Files
openvino/model-optimizer/extensions/ops/fakequantize.py
Anton Chetverikov a788c02c3d Actualize operations attributes (#3613)
* Fix missed/redundant attrs for some operations

* Align auto_pad attr values in spec

* Update MO IR Reader extenders for appropriate operations

* Allign auto_pad attr values for appropriate operations

* Remove changes in extenders

* Update backend_attrs for some operations

* Changes in shape_infer functions to correct work with explicit mode

* Apply offline comments
2020-12-18 11:47:41 +03:00

110 lines
4.1 KiB
Python

"""
Copyright (C) 2018-2020 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import numpy as np
from mo.graph.graph import Node, Graph
from mo.ops.op import Op
from mo.utils.error import Error
def broadcastable(broadcast_from, broadcast_to):
"""Check if shape broadcast_from can be broadcasted to broadcast_to"""
broadcast_to = np.array(broadcast_to, dtype=np.int64)
broadcast_from = np.array(broadcast_from, dtype=np.int64)
if broadcast_from.size > broadcast_to.size:
return False
broadcast_from = np.concatenate(
(np.array([1] * (broadcast_to.size - broadcast_from.size), dtype=np.int64), broadcast_from))
return np.all(np.logical_or(broadcast_from == 1, broadcast_from == broadcast_to))
def round_half_up(n):
return np.floor(n + 0.5)
class FakeQuantize(Op):
op = 'FakeQuantize'
def __init__(self, graph: Graph, attrs: dict):
mandatory_props = {
'type': self.op,
'op': self.op,
'version': 'opset1',
'levels': None,
'is_eltwise': True,
'infer': self.infer,
'in_ports_count': 5,
'out_ports_count': 1,
'auto_broadcast': 'numpy'
}
super().__init__(graph, mandatory_props, attrs)
if self.attrs['levels'] is None:
raise Error("FakeQuantize operation has no levels parameter")
def supported_attrs(self):
return [
'levels',
'auto_broadcast'
]
@staticmethod
def infer(node: Node):
assert len(node.in_nodes()) == 5
assert len(node.out_nodes()) == 1
inputs = [node.in_node(i) for i in range(5)]
x, input_low, input_high, output_low, output_high = inputs
assert x.has_valid('shape')
# TODO Check all inputs[1..4] shapes are broadcastable to inputs[0] shape
assert all([broadcastable(inputs[i].shape, inputs[0].shape) for i in range(1, 5)]), \
"Not all shapes from FakeQuantize inputs can be broadcasted to input[0] for node {}".format(
node.soft_get('name'))
node.out_node().shape = x.shape.copy()
if all([node.in_node(i).has_valid('value') for i in range(5)]):
x, input_low, input_high, output_low, output_high = \
[np.array(np.broadcast_to(node.value, x.value.shape), dtype=np.float32) for node in inputs]
assert node.has_valid('levels')
assert isinstance(node.levels, int)
underflow_mask = x <= input_low
overflow_mask = x > input_high
# pylint: disable=assignment-from-no-return
middle_mask = np.logical_not(np.logical_or(underflow_mask, overflow_mask))
def middle_part(x, input_low, input_high, output_low, output_high):
return round_half_up((x - input_low) / (input_high - input_low) * (node.levels - 1)) / \
(node.levels - 1) * (output_high - output_low) + output_low
output = np.zeros_like(x)
# pylint: disable=unsupported-assignment-operation
output[middle_mask] = middle_part(
x[middle_mask],
input_low[middle_mask],
input_high[middle_mask],
output_low[middle_mask],
output_high[middle_mask],
)
# pylint: disable=unsupported-assignment-operation
output[overflow_mask] = output_high[overflow_mask]
# pylint: disable=unsupported-assignment-operation
output[underflow_mask] = output_low[underflow_mask]
if not node.has_and_set('stop_value_propagation'):
node.out_node().value = output