# DeformableConvolution {#openvino_docs_ops_convolution_DeformableConvolution_1}
**Versioned name**: *DeformableConvolution-1*
**Category**: *Convolution*
**Short description**: Computes 2D deformable convolution of input and kernel tensors.
**Detailed description**: *Deformable Convolution* is similar to regular *Convolution* but its receptive field is deformed because of additional spatial offsets used during input sampling. More thorough explanation can be found in [Deformable Convolutions Demystified](https://towardsdatascience.com/deformable-convolutions-demystified-2a77498699e8) and [Deformable Convolutional Networks](https://arxiv.org/abs/1703.06211).
Output is calculated using the following formula:
\f[
y(p) = \displaystyle{\sum_{k = 1}^{K}}w_{k}x(p + p_{k} + {\Delta}p_{k})
\f]
Where
* K is a number of sampling locations, e.g. for kernel 3x3 and dilation = 1, K = 9
* \f$x(p)\f$ and \f$y(p)\f$ denote the features at location p from the input feature maps x and output feature maps y
* \f$w_{k}\f$ is the weight for k-th location.
* \f$p_{k}\f$ is pre-specified offset for the k-th location, e.g. K = 9 and
\f$p_{k} \in \{(-1, -1),(-1, 0), . . . ,(1, 1)\}\f$
* \f${\Delta}p_{k}\f$ is the learnable offset for the k-th location.
**Attributes**:
* *strides*
* **Description**: *strides* is a distance (in pixels) to slide the filter on the feature map over the `(y,x)` axes. For example, *strides* equal `2,1` means sliding the filter 2 pixel at a time over height dimension and 1 over width dimension.
* **Range of values**: integer values starting from `0`
* **Type**: `int[]`
* **Required**: *yes*
* *pads_begin*
* **Description**: *pads_begin* is a number of pixels to add to the beginning along each axis. For example, *pads_begin* equal `1,2` means adding 1 pixel to the top of the input and 2 to the left of the input.
* **Range of values**: integer values starting from `0`
* **Type**: `int[]`
* **Required**: *yes*
* **Note**: the attribute is ignored when *auto_pad* attribute is specified.
* *pads_end*
* **Description**: *pads_end* is a number of pixels to add to the ending along each axis. For example, *pads_end* equal `1,2` means adding 1 pixel to the bottom of the input and 2 to the right of the input.
* **Range of values**: integer values starting from `0`
* **Type**: `int[]`
* **Required**: *yes*
* **Note**: the attribute is ignored when *auto_pad* attribute is specified.
* *dilations*
* **Description**: *dilations* denotes the distance in width and height between elements (weights) in the filter. For example, *dilation* equal `1,1` means that all the elements in the filter are neighbors, so it is the same as for the usual convolution. *dilation* equal `2,2` means that all the elements in the filter are matched not to adjacent elements in the input matrix, but to those that are adjacent with distance 1.
* **Range of values**: integer value starting from `0`
* **Type**: `int[]`
* **Required**: *yes*
* *auto_pad*
* **Description**: *auto_pad* how the padding is calculated. Possible values:
* *explicit* - use explicit padding values from *pads_begin* and *pads_end*.
* *same_upper* - the input is padded to match the output size. In case of odd padding value an extra padding is added at the end.
* *same_lower* - the input is padded to match the output size. In case of odd padding value an extra padding is added at the beginning.
* *valid* - do not use padding.
* **Type**: `string`
* **Default value**: explicit
* **Required**: *no*
* **Note**: *pads_begin* and *pads_end* attributes are ignored when *auto_pad* is specified.
* *group*
* **Description**: *group* is the number of groups which *output* and *input* should be split into. For example, *group* equal to 1 means that all filters are applied to the whole input (usual convolution), *group* equal to 2 means that both *input* and *output* channels are separated into two groups and the *i-th output* group is connected to the *i-th input* group channel. *group* equal to a number of output feature maps implies depth-wise separable convolution.
* **Range of values**: integer value starting from `1`
* **Type**: `int`
* **Default value**: `1`
* **Required**: *no*
* *deformable_group*
* **Description**: *deformable_group* is the number of groups in which *offsets* input and *output* should be split into along the channel axis. Apply the deformable convolution using the i-th part of the offsets part on the i-th out.
* **Range of values**: integer value starting from `1`
* **Type**: `int`
* **Default value**: `1`
* **Required**: *no*
**Inputs**:
* **1**: Input tensor of type *T* and rank 4. Layout is `NCYX` (number of batches, number of channels, spatial axes Y and X). **Required.**
* **2**: Offsets tensor of type *T* and rank 4. Layout is `NCYX` (number of batches, *deformable_group* \* kernel_Y \* kernel_X \* 2, spatial axes Y and X). **Required.**
* **3**: Kernel tensor of type *T* and rank 4. Layout is `OIYX` (number of output channels, number of input channels, spatial axes Y and X). **Required.**
**Outputs**:
* **1**: Output tensor of type *T* and rank 4. Layout is `NOYX` (number of batches, number of kernel output channels, spatial axes Y and X).
**Types**:
* *T*: Any numeric type.
**Example**
2D DeformableConvolution (deformable_group=1)
```xml
1422422415022022064455
```
2D DeformableConvolution (deformable_group=4)
```xml
14224224120022022064455
```