Files
openvino/tools/compile_tool/main.cpp

820 lines
33 KiB
C++

// Copyright (C) 2018-2022 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include <cstdlib>
#include <iostream>
#include <fstream>
#include <algorithm>
#include <chrono>
#include <unordered_map>
#include <map>
#include <vector>
#include <string>
#include <gflags/gflags.h>
#include "inference_engine.hpp"
#include "openvino/openvino.hpp"
#include <vpu/private_plugin_config.hpp>
#include <vpu/utils/string.hpp>
static constexpr char help_message[] =
"Optional. Print the usage message.";
static constexpr char model_message[] =
"Required. Path to the XML model.";
static constexpr char targetDeviceMessage[] =
"Required. Specify a target device for which executable network will be compiled.\n"
" Use \"-d HETERO:<comma-separated_devices_list>\" format to specify HETERO plugin.\n"
" Use \"-d MULTI:<comma-separated_devices_list>\" format to specify MULTI plugin.\n"
" The application looks for a suitable plugin for the specified device.";
static constexpr char output_message[] =
"Optional. Path to the output file. Default value: \"<model_xml_file>.blob\".";
static constexpr char log_level_message[] =
"Optional. Log level for InferenceEngine library.";
static constexpr char config_message[] =
"Optional. Path to the configuration file.";
static constexpr char inputs_precision_message[] =
"Optional. Specifies precision for all input layers of the network.";
static constexpr char outputs_precision_message[] =
"Optional. Specifies precision for all output layers of the network.";
static constexpr char iop_message[] =
"Optional. Specifies precision for input and output layers by name.\n"
" Example: -iop \"input:FP16, output:FP16\".\n"
" Notice that quotes are required.\n"
" Overwrites precision from ip and op options for specified layers.";
static constexpr char inputs_layout_message[] =
"Optional. Specifies layout for all input layers of the network.";
static constexpr char outputs_layout_message[] =
"Optional. Specifies layout for all output layers of the network.";
static constexpr char iol_message[] =
"Optional. Specifies layout for input and output layers by name.\n"
" Example: -iol \"input:NCHW, output:NHWC\".\n"
" Notice that quotes are required.\n"
" Overwrites layout from il and ol options for specified layers.";
static constexpr char inputs_model_layout_message[] =
"Optional. Specifies model layout for all input layers of the network.";
static constexpr char outputs_model_layout_message[] =
"Optional. Specifies model layout for all output layers of the network.";
static constexpr char ioml_message[] =
"Optional. Specifies model layout for input and output tensors by name.\n"
" Example: -ionl \"input:NCHW, output:NHWC\".\n"
" Notice that quotes are required.\n"
" Overwrites layout from il and ol options for specified layers.";
static constexpr char api1_message[] =
"Optional. Compile model to legacy format for usage in Inference Engine API,\n"
" by default compiles to OV 2.0 API";
// MYRIAD-specific
static constexpr char number_of_shaves_message[] =
"Optional. Specifies number of shaves.\n"
" Should be set with \"VPU_NUMBER_OF_CMX_SLICES\".\n"
" Overwrites value from config.\n";
static constexpr char number_of_cmx_slices_message[] =
"Optional. Specifies number of CMX slices.\n"
" Should be set with \"VPU_NUMBER_OF_SHAVES\".\n"
" Overwrites value from config.";
static constexpr char tiling_cmx_limit_message[] =
"Optional. Specifies CMX limit for data tiling.\n"
" Value should be equal or greater than -1.\n"
" Overwrites value from config.";
DEFINE_bool(h, false, help_message);
DEFINE_string(m, "", model_message);
DEFINE_string(d, "", targetDeviceMessage);
DEFINE_string(o, "", output_message);
