of the model with dynamic shapes is available for async API only." "Please use -api async -nstreams 1 -nireq 1 to emulate sync behavior"); } // Defining of benchmark mode // for static models inference only mode is used as default one bool inferenceOnly = FLAGS_inference_only; if (isDynamicNetwork) { if (isFlagSetInCommandLine("inference_only") && inferenceOnly && app_inputs_info.size() != 1) { throw std::logic_error( "Dynamic models with different input data shapes must be benchmarked only in full mode."); } inferenceOnly = isFlagSetInCommandLine("inference_only") && inferenceOnly && app_inputs_info.size() == 1; } // ----------------- 8. Querying optimal runtime parameters // ----------------------------------------------------- next_step(); // output of the actual settings that the device selected for (const auto& device : devices) { auto supported_properties = compiledModel.get_property(ov::supported_properties); slog::info << "Device: " << device << slog::endl; for (const auto& cfg : supported_properties) { try { if (cfg == ov::supported_properties) continue; auto prop = compiledModel.get_property(cfg); slog::info << " { " << cfg << " , " << prop.as() << " }" << slog::endl; } catch (const ov::Exception&) { } } } // Update number of streams for (auto&& ds : device_nstreams) { try { const std::string key = getDeviceTypeFromName(ds.first) + "_THROUGHPUT_STREAMS"; device_nstreams[ds.first] = core.get_property(ds.first, key).as(); } catch (const ov::Exception&) { device_nstreams[ds.first] = core.get_property(ds.first, ov::num_streams.name()).as(); } } // Number of requests uint32_t nireq = FLAGS_nireq; if (nireq == 0) { if (FLAGS_api == "sync") { nireq = 1; } else { try { nireq = compiledModel.get_property(ov::optimal_number_of_infer_requests); } catch (const std::exception& ex) { throw ov::Exception("Every device used with the benchmark_app should support " + std::string(ov::optimal_number_of_infer_requests.name()) + " Failed to query the metric for the " + device_name + " with error:" + ex.what()); } } } // Iteration limit uint32_t niter = FLAGS_niter; size_t shape_groups_num = app_inputs_info.size(); if ((niter > 0) && (FLAGS_api == "async")) { if (shape_groups_num > nireq) { niter = ((niter + shape_groups_num - 1) / shape_groups_num) * shape_groups_num; if (FLAGS_niter != niter) { slog::warn << "Number of iterations was aligned by data shape groups number from " << FLAGS_niter << " to " << niter << " using number of possible input shapes " << shape_groups_num << slog::endl; } } else { niter = ((niter + nireq - 1) / nireq) * nireq; if (FLAGS_niter != niter) { slog::warn << "Number of iterations was aligned by request number from " << FLAGS_niter << " to " << niter << " using number of requests " << nireq << slog::endl; } } } // Time limit uint32_t duration_seconds = 0; if (FLAGS_t != 0) { // time limit duration_seconds = FLAGS_t; } else if (FLAGS_niter == 0) { // default time limit duration_seconds = device_default_device_duration_in_seconds(device_name); } uint64_t duration_nanoseconds = get_duration_in_nanoseconds(duration_seconds); if (statistics) { statistics->add_parameters( StatisticsReport::Category::RUNTIME_CONFIG, StatisticsReport::Parameters( {StatisticsVariant("benchmark mode", "benchmark_mode", inferenceOnly ? "inference only" : "full"), StatisticsVariant("topology", "topology", topology_name), StatisticsVariant("target device", "target_device", device_name), StatisticsVariant("API", "api", FLAGS_api), StatisticsVariant("precision", "precision", type.get_type_name()), StatisticsVariant("batch size", "batch_size", batchSize), StatisticsVariant("number of iterations", "iterations_num", niter), StatisticsVariant("number of parallel infer requests", "nireq", nireq), StatisticsVariant("duration (ms)", "duration", get_duration_in_milliseconds(duration_seconds))})); for (auto& nstreams : device_nstreams) { std::stringstream ss; ss << "number of " << nstreams.first << " streams"; std::string dev_name = nstreams.first; std::transform(dev_name.begin(), dev_name.end(), dev_name.begin(), [](unsigned char c) { return c == ' ' ? '_' : std::tolower(c); }); statistics->add_parameters(StatisticsReport::Category::RUNTIME_CONFIG, {StatisticsVariant(ss.str(), dev_name + "_streams_num", nstreams.second)}); } } // ----------------- 9. Creating infer requests and filling input blobs // ---------------------------------------- next_step(); InferRequestsQueue inferRequestsQueue(compiledModel, nireq, app_inputs_info.size(), FLAGS_pcseq); bool inputHasName = false; if (inputFiles.size() > 0) { inputHasName = inputFiles.begin()->first != ""; } bool newInputType = isDynamicNetwork || inputHasName; // create vector to store remote input blobs buffer std::vector<::gpu::BufferType> clInputsBuffer; bool useGpuMem = false; std::map inputsData; if (isFlagSetInCommandLine("use_device_mem")) { if (device_name.find("GPU") == 0) { inputsData = ::gpu::get_remote_input_tensors(inputFiles, app_inputs_info, compiledModel, clInputsBuffer, inferRequestsQueue.requests.size()); useGpuMem = true; } else if (device_name.find("CPU") == 0) { if (newInputType) { inputsData = get_tensors(inputFiles, app_inputs_info); } else { inputsData = get_tensors_static_case( inputFiles.empty() ? std::vector{} : inputFiles.begin()->second, batchSize, app_inputs_info[0], nireq); } } else { throw ov::Exception("Requested device doesn't support `use_device_mem` option."); } } else { if (newInputType) { inputsData = get_tensors(inputFiles, app_inputs_info); } else { inputsData = get_tensors_static_case( inputFiles.empty() ? std::vector{} : inputFiles.begin()->second, batchSize, app_inputs_info[0], nireq); } } // ----------------- 10. Measuring performance // ------------------------------------------------------------------ size_t progressCnt = 0; size_t progressBarTotalCount = progressBarDefaultTotalCount; size_t iteration = 0; std::stringstream ss; ss << "Start inference " << FLAGS_api << "hronously"; if (FLAGS_api == "async") { if (!ss.str().empty()) { ss << ", "; } ss << nireq << " inference requests"; std::stringstream device_ss; for (auto& nstreams : device_nstreams) { if (!device_ss.str().empty()) { device_ss << ", "; } device_ss << nstreams.second << " streams for " << nstreams.first; } if (!device_ss.str().empty()) { ss << " using " << device_ss.str(); } } ss << ", limits: "; if (duration_seconds > 0) { ss << get_duration_in_milliseconds(duration_seconds) << " ms duration"; } if (niter != 0) { if (duration_seconds == 0) { progressBarTotalCount = niter; } if (duration_seconds > 0) { ss << ", "; } ss << niter << " iterations"; } next_step(ss.str()); if (inferenceOnly) { slog::info << "BENCHMARK IS IN INFERENCE ONLY MODE." << slog::endl; slog::info << "Input blobs will be filled once before performance measurements." << slog::endl; } else { slog::info << "BENCHMARK IS IN FULL MODE." << slog::endl; slog::info << "Inputs setup stage will be included in performance measurements." << slog::endl; } // copy prepared data straight into inferRequest->getTensor() // for inference only mode if (inferenceOnly) { if (nireq < inputsData.begin()->second.size()) slog::warn << "Only " << nireq << " test configs will be used." << slog::endl; size_t i = 0; for (auto& inferRequest : inferRequestsQueue.requests) { auto inputs = app_inputs_info[i % app_inputs_info.size()]; for (auto& item : inputs) { auto inputName = item.first; const auto& inputTensor = inputsData.at(inputName)[i % inputsData.at(inputName).size()]; // for remote blobs setTensor is used, they are already allocated on the device if (useGpuMem) { inferRequest->set_tensor(inputName, inputTensor); } else { auto requestTensor = inferRequest->get_tensor(inputName); if (isDynamicNetwork) { requestTensor.set_shape(inputTensor.get_shape()); } copy_tensor_data(requestTensor, inputTensor); } } if (useGpuMem) { auto outputTensors = ::gpu::get_remote_output_tensors(compiledModel, inferRequest->get_output_cl_buffer()); for (auto& output : compiledModel.outputs()) { inferRequest->set_tensor(output.get_any_name(), outputTensors[output.get_any_name()]); } } ++i; } } // warming up - out of scope auto inferRequest = inferRequestsQueue.get_idle_request(); if (!inferRequest) { throw ov::Exception("No idle Infer Requests!"); } if (!inferenceOnly) { auto inputs = app_inputs_info[0]; for (auto& item : inputs) { auto inputName = item.first; const