* [Python API] Move samples and docs to the new directory * move samples to the new directory * try to fix build and pychecks * fix links * fix pychecks * fix cmake * fix cpack installation * Update inference-engine/ie_bridges/python/CMakeLists.txt Co-authored-by: Sergey Lyubimtsev <sergey.lyubimtsev@intel.com> Co-authored-by: Sergey Lyubimtsev <sergey.lyubimtsev@intel.com>
151 lines
6.9 KiB
Python
Executable File
151 lines
6.9 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
# Copyright (C) 2018-2021 Intel Corporation
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
import argparse
|
|
import logging as log
|
|
import os
|
|
import sys
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from openvino.inference_engine import IECore
|
|
|
|
|
|
def parse_args() -> argparse.Namespace:
|
|
"""Parse and return command line arguments"""
|
|
parser = argparse.ArgumentParser(add_help=False)
|
|
args = parser.add_argument_group('Options')
|
|
# fmt: off
|
|
args.add_argument('-h', '--help', action='help', help='Show this help message and exit.')
|
|
args.add_argument('-m', '--model', required=True, type=str,
|
|
help='Required. Path to an .xml or .onnx file with a trained model.')
|
|
args.add_argument('-i', '--input', required=True, type=str, nargs='+', help='Required. Path to an image file.')
|
|
args.add_argument('-l', '--extension', type=str, default=None,
|
|
help='Optional. Required by the CPU Plugin for executing the custom operation on a CPU. '
|
|
'Absolute path to a shared library with the kernels implementations.')
|
|
args.add_argument('-c', '--config', type=str, default=None,
|
|
help='Optional. Required by GPU or VPU Plugins for the custom operation kernel. '
|
|
'Absolute path to operation description file (.xml).')
|
|
args.add_argument('-d', '--device', default='CPU', type=str,
|
|
help='Optional. Specify the target device to infer on; CPU, GPU, MYRIAD, HDDL or HETERO: '
|
|
'is acceptable. The sample will look for a suitable plugin for device specified. '
|
|
'Default value is CPU.')
|
|
args.add_argument('--original_size', action='store_true', default=False,
|
|
help='Optional. Resize an output image to original image size.')
|
|
args.add_argument('--mean_val_r', default=0, type=float,
|
|
help='Optional. Mean value of red channel for mean value subtraction in postprocessing.')
|
|
args.add_argument('--mean_val_g', default=0, type=float,
|
|
help='Optional. Mean value of green channel for mean value subtraction in postprocessing.')
|
|
args.add_argument('--mean_val_b', default=0, type=float,
|
|
help='Optional. Mean value of blue channel for mean value subtraction in postprocessing.')
|
|
# fmt: on
|
|
return parser.parse_args()
|
|
|
|
|
|
def main():
|
|
log.basicConfig(format='[ %(levelname)s ] %(message)s', level=log.INFO, stream=sys.stdout)
|
|
args = parse_args()
|
|
|
|
# ---------------------------Step 1. Initialize inference engine core--------------------------------------------------
|
|
log.info('Creating Inference Engine')
|
|
ie = IECore()
|
|
|
|
if args.extension and args.device == 'CPU':
|
|
log.info(f'Loading the {args.device} extension: {args.extension}')
|
|
ie.add_extension(args.extension, args.device)
|
|
|
|
if args.config and args.device in ('GPU', 'MYRIAD', 'HDDL'):
|
|
log.info(f'Loading the {args.device} configuration: {args.config}')
|
|
ie.set_config({'CONFIG_FILE': args.config}, args.device)
|
|
|
|
# ---------------------------Step 2. Read a model in OpenVINO Intermediate Representation or ONNX format---------------
|
|
log.info(f'Reading the network: {args.model}')
|
|
# (.xml and .bin files) or (.onnx file)
|
|
net = ie.read_network(model=args.model)
|
|
|
|
if len(net.input_info) != 1:
|
|
log.error('Sample supports only single input topologies')
|
|
return -1
|
|
if len(net.outputs) != 1:
|
|
log.error('Sample supports only single output topologies')
|
|
return -1
|
|
|
|
# ---------------------------Step 3. Configure input & output----------------------------------------------------------
|
|
log.info('Configuring input and output blobs')
|
|
# Get names of input and output blobs
|
|
input_blob = next(iter(net.input_info))
|
|
out_blob = next(iter(net.outputs))
|
|
|
|
# Set input and output precision manually
|
|
net.input_info[input_blob].precision = 'U8'
|
|
net.outputs[out_blob].precision = 'FP32'
|
|
|
|
# Set a batch size to a equal number of input images
|
|
net.batch_size = len(args.input)
|
|
|
|
# ---------------------------Step 4. Loading model to the device-------------------------------------------------------
|
|
log.info('Loading the model to the plugin')
|
|
exec_net = ie.load_network(network=net, device_name=args.device)
|
|
|
|
# ---------------------------Step 5. Create infer request--------------------------------------------------------------
|
|
# load_network() method of the IECore class with a specified number of requests (default 1) returns an ExecutableNetwork
|
|
# instance which stores infer requests. So you already created Infer requests in the previous step.
|
|
|
|
# ---------------------------Step 6. Prepare input---------------------------------------------------------------------
|
|
original_images = []
|
|
|
|
n, c, h, w = net.input_info[input_blob].input_data.shape
|
|
input_data = np.ndarray(shape=(n, c, h, w))
|
|
|
|
for i in range(n):
|
|
image = cv2.imread(args.input[i])
|
|
original_images.append(image)
|
|
|
|
if image.shape[:-1] != (h, w):
|
|
log.warning(f'Image {args.input[i]} is resized from {image.shape[:-1]} to {(h, w)}')
|
|
image = cv2.resize(image, (w, h))
|
|
|
|
# Change data layout from HWC to CHW
|
|
image = image.transpose((2, 0, 1))
|
|
|
|
input_data[i] = image
|
|
|
|
# ---------------------------Step 7. Do inference----------------------------------------------------------------------
|
|
log.info('Starting inference in synchronous mode')
|
|
res = exec_net.infer(inputs={input_blob: input_data})
|
|
|
|
# ---------------------------Step 8. Process output--------------------------------------------------------------------
|
|
res = res[out_blob]
|
|
|
|
for i in range(n):
|
|
output_image = res[i]
|
|
# Change data layout from CHW to HWC
|
|
output_image = output_image.transpose((1, 2, 0))
|
|
# Convert BGR color order to RGB
|
|
output_image = cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)
|
|
|
|
# Apply mean argument values
|
|
output_image = output_image[::] - (args.mean_val_r, args.mean_val_g, args.mean_val_b)
|
|
# Set pixel values bitween 0 and 255
|
|
output_image = np.clip(output_image, 0, 255)
|
|
|
|
# Resize a output image to original size
|
|
if args.original_size:
|
|
h, w, _ = original_images[i].shape
|
|
output_image = cv2.resize(output_image, (w, h))
|
|
|
|
cv2.imwrite(f'out_{i}.bmp', output_image)
|
|
if os.path.exists(f'out_{i}.bmp'):
|
|
log.info(f'Image out_{i}.bmp created!')
|
|
else:
|
|
log.error(f'Image out_{i}.bmp was not created. Check your permissions.')
|
|
|
|
# ----------------------------------------------------------------------------------------------------------------------
|
|
log.info('This sample is an API example, for any performance measurements please use the dedicated benchmark_app tool\n')
|
|
return 0
|
|
|
|
|
|
if __name__ == '__main__':
|
|
sys.exit(main())
|