Files
openvino/docs/snippets/lpt_intel_cpu_plugin.cpp
Vladislav Golubev a25c2ba665 [LPT] Precision restrictions extending (#13172)
* [LPT] Precision restrictions extending

* Compilation error fixed

* Markup for SubgraphOps fixed

* cleanup

* Review fixes: removed vector<size_t> wrapper in PrecisionRestriction class

* Review fixes: added comments

* docs compilation fix
2022-10-19 12:29:32 +02:00

222 lines
8.7 KiB
C++

#include <ie_core.hpp>
#include <transformations/low_precision/disable_convert_constant_folding_on_const_path.hpp>
#include <low_precision/common/quantization_granularity_restriction.hpp>
#include <low_precision/convert_subtract_constant.hpp>
#include <low_precision/convolution.hpp>
#include <low_precision/convolution_backprop_data.hpp>
#include <low_precision/layer_transformation.hpp>
#include <low_precision/low_precision.hpp>
#include <low_precision/multiply_to_group_convolution.hpp>
#include <low_precision/network_helper.hpp>
#include <transformations/common_optimizations/convert_quantize_dequantize.hpp>
#include <transformations/op_conversions/convert_subtract.hpp>
namespace ngraph {
namespace pass {
namespace device {
class ConvertOpSet1ToDeviceSpecific: public ngraph::pass::FunctionPass {
public:
bool run_on_function(std::shared_ptr<ngraph::Function> f) override {
return true;
}
};
} // namespace device
} // pass
} // ngraph
int main() {
std::shared_ptr<ov::Model> nGraphFunc;
ngraph::pass::Manager manager;
auto pass_config = manager.get_pass_config();
//! [lpt_common]
// check if the function is quantized to ignore LPT transformations for not quantized function to speed up model loading
const bool useLpt = ngraph::pass::low_precision::LowPrecision::isFunctionQuantized(nGraphFunc);
auto defaultPrecisions =
useLpt ? ngraph::pass::low_precision::precision_set::int8_support : std::vector<ov::element::Type>{};
if (useLpt) {
// disable constant folding on constant subgraph to use the subgraph for LPT
manager.register_pass<ngraph::pass::DisableConvertConstantFoldingOnConstPath>(defaultPrecisions);
}
// nGraph common transformations happen here
if (useLpt) {
// convert subtract constant to INT8 to prevent unnecessary FP16 to FP32 conversion
manager.register_pass<ngraph::pass::low_precision::ConvertSubtractConstant>(defaultPrecisions);
}
// nGraph common transformations happen here
if (useLpt) {
// convert not supported cases FakeQuantize -> Convert -> Convert -> Subtract -> Multiply to a single FakeQuantize
pass_config->set_callback<ngraph::pass::ConvertQuantizeDequantize>([&defaultPrecisions](const std::shared_ptr<const ngraph::Node> &node) -> bool {
return ngraph::pass::low_precision::NetworkHelper::areQuantizeAndDequantizeSupportedForMultiply(node, defaultPrecisions);
});
// convert not supported cases FakeQuantize -> Convert -> Convert -> Subtract -> Multiply to a single FakeQuantize
pass_config->set_callback<ngraph::pass::ConvertSubtract>([&defaultPrecisions](const std::shared_ptr<const ngraph::Node> &node) -> bool {
return ngraph::pass::low_precision::NetworkHelper::areQuantizeAndDequantizeSupportedForSubtract(node, defaultPrecisions);
});
}
manager.run_passes(nGraphFunc);
//! [lpt_common]
//! [lpt_execution]
using namespace ngraph::pass::low_precision;
if (useLpt) {
// Low precision transformations plugin specific configuration: restrictions definition
auto supportedPrecisions = std::vector<PrecisionsRestriction>({
PrecisionsRestriction::create<ngraph::opset1::Convolution>({
{{0}, {ngraph::element::u8}},
{{1}, {ngraph::element::i8}},
}),
PrecisionsRestriction::create<ngraph::opset1::ConvolutionBackpropData>({