auto& data = inputsData.at(inputName)[0]; inferRequest->set_tensor(inputName, data); } if (useGpuMem) { auto outputTensors = ::gpu::get_remote_output_tensors(compiledModel, inferRequest->get_output_cl_buffer()); for (auto& output : compiledModel.outputs()) { inferRequest->set_tensor(output.get_any_name(), outputTensors[output.get_any_name()]); } } } if (FLAGS_api == "sync") { inferRequest->infer(); } else { inferRequest->start_async(); } inferRequestsQueue.wait_all(); auto duration_ms = inferRequestsQueue.get_latencies()[0]; slog::info << "First inference took " << double_to_string(duration_ms) << " ms" << slog::endl; if (statistics) { statistics->add_parameters( StatisticsReport::Category::EXECUTION_RESULTS, {StatisticsVariant("first inference time (ms)", "first_inference_time", duration_ms)}); } inferRequestsQueue.reset_times(); size_t processedFramesN = 0; auto startTime = Time::now(); auto execTime = std::chrono::duration_cast(Time::now() - startTime).count(); /** Start inference & calculate performance **/ /** to align number if iterations to guarantee that last infer requests are * executed in the same conditions **/ ProgressBar progressBar(progressBarTotalCount, FLAGS_stream_output, FLAGS_progress); while ((niter != 0LL && iteration < niter) || (duration_nanoseconds != 0LL && (uint64_t)execTime < duration_nanoseconds) || (FLAGS_api == "async" && iteration % nireq != 0)) { inferRequest = inferRequestsQueue.get_idle_request(); if (!inferRequest) { throw ov::Exception("No idle Infer Requests!"); } if (!inferenceOnly) { auto inputs = app_inputs_info[iteration % app_inputs_info.size()]; if (FLAGS_pcseq) { inferRequest->set_latency_group_id(iteration % app_inputs_info.size()); } if (isDynamicNetwork) { batchSize = get_batch_size(inputs); if (!std::any_of(inputs.begin(), inputs.end(), [](const std::pair& info) { return ov::layout::has_batch(info.second.layout); })) { slog::warn << "No batch dimension was found, asssuming batch to be 1. Beware: this might affect " "FPS calculation." << slog::endl; } } for (auto& item : inputs) { auto inputName = item.first; const auto& data = inputsData.at(inputName)[iteration % inputsData.at(inputName).size()]; inferRequest->set_tensor(inputName, data); } if (useGpuMem) { auto outputTensors = ::gpu::get_remote_output_tensors(compiledModel, inferRequest->get_output_cl_buffer()); for (auto& output : compiledModel.outputs()) { inferRequest->set_tensor(output.get_any_name(), outputTensors[output.get_any_name()]); } } } if (FLAGS_api == "sync") { inferRequest->infer(); } else { // As the inference request is currently idle, the wait() adds no // additional overhead (and should return immediately). The primary // reason for calling the method is exception checking/re-throwing. // Callback, that governs the actual execution can handle errors as // well, but as it uses just error codes it has no details like ‘what()’ // method of `std::exception` So, rechecking for any exceptions here. inferRequest->wait(); inferRequest->start_async(); } ++iteration; execTime = std::chrono::duration_cast(Time::now() - startTime).count(); processedFramesN += batchSize; if (niter > 0) { progressBar.add_progress(1); } else { // calculate how many progress intervals are covered by current // iteration. depends on the current iteration time and time of each // progress interval. Previously covered progress intervals must be // skipped. auto progressIntervalTime = duration_nanoseconds / progressBarTotalCount; size_t newProgress = execTime / progressIntervalTime - progressCnt; progressBar.add_progress(newProgress); progressCnt += newProgress; } } // wait the latest inference executions inferRequestsQueue.wait_all(); LatencyMetrics generalLatency(inferRequestsQueue.get_latencies(), "", FLAGS_latency_percentile); std::vector groupLatencies = {}; if (FLAGS_pcseq && app_inputs_info.size() > 1) { const auto& lat_groups = inferRequestsQueue.get_latency_groups(); for (int i = 0; i < lat_groups.size(); i++) { const auto& lats = lat_groups[i]; std::string data_shapes_string = ""; for (auto& item : app_inputs_info[i]) { data_shapes_string += item.first + get_shape_string(item.second.dataShape) + ","; } data_shapes_string = data_shapes_string == "" ? "" : data_shapes_string.substr(0, data_shapes_string.size() - 1); groupLatencies.emplace_back(lats, data_shapes_string, FLAGS_latency_percentile); } } double totalDuration = inferRequestsQueue.get_duration_in_milliseconds(); double fps = (FLAGS_api == "sync") ? batchSize * 1000.0 / generalLatency.median_or_percentile : 1000.0 * processedFramesN / totalDuration; if (statistics) { statistics->add_parameters(StatisticsReport::Category::EXECUTION_RESULTS, {StatisticsVariant("total execution time (ms)", "execution_time", totalDuration), StatisticsVariant("total number of iterations", "iterations_num", iteration)}); if (device_name.find("MULTI") == std::string::npos) { std::string latency_label; if (FLAGS_latency_percentile == 50) { latency_label = "Median latency (ms)"; } else { latency_label = "latency (" + std::to_string(FLAGS_latency_percentile) + " percentile) (ms)"; } statistics->add_parameters( StatisticsReport::Category::EXECUTION_RESULTS, {StatisticsVariant(latency_label, "latency_median", generalLatency.median_or_percentile), StatisticsVariant("Percentile boundary", "percentile_boundary", FLAGS_latency_percentile), StatisticsVariant("Average latency (ms)", "latency_avg", generalLatency.avg), StatisticsVariant("Min latency (ms)", "latency_min", generalLatency.min), StatisticsVariant("Max latency (ms)", "latency_max", generalLatency.max)}); if (FLAGS_pcseq && app_inputs_info.size() > 1) { for (size_t i = 0; i < groupLatencies.size(); ++i) { statistics->add_parameters( StatisticsReport::Category::EXECUTION_RESULTS_GROUPPED, {StatisticsVariant("Group Latencies", "group_latencies", groupLatencies[i])}); } } } statistics->add_parameters(StatisticsReport::Category::EXECUTION_RESULTS, {StatisticsVariant("throughput", "throughput", fps)}); } progressBar.finish(); // ----------------- 11. Dumping statistics report // ------------------------------------------------------------- next_step(); if (!FLAGS_dump_config.empty()) { dump_config(FLAGS_dump_config, config); slog::info << "OpenVINO Runtime configuration settings were dumped to " << FLAGS_dump_config << slog::endl; } if (!FLAGS_exec_graph_path.empty()) { try { ov::serialize(compiledModel.get_runtime_model(), FLAGS_exec_graph_path); slog::info << "executable graph is stored to " << FLAGS_exec_graph_path << slog::endl; } catch (const std::exception& ex) { slog::err << "Can't get executable graph: " << ex.what() << slog::endl; } } if (perf_counts) { std::vector> perfCounts; for (size_t ireq = 0; ireq < nireq; ireq++) { auto reqPerfCounts = inferRequestsQueue.requests[ireq]->get_performance_counts(); if (FLAGS_pc) { slog::info << "Performance counts for " << ireq << "-th infer request:" << slog::endl; printPerformanceCounts(reqPerfCounts, std::cout, getFullDeviceName(core, FLAGS_d), false); } perfCounts.push_back(reqPerfCounts); } if (statistics) { statistics->dump_performance_counters(perfCounts); } } if (statistics) statistics->dump(); // Performance metrics report slog::info << "Count: " << iteration << " iterations" << slog::endl; slog::info << "Duration: " << double_to_string(totalDuration) << " ms" << slog::endl; if (device_name.find("MULTI") == std::string::npos) { slog::info << "Latency: " << slog::endl; generalLatency.write_to_slog(); if (FLAGS_pcseq && app_inputs_info.size() > 1) { slog::info << "Latency for each data shape group:" << slog::endl; for (size_t i = 0; i < app_inputs_info.size(); ++i) { slog::info << (i + 1) << "."; for (auto& item : app_inputs_info[i]) { std::stringstream input_shape; auto shape = item.second.dataShape; std::copy(shape.begin(), shape.end() - 1, std::ostream_iterator(input_shape, ",")); input_shape << shape.back(); slog::info << " " << item.first << " : " << get_shape_string(item.second.dataShape); } slog::info << slog::endl; groupLatencies[i].write_to_slog(); } } } slog::info << "Throughput: " << double_to_string(fps) << " FPS" << slog::endl; } catch (const std::exception& ex) { slog::err << ex.what() << slog::endl; if (statistics) { statistics->add_parameters(StatisticsReport::Category::EXECUTION_RESULTS, {StatisticsVariant("error", "error", ex.what())}); statistics->dump(); } return 3; } return 0; }