DEFINE_string(log_level, "", log_level_message);
DEFINE_string(c, "", config_message);
DEFINE_string(ip, "", inputs_precision_message);
DEFINE_string(op, "", outputs_precision_message);
DEFINE_string(iop, "", iop_message);
DEFINE_string(il, "", inputs_layout_message);
DEFINE_string(ol, "", outputs_layout_message);
DEFINE_string(iol, "", iol_message);
DEFINE_string(iml, "", inputs_model_layout_message);
DEFINE_string(oml, "", outputs_model_layout_message);
DEFINE_string(ioml, "", ioml_message);
DEFINE_bool(ov_api_1_0, false, api1_message);
DEFINE_string(VPU_NUMBER_OF_SHAVES, "", number_of_shaves_message);
DEFINE_string(VPU_NUMBER_OF_CMX_SLICES, "", number_of_cmx_slices_message);
DEFINE_string(VPU_TILING_CMX_LIMIT_KB, "", tiling_cmx_limit_message);
namespace {
std::vector<std::string> splitStringList(const std::string& str, char delim) {
if (str.empty())
return {};
std::istringstream istr(str);
std::vector<std::string> result;
std::string elem;
while (std::getline(istr, elem, delim)) {
if (elem.empty()) {
continue;
}
result.emplace_back(std::move(elem));
}
return result;
}
std::map<std::string, std::string> parseArgMap(std::string argMap) {
argMap.erase(std::remove_if(argMap.begin(), argMap.end(), ::isspace), argMap.end());
const auto pairs = splitStringList(argMap, ',');
std::map<std::string, std::string> parsedMap;
for (auto&& pair : pairs) {
const auto lastDelimPos = pair.find_last_of(':');
auto key = pair.substr(0, lastDelimPos);
auto value = pair.substr(lastDelimPos + 1);
if (lastDelimPos == std::string::npos || key.empty() || value.empty()) {
throw std::invalid_argument("Invalid key/value pair " + pair + ". Expected <layer_name>:<value>");
}
parsedMap[std::move(key)] = std::move(value);
}
return parsedMap;
}
using supported_precisions_t = std::unordered_map<std::string, InferenceEngine::Precision>;
InferenceEngine::Precision getPrecision(std::string value, const supported_precisions_t& supported_precisions) {
std::transform(value.begin(), value.end(), value.begin(), ::toupper);
const auto precision = supported_precisions.find(value);
if (precision == supported_precisions.end()) {
throw std::logic_error("\"" + value + "\"" + " is not a valid precision");
}
return precision->second;
}
InferenceEngine::Precision getPrecision(const std::string& value) {
static const supported_precisions_t supported_precisions = {
{"FP32", InferenceEngine::Precision::FP32}, {"f32", InferenceEngine::Precision::FP32},
{"FP16", InferenceEngine::Precision::FP16}, {"f16", InferenceEngine::Precision::FP16},
{"BF16", InferenceEngine::Precision::BF16}, {"bf16", InferenceEngine::Precision::BF16},
{"U64", InferenceEngine::Precision::U64}, {"u64", InferenceEngine::Precision::U64},
{"I64", InferenceEngine::Precision::I64}, {"i64", InferenceEngine::Precision::I64},
{"U32", InferenceEngine::Precision::U32}, {"u32", InferenceEngine::Precision::U32},
{"I32", InferenceEngine::Precision::I32}, {"i32", InferenceEngine::Precision::I32},
{"U16", InferenceEngine::Precision::U16}, {"u16", InferenceEngine::Precision::U16},
{"I16", InferenceEngine::Precision::I16}, {"i16", InferenceEngine::Precision::I16},
{"U8", InferenceEngine::Precision::U8}, {"u8", InferenceEngine::Precision::U8},
{"I8", InferenceEngine::Precision::I8}, {"i8", InferenceEngine::Precision::I8},
{"BOOL", InferenceEngine::Precision::BOOL}, {"boolean", InferenceEngine::Precision::BOOL},
};
return getPrecision(value, supported_precisions);
}
void setPrecisions(const InferenceEngine::CNNNetwork& network, const std::string& iop) {
const auto user_precisions_map = parseArgMap(iop);
auto inputs = network.getInputsInfo();
auto outputs = network.getOutputsInfo();
for (auto&& item : user_precisions_map) {
const auto& layer_name = item.first;
const auto& user_precision = item.second;
const auto input = inputs.find(layer_name);
const auto output = outputs.find(layer_name);
if (input != inputs.end()) {
input->second->setPrecision(getPrecision(user_precision));
} else if (output != outputs.end()) {
output->second->setPrecision(getPrecision(user_precision));
} else {
throw std::logic_error(layer_name + " is not an input neither output");
}
}
}
} //namespace
void processPrecision(InferenceEngine::CNNNetwork& network,
const std::string& ip,
const std::string& op,
const std::string& iop) {
if (!ip.empty()) {
const auto user_precision = getPrecision(ip);
for (auto&& layer : network.getInputsInfo()) {
layer.second->setPrecision(user_precision);
}
}
if (!op.empty()) {
auto user_precision = getPrecision(op);
for (auto&& layer : network.getOutputsInfo()) {
layer.second->setPrecision(user_precision);
}
}
if (!iop.empty()) {
setPrecisions(network, iop);
}
}
using supported_layouts_t = std::unordered_map<std::string, InferenceEngine::Layout>;
using matchLayoutToDims_t = std::unordered_map<size_t, size_t>;
InferenceEngine::Layout getLayout(std::string value, const supported_layouts_t& supported_layouts) {
std::transform(value.begin(), value.end(), value.begin(), ::toupper);
const auto layout = supported_layouts.find(value);
if (layout == supported_layouts.end()) {
throw std::logic_error("\"" + value + "\"" + " is not a valid layout");
}
return layout->second;
}
InferenceEngine::Layout getLayout(const std::string& value) {
static const supported_layouts_t supported_layouts = {
{"NCDHW", InferenceEngine::Layout::NCDHW},
{"NDHWC", InferenceEngine::Layout::NDHWC},
{"NCHW", InferenceEngine::Layout::NCHW},
{"NHWC", InferenceEngine::Layout::NHWC},
{"CHW", InferenceEngine::Layout::CHW},
{"HWC", InferenceEngine::Layout::HWC},
{"NC", InferenceEngine::Layout::NC},
{"C", InferenceEngine::Layout::C},
};
return getLayout(value, supported_layouts);
}
bool isMatchLayoutToDims(InferenceEngine::Layout layout, size_t dimension) {
static const matchLayoutToDims_t matchLayoutToDims = { {static_cast<size_t>(InferenceEngine::Layout::NCDHW), 5},
{static_cast<size_t>(InferenceEngine::Layout::NDHWC), 5},
{static_cast<size_t>(InferenceEngine::Layout::NCHW), 4},
{static_cast<size_t>(InferenceEngine::Layout::NHWC), 4},
{static_cast<size_t>(InferenceEngine::Layout::CHW), 3},
{static_cast<size_t>(InferenceEngine::Layout::NC), 2},
{static_cast<size_t>(InferenceEngine::Layout::C), 1} };
const auto dims = matchLayoutToDims.find(static_cast<size_t>(layout));
if (dims == matchLayoutToDims.end()) {
throw std::logic_error("Layout is not valid.");
}
return dimension == dims->second;
}
void setLayouts(const InferenceEngine::CNNNetwork& network, const std::string iol) {
const auto user_layouts_map = parseArgMap(iol);
auto inputs = network.getInputsInfo();
auto outputs = network.getOutputsInfo();
for (auto&& item : user_layouts_map) {
const auto& layer_name = item.first;
const auto& user_layout = getLayout(item.second);
const auto input = inputs.find(layer_name);
const auto output = outputs.find(layer_name);
if (input != inputs.end()) {
if (!isMatchLayoutToDims(user_layout, input->second->getTensorDesc().getDims().size())) {
throw std::logic_error(item.second + " layout is not applicable to " + layer_name);
}
input->second->setLayout(user_layout);
} else if (output != outputs.end()) {
if (!isMatchLayoutToDims(user_layout, output->second->getTensorDesc().getDims().size())) {
throw std::logic_error(item.second + " layout is not applicable to " + layer_name);
}
output->second->setLayout(user_layout);
} else {
throw std::logic_error(layer_name + " is not an input neither output");
}
}
}
void processLayout(InferenceEngine::CNNNetwork& network,
const std::string& il,
const std::string& ol,