{{0}, {ngraph::element::u8, ngraph::element::i8}},
{{1}, {ngraph::element::i8}}
}),
PrecisionsRestriction::create<ngraph::opset1::GroupConvolution>({
{{0}, {ngraph::element::u8}},
{{1}, {ngraph::element::i8}}
}),
PrecisionsRestriction::create<ngraph::opset1::Multiply>({
{{0}, {ngraph::element::u8}},
{{1}, {ngraph::element::i8}},
}),
});
// Low precision transformations plugin specific configuration: per-tensor quantization operations definition
auto perTensorQuantization = std::vector<QuantizationGranularityRestriction>({
QuantizationGranularityRestriction::create<ngraph::opset1::Convolution>({0}),
QuantizationGranularityRestriction::create<ngraph::opset1::ConvolutionBackpropData>({0})
});
// Low precision transformations instantiation and registration in pass manager
ngraph::pass::Manager lptManager;
lptManager.register_pass<ngraph::pass::low_precision::LowPrecision>(supportedPrecisions, perTensorQuantization);
// Low precision transformations plugin specific configuration: transformation callbacks definition
lptManager.get_pass_config()->set_callback<MarkupPrecisions>([](const std::shared_ptr<const ngraph::Node>& node) -> bool {
if (const auto multiply = std::dynamic_pointer_cast<const ngraph::opset1::Multiply>(node)) {
return !MultiplyToGroupConvolutionTransformation::canBeTransformedToGroupConvolution(multiply);
}
return false;
});
lptManager.get_pass_config()->set_callback<ConvolutionBackpropDataTransformation>([&defaultPrecisions](const std::shared_ptr<const ngraph::Node>& node) -> bool {
return LayerTransformation::isAsymmetricQuantization(node, defaultPrecisions) || WeightableLayerTransformation::isAsymmetricOnWeights(node);
});
lptManager.get_pass_config()->set_callback<MultiplyToGroupConvolutionTransformation>([](const std::shared_ptr<const ngraph::Node>& node) -> bool {
return MultiplyToGroupConvolutionTransformation::isDynamicOrScalar(node);
});
// Low precision transformations execution
lptManager.run_passes(nGraphFunc);
}
//! [lpt_execution]
//! [lpt_device]
ngraph::pass::Manager deviceSpecificManager;
deviceSpecificManager.register_pass<ngraph::pass::device::ConvertOpSet1ToDeviceSpecific>();
deviceSpecificManager.run_passes(nGraphFunc);
//! [lpt_device]
return 0;
}
int lpt_supported_precisions() {
std::shared_ptr<ov::Model> nGraphFunc;
ngraph::pass::Manager manager;
using namespace ngraph::pass::low_precision;
//! [lpt_supported_precisions]
auto supportedPrecisions = std::vector<PrecisionsRestriction>({
PrecisionsRestriction::create<ngraph::opset1::Convolution>({
{{0}, {ngraph::element::u8}},
{{1}, {ngraph::element::i8}},
}),
});
ngraph::pass::Manager lptManager;
lptManager.register_pass<ngraph::pass::low_precision::LowPrecision>(supportedPrecisions);
lptManager.run_passes(nGraphFunc);
//! [lpt_supported_precisions]
ngraph::pass::Manager deviceSpecificManager;
deviceSpecificManager.register_pass<ngraph::pass::device::ConvertOpSet1ToDeviceSpecific>();
deviceSpecificManager.run_passes(nGraphFunc);
return 0;
}
int per_tensor_quantization() {
std::shared_ptr<ov::Model> nGraphFunc;
//! [per_tensor_quantization]
using namespace ngraph::pass::low_precision;
const std::vector<PrecisionsRestriction> emptyRestrictions;
auto perTensorQuantization = std::vector<QuantizationGranularityRestriction>({
QuantizationGranularityRestriction::create<ngraph::opset1::Convolution>({0})
});
ngraph::pass::Manager lptManager;
lptManager.register_pass<ngraph::pass::low_precision::LowPrecision>(emptyRestrictions, perTensorQuantization);
lptManager.run_passes(nGraphFunc);
//! [per_tensor_quantization]
return 0;
}
int asymmetric_quantization(const std::vector<ngraