* test * fixed tests * typo * fixed tests * rest of the tests * fixed rsub test * tmp fix * Revert "tmp fix" This reverts commit b8bf1e9492e13497895da488612c9a137ef840bc. * fixed test params * reset thirdparty/pugixml * Revert "fixed rsub test" This reverts commit 9b6be34b8666936e8124b6622fcc5185b640de92. * fixed typo * fixed test data * reset test_rsub * removed unused param * reverrted runner * simplified call * fixed random * changed logical to auto mode * Revert "fixed random" This reverts commit 8a4f20b24641144f823a7e1f1ff92038634acf32. * fixed test_all * replaced random_sample with randn * fixed rebase issue * reverted logical splitting * Update tests/layer_tests/pytorch_tests/test_repeat_interleave.py Co-authored-by: Maxim Vafin <maxim.vafin@intel.com> * Update tests/layer_tests/pytorch_tests/test_all.py Co-authored-by: Maxim Vafin <maxim.vafin@intel.com> * Apply suggestions from code review Co-authored-by: Maxim Vafin <maxim.vafin@intel.com> * fixed merge conflict --------- Co-authored-by: Maxim Vafin <maxim.vafin@intel.com>
120 lines
4.5 KiB
Python
120 lines
4.5 KiB
Python
# Copyright (C) 2018-2023 Intel Corporation
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
|
|
from pytorch_layer_test_class import PytorchLayerTest
|
|
|
|
|
|
class TestSub(PytorchLayerTest):
|
|
def _prepare_input(self):
|
|
return self.input_data
|
|
|
|
def create_model(self, inplace):
|
|
|
|
class aten_sub(torch.nn.Module):
|
|
def __init__(self, inplace) -> None:
|
|
super().__init__()
|
|
if inplace:
|
|
self.forward = self._forward_inplace
|
|
else:
|
|
self.forward = self._forward_out_of_place
|
|
|
|
def _forward_out_of_place(self, x, y, alpha: float):
|
|
return torch.sub(x, y, alpha=alpha)
|
|
|
|
def _forward_inplace(self, x, y, alpha: float):
|
|
return x.sub_(y, alpha=alpha)
|
|
|
|
ref_net = None
|
|
|
|
if inplace:
|
|
op_name = "aten::sub_"
|
|
else:
|
|
op_name = "aten::sub"
|
|
|
|
return aten_sub(inplace), ref_net, op_name
|
|
|
|
@pytest.mark.parametrize('input_shapes',
|
|
[
|
|
[
|
|
[2, 3, 4], [2, 3, 4], [1]
|
|
],
|
|
[
|
|
[4, 2, 3], [1, 2, 3], [1]
|
|
]
|
|
])
|
|
@pytest.mark.parametrize("inplace", [True, False])
|
|
@pytest.mark.nightly
|
|
@pytest.mark.precommit
|
|
def test_sub(self, ie_device, precision, ir_version, input_shapes, inplace):
|
|
self.input_data = []
|
|
for input_shape in input_shapes:
|
|
self.input_data.append(np.random.randn(*input_shape).astype(np.float32))
|
|
self._test(*self.create_model(inplace), ie_device, precision, ir_version, use_convert_model=True)
|
|
|
|
|
|
class TestSubTypes(PytorchLayerTest):
|
|
|
|
def _prepare_input(self):
|
|
if len(self.lhs_shape) == 0:
|
|
return (torch.randn(self.rhs_shape).to(self.rhs_type).numpy(),)
|
|
elif len(self.rhs_shape) == 0:
|
|
return (torch.randn(self.lhs_shape).to(self.lhs_type).numpy(),)
|
|
return (torch.randn(self.lhs_shape).to(self.lhs_type).numpy(),
|
|
torch.randn(self.rhs_shape).to(self.rhs_type).numpy())
|
|
|
|
def create_model(self, lhs_type, lhs_shape, rhs_type, rhs_shape):
|
|
|
|
class aten_sub(torch.nn.Module):
|
|
def __init__(self, lhs_type, lhs_shape, rhs_type, rhs_shape):
|
|
super().__init__()
|
|
self.lhs_type = lhs_type
|
|
self.rhs_type = rhs_type
|
|
if len(lhs_shape) == 0:
|
|
self.forward = self.forward1
|
|
elif len(rhs_shape) == 0:
|
|
self.forward = self.forward2
|
|
else:
|
|
self.forward = self.forward3
|
|
|
|
def forward1(self, rhs):
|
|
return torch.sub(torch.tensor(3).to(self.lhs_type), rhs.to(self.rhs_type), alpha=2)
|
|
|
|
def forward2(self, lhs):
|
|
return torch.sub(lhs.to(self.lhs_type), torch.tensor(3).to(self.rhs_type), alpha=2)
|
|
|
|
def forward3(self, lhs, rhs):
|
|
return torch.sub(lhs.to(self.lhs_type), rhs.to(self.rhs_type), alpha=2)
|
|
|
|
ref_net = None
|
|
|
|
return aten_sub(lhs_type, lhs_shape, rhs_type, rhs_shape), ref_net, "aten::sub"
|
|
|
|
@pytest.mark.parametrize(("lhs_type", "rhs_type"),
|
|
[[torch.int32, torch.int64],
|
|
[torch.int32, torch.float32],
|
|
# [torch.int32, torch.float64], fp64 produce ov error of eltwise constant fold
|
|
[torch.int64, torch.int32],
|
|
[torch.int64, torch.float32],
|
|
# [torch.int64, torch.float64], fp64 produce ov error of eltwise constant fold
|
|
[torch.float32, torch.int32],
|
|
[torch.float32, torch.int64],
|
|
# [torch.float32, torch.float64], fp64 produce ov error of eltwise constant fold
|
|
])
|
|
@pytest.mark.parametrize(("lhs_shape", "rhs_shape"), [([2, 3], [2, 3]),
|
|
([2, 3], []),
|
|
([], [2, 3]),
|
|
])
|
|
@pytest.mark.nightly
|
|
@pytest.mark.precommit
|
|
def test_sub_types(self, ie_device, precision, ir_version, lhs_type, lhs_shape, rhs_type, rhs_shape):
|
|
self.lhs_type = lhs_type
|
|
self.lhs_shape = lhs_shape
|
|
self.rhs_type = rhs_type
|
|
self.rhs_shape = rhs_shape
|
|
self._test(*self.create_model(lhs_type, lhs_shape, rhs_type, rhs_shape),
|
|
ie_device, precision, ir_version)
|