const std::string& iol) {
if (!il.empty()) {
const auto layout = getLayout(il);
for (auto&& layer : network.getInputsInfo()) {
if (isMatchLayoutToDims(layout, layer.second->getTensorDesc().getDims().size())) {
layer.second->setLayout(layout);
}
}
}
if (!ol.empty()) {
const auto layout = getLayout(ol);
for (auto&& layer : network.getOutputsInfo()) {
if (isMatchLayoutToDims(layout, layer.second->getTensorDesc().getDims().size())) {
layer.second->setLayout(layout);
}
}
}
if (!iol.empty()) {
setLayouts(network, iol);
}
}
using supported_type_t = std::unordered_map<std::string, ov::element::Type>;
ov::element::Type getType(std::string value, const supported_type_t& supported_precisions) {
std::transform(value.begin(), value.end(), value.begin(), ::toupper);
const auto precision = supported_precisions.find(value);
if (precision == supported_precisions.end()) {
throw std::logic_error("\"" + value + "\"" + " is not a valid precision");
}
return precision->second;
}
ov::element::Type getType(const std::string& value) {
static const supported_type_t supported_types = {
{"FP32", ov::element::f32}, {"f32", ov::element::f32}, {"FP16", ov::element::f16},
{"f16", ov::element::f16}, {"BF16", ov::element::bf16}, {"bf16", ov::element::bf16},
{"U64", ov::element::u64}, {"u64", ov::element::u64}, {"I64", ov::element::i64},
{"i64", ov::element::i64}, {"U32", ov::element::u32}, {"u32", ov::element::u32},
{"I32", ov::element::i32}, {"i32", ov::element::i32}, {"U16", ov::element::u16},
{"u16", ov::element::u16}, {"I16", ov::element::i16}, {"i16", ov::element::i16},
{"U8", ov::element::u8}, {"u8", ov::element::u8}, {"I8", ov::element::i8},
{"i8", ov::element::i8}, {"BOOL", ov::element::boolean}, {"boolean", ov::element::boolean},
};
return getType(value, supported_types);
}
bool isFP32(const ov::element::Type& type) {
return type == ov::element::f32;
}
static void setDefaultIO(ov::preprocess::PrePostProcessor& preprocessor,
const std::vector<ov::Output<ov::Node>>& inputs,
const std::vector<ov::Output<ov::Node>>& outputs) {
const bool isMYRIAD = FLAGS_d.find("MYRIAD") != std::string::npos;
const bool isVPUX = FLAGS_d.find("VPUX") != std::string::npos;
if (isMYRIAD) {
for (size_t i = 0; i < inputs.size(); i++) {
if (isFP32(inputs[i].get_element_type())) {
preprocessor.input(i).tensor().set_element_type(ov::element::f16);
}
}
for (size_t i = 0; i < outputs.size(); i++) {
if (isFP32(outputs[i].get_element_type())) {
preprocessor.output(i).tensor().set_element_type(ov::element::f16);
}
}
}
if (isVPUX) {
for (size_t i = 0; i < inputs.size(); i++) {
preprocessor.input(i).tensor().set_element_type(ov::element::u8);
}
for (size_t i = 0; i < outputs.size(); i++) {
preprocessor.output(i).tensor().set_element_type(ov::element::f32);
}
}
}
void configurePrePostProcessing(std::shared_ptr<ov::Model>& model,
const std::string& ip,
const std::string& op,
const std::string& iop,
const std::string& il,
const std::string& ol,
const std::string& iol,
const std::string& iml,
const std::string& oml,
const std::string& ioml) {
auto preprocessor = ov::preprocess::PrePostProcessor(model);
const auto inputs = model->inputs();
const auto outputs = model->outputs();
setDefaultIO(preprocessor, inputs, outputs);
if (!ip.empty()) {
auto type = getType(ip);
for (size_t i = 0; i < inputs.size(); i++) {
preprocessor.input(i).tensor().set_element_type(type);
}
}
if (!op.empty()) {
auto type = getType(op);
for (size_t i = 0; i < outputs.size(); i++) {
preprocessor.output(i).tensor().set_element_type(type);
}
}
if (!iop.empty()) {
const auto user_precisions_map = parseArgMap(iop);
for (auto&& item : user_precisions_map) {
const auto& tensor_name = item.first;
const auto type = getType(item.second);
bool tensorFound = false;
