* Allign attribute values in spec * Fix wrong attribute name in spec * Add `get_boolean_attr` function * Add get_type function * Update conv attrs * Update copyright year * Add missed attrs, update copyright year * Fix year in copyright * Update ir parser for RegionYolo layer * Remove wrong changes for BinaryConvolution * Remove get_type function as it no more needed * Update check for reduce ops * Fix error in reduce attrs * Update ir_engine to work with bool attrs * Update DetectionOutput operation * Update PSROIPooling * remove redundant attrs from spec * Update get_boolean_attr function * Update Reduce operations * Update DetectionOutput specification * Update specification for missed attrs * Apply comments * Fixconst renumbering logic * Fix typo * Change default value to fix broken shape inference * Add additional asserts * Add comment * model-optimizer/mo/utils/ir_reader/layer_to_class.py * Sort imports * Sort imports * Update year in copyright * Update const * Remove changes from const restoring * Rename function * remove unnecessary changes * model-optimizer/mo/front/extractor_test.py * Fix year in copyright * Add soft_get * Fix exclude-pad attribute name for AvgPool operation * Update exclude_pad attribute values * Remove useless comment * Update examples in specification * Remove file added by mistake * Resolve comments * Resolve comments * Add return value * Allign global_pool attribute |
||
---|---|---|
.ci | ||
.github | ||
cmake | ||
docs | ||
inference-engine | ||
licensing | ||
model-optimizer | ||
ngraph | ||
openvino | ||
scripts | ||
tests | ||
tools | ||
.gitattributes | ||
.gitignore | ||
.gitmodules | ||
CMakeLists.txt | ||
CODEOWNERS | ||
install_build_dependencies.sh | ||
Jenkinsfile | ||
LICENSE | ||
README.md | ||
SECURITY.md |
OpenVINO™ Toolkit - Deep Learning Deployment Toolkit repository
This toolkit allows developers to deploy pre-trained deep learning models through a high-level C++ Inference Engine API integrated with application logic.
This open source version includes several components: namely Model Optimizer, ngraph and Inference Engine, as well as CPU, GPU, MYRIAD, multi device and heterogeneous plugins to accelerate deep learning inferencing on Intel® CPUs and Intel® Processor Graphics. It supports pre-trained models from the Open Model Zoo, along with 100+ open source and public models in popular formats such as Caffe*, TensorFlow*, MXNet* and ONNX*.
Repository components:
License
Deep Learning Deployment Toolkit is licensed under Apache License Version 2.0. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.
Resources:
- Docs: https://docs.openvinotoolkit.org/
- Wiki: https://github.com/openvinotoolkit/openvino/wiki
- Issue tracking: https://github.com/openvinotoolkit/openvino/issues
- Additional OpenVINO modules: https://github.com/openvinotoolkit/openvino_contrib
- HomePage
- OpenVINO™ Release Notes
Support
Please report questions, issues and suggestions using:
- The
openvino
tag on StackOverflow* - GitHub* Issues
- Forum
* Other names and brands may be claimed as the property of others.