for (size_t i = 0; i < inputs.size(); i++) {
if (inputs[i].get_names().count(tensor_name)) {
preprocessor.input(i).tensor().set_element_type(type);
tensorFound = true;
break;
}
}
if (!tensorFound) {
for (size_t i = 0; i < outputs.size(); i++) {
if (outputs[i].get_names().count(tensor_name)) {
preprocessor.output(i).tensor().set_element_type(type);
tensorFound = true;
break;
}
}
}
OPENVINO_ASSERT(tensorFound, "Model doesn't have input/output with tensor name: ", tensor_name);
}
}
if (!il.empty()) {
for (size_t i = 0; i < inputs.size(); i++) {
preprocessor.input(i).tensor().set_layout(ov::Layout(il));
}
}
if (!ol.empty()) {
for (size_t i = 0; i < outputs.size(); i++) {
preprocessor.output(i).tensor().set_layout(ov::Layout(ol));
}
}
if (!iol.empty()) {
const auto user_precisions_map = parseArgMap(iol);
for (auto&& item : user_precisions_map) {
const auto& tensor_name = item.first;
bool tensorFound = false;
for (size_t i = 0; i < inputs.size(); i++) {
if (inputs[i].get_names().count(tensor_name)) {
preprocessor.input(i).tensor().set_layout(ov::Layout(item.second));
tensorFound = true;
break;
}
}
if (!tensorFound) {
for (size_t i = 0; i < outputs.size(); i++) {
if (outputs[i].get_names().count(tensor_name)) {
preprocessor.output(i).tensor().set_layout(ov::Layout(item.second));
tensorFound = true;
break;
}
}
}
OPENVINO_ASSERT(tensorFound, "Model doesn't have input/output with tensor name: ", tensor_name);
}
}
if (!iml.empty()) {
for (size_t i = 0; i < inputs.size(); i++) {
preprocessor.input(i).model().set_layout(ov::Layout(iml));
}
}
if (!oml.empty()) {
for (size_t i = 0; i < outputs.size(); i++) {
preprocessor.output(i).model().set_layout(ov::Layout(oml));
}
}
if (!ioml.empty()) {
const auto user_precisions_map = parseArgMap(ioml);
for (auto&& item : user_precisions_map) {
const auto& tensor_name = item.first;
bool tensorFound = false;
for (size_t i = 0; i < inputs.size(); i++) {
if (inputs[i].get_names().count(tensor_name)) {
preprocessor.input(i).model().set_layout(ov::Layout(item.second));
tensorFound = true;
break;
}
}
if (!tensorFound) {
for (size_t i = 0; i < outputs.size(); i++) {
if (outputs[i].get_names().count(tensor_name)) {
preprocessor.output(i).model().set_layout(ov::Layout(item.second));
tensorFound = true;
break;
}
}
}
OPENVINO_ASSERT(tensorFound, "Model doesn't have input/output with tensor name: ", tensor_name);
}
}
model = preprocessor.build();
}
void printInputAndOutputsInfo(const InferenceEngine::CNNNetwork& network) {
std::cout << "Network inputs:" << std::endl;
for (auto&& layer : network.getInputsInfo()) {
std::cout << " " << layer.first << " : " << layer.second->getPrecision() << " / "
<< layer.second->getLayout() << std::endl;
}
std::cout << "Network outputs:" << std::endl;
for (auto&& layer : network.getOutputsInfo()) {
std::cout << " " << layer.first << " : " << layer.second->getPrecision() << " / "
<< layer.second->getLayout() << std::endl;
}
}
void printInputAndOutputsInfoShort(const ov::Model& network) {
std::cout << "Network inputs:" << std::endl;
for (auto&& param : network.get_parameters()) {
auto l = param->get_layout();
std::cout << " " << param->get_friendly_name() << " : " << param->get_element_type() << " / "
<< param->get_layout().to_string() << std::endl;
}
std::cout << "Network outputs:" << std::endl;
for (auto&& result : network.get_results()) {
std::cout << " " << result->get_friendly_name() << " : " << result->get_element_type() << " / "
<< result->get_layout().to_string() << std::endl;
}
}
inline std::string fileNameNoExt(const std::string& filepath) {
auto pos = filepath.rfind('.');
if (pos == std::string::npos)
return filepath;
return filepath.substr(0, pos);
}
static void showUsage() {
std::cout << "compile_tool [OPTIONS]" << std::endl;
std::cout << std::endl;
std::cout << " Common options: " << std::endl;
std::cout << " -h " << help_message << std::endl;
std::cout << " -m <value> " << model_message << std::endl;
std::cout << " -d <value> " << targetDeviceMessage << std::endl;
std::cout << " -o <value> " << output_message << std::endl;
std::cout << " -c <value> " << config_message << std::endl;
std::cout << " -ip <value> " << inputs_precision_message << std::endl;
std::cout << " -op <value> " << outputs_precision_message << std::endl;
std::cout << " -iop \"<value>\" " << iop_message << std::endl;
std::cout << " -il <value> " << inputs_layout_message << std::endl;
std::cout << " -ol <value> " << outputs_layout_message << std::endl;
std::cout << " -iol \"<value>\" " << iol_message << std::endl;
std::cout << " -iml <value> " << inputs_model_layout_message << std::endl;
std::cout << " -oml <value> " << outputs_model_layout_message << std::endl;
std::cout << " -ioml \"<value>\" " << ioml_message << std::endl;
std::cout << " -ov_api_1_0 " << api1_message << std::endl;
std::cout << std::endl;
std::cout << " MYRIAD-specific options: " << std::endl;
std::cout << " -VPU_NUMBER_OF_SHAVES <value> " << number_of_shaves_message << std::endl;
std::cout << " -VPU_NUMBER_OF_CMX_SLICES <value> " << number_of_cmx_slices_message << std::endl;
std::cout << " -VPU_TILING_CMX_LIMIT_KB <value> " << tiling_cmx_limit_message << std::endl;
std::cout << std::endl;
}
static bool parseCommandLine(int* argc, char*** argv) {
gflags::ParseCommandLineNonHelpFlags(argc, argv, true);
if (FLAGS_h) {
showUsage();
return false;
}
if (FLAGS_m.empty()) {
throw std::invalid_argument("Path to model xml file is required");
}
if (FLAGS_d.empty()) {
throw std::invalid_argument("Target device name is required");
}
if (1 < *argc) {
std::stringstream message;
message << "Unknown arguments: ";
for (auto arg = 1; arg < *argc; arg++) {
message << argv[arg];
if (arg < *argc) {
message << " ";
}
}
throw std::invalid_argument(message.str());
}
return true;
}
static std::map<std::string, std::string> parseConfigFile(char comment = '#') {
std::map<std::string, std::string> config;
std::ifstream file(FLAGS_c);
if (file.is_open()) {
std::string option;
while (std::getline(file, option)) {
if (option.empty() || option[0] == comment) {
continue;
}
size_t spacePos = option.find(' ');
std::string key, value;
if (spacePos != std::string::npos) {
key = option.substr(0, spacePos);
value = option.substr(spacePos + 1);
config[key] = value;
}
}
}
return config;
}
static std::map<std::string, std::string> configure() {
const bool isMYRIAD = FLAGS_d.find("MYRIAD") != std::string::npos;
auto config = parseConfigFile();
if (isMYRIAD) {
if (!FLAGS_VPU_NUMBER_OF_SHAVES.empty()) {
config[InferenceEngine::MYRIAD_NUMBER_OF_SHAVES] = FLAGS_VPU_NUMBER_OF_SHAVES;
}
if (!FLAGS_VPU_NUMBER_OF_CMX_SLICES.empty()) {
config[InferenceEngine::MYRIAD_NUMBER_OF_CMX_SLICES] = FLAGS_VPU_NUMBER_OF_CMX_SLICES;
}
if (!FLAGS_VPU_TILING_CMX_LIMIT_KB.empty()) {
config[InferenceEngine::MYRIAD_TILING_CMX_LIMIT_KB] = FLAGS_VPU_TILING_CMX_LIMIT_KB;
}
}
return config;
}
bool isFP16(InferenceEngine::Precision precision) {
return precision == InferenceEngine::Precision::FP16;
}
bool isFP32(InferenceEngine::Precision precision) {
return precision == InferenceEngine::Precision::FP32;
}
bool isFloat(InferenceEngine::Precision precision) {
return isFP16(precision) || isFP32(precision);
}
static void setDefaultIO(InferenceEngine::CNNNetwork& network) {
const bool isMYRIAD = FLAGS_d.find("MYRIAD") != std::string::npos;
const bool isVPUX = FLAGS_d.find("VPUX") != std::string::npos;
if (isMYRIAD) {
const InferenceEngine::Precision fp16 = InferenceEngine::Precision::FP16;
for (auto&& layer : network.getInputsInfo()) {
if (isFloat(layer.second->getPrecision())) {
layer.second->setPrecision(fp16);
}
}
for (auto&& layer : network.getOutputsInfo()) {
if (isFloat(layer.second->getPrecision())) {
layer.second->setPrecision(fp16);
}
}
}
if (isVPUX) {
const InferenceEngine::Precision u8 = InferenceEngine::Precision::U8;
const InferenceEngine::Precision fp32 = InferenceEngine::Precision::FP32;
for (auto&& layer : network.getInputsInfo()) {
layer.second->setPrecision(u8);
}
for (auto&& layer : network.getOutputsInfo()) {
layer.second->setPrecision(fp32);
}
}
}
std::string getFileNameFromPath(const std::string& path,
#if defined(_WIN32)
const std::string& sep = "\\") {
#else
const std::string& sep = "/") {
#endif
const auto pos = path.rfind(sep);
if (std::string::npos == pos) {
return path;
} else {
return path.substr(pos + 1);
}
}
using TimeDiff = std::chrono::milliseconds;
int main(int argc, char* argv[]) {
TimeDiff loadNetworkTimeElapsed {0};
try {
const auto& version = ov::get_openvino_version();
std::cout << version.description << " version ......... ";
std::cout << OPENVINO_VERSION_MAJOR << "." << OPENVINO_VERSION_MINOR << "." << OPENVINO_VERSION_PATCH << std::endl;
std::cout << "Build ........... ";
std::cout << version.buildNumber << std::endl;
if (!parseCommandLine(&argc, &argv)) {
return EXIT_SUCCESS;
}
if (FLAGS_ov_api_1_0) {
InferenceEngine::Core ie;
if (!FLAGS_log_level.empty()) {
ie.SetConfig({{CONFIG_KEY(LOG_LEVEL), FLAGS_log_level}}, FLAGS_d);
}
auto network = ie.ReadNetwork(FLAGS_m);
setDefaultIO(network);
processPrecision(network, FLAGS_ip, FLAGS_op, FLAGS_iop);
processLayout(network, FLAGS_il, FLAGS_ol, FLAGS_iol);
printInputAndOutputsInfo(network);
auto timeBeforeLoadNetwork = std::chrono::steady_clock::now();
auto executableNetwork = ie.LoadNetwork(network, FLAGS_d, configure());
loadNetworkTimeElapsed = std::chrono::duration_cast<TimeDiff>(std::chrono::steady_clock::now() - timeBeforeLoadNetwork);
std::string outputName = FLAGS_o;
if (outputName.empty()) {
outputName = getFileNameFromPath(fileNameNoExt(FLAGS_m)) + ".blob";
}
std::ofstream outputFile{outputName, std::ios::out | std::ios::binary};
if (!outputFile.is_open()) {
std::cout << "Output file " << outputName << " can't be opened for writing" << std::endl;
return EXIT_FAILURE;
} else {
executableNetwork.Export(outputFile);
}
} else {
ov::Core core;
if (!FLAGS_log_level.empty()) {
ov::log::Level level;
std::stringstream{FLAGS_log_level} >> level;
core.set_property(FLAGS_d, ov::log::level(level));
}
auto model = core.read_model(FLAGS_m);
configurePrePostProcessing(model, FLAGS_ip, FLAGS_op, FLAGS_iop, FLAGS_il, FLAGS_ol, FLAGS_iol, FLAGS_iml, FLAGS_oml, FLAGS_ioml);
printInputAndOutputsInfoShort(*model);
auto timeBeforeLoadNetwork = std::chrono::steady_clock::now();
auto configs = configure();
auto compiledModel = core.compile_model(model, FLAGS_d, {configs.begin(), configs.end()});
loadNetworkTimeElapsed = std::chrono::duration_cast<TimeDiff>(std::chrono::steady_clock::now() - timeBeforeLoadNetwork);
std::string outputName = FLAGS_o;
if (outputName.empty()) {
outputName = getFileNameFromPath(fileNameNoExt(FLAGS_m)) + ".blob";
}
std::ofstream outputFile{outputName, std::ios::out | std::ios::binary};
if (!outputFile.is_open()) {
std::cout << "Output file " << outputName << " can't be opened for writing" << std::endl;
return EXIT_FAILURE;
} else {
compiledModel.export_model(outputFile);
}
}
} catch (const std::exception& error) {
std::cerr << error.what() << std::endl;
return EXIT_FAILURE;
} catch (...) {
std::cerr << "Unknown/internal exception happened." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Done. LoadNetwork time elapsed: " << loadNetworkTimeElapsed.count() << " ms" << std::endl;
return EXIT_SUCCESS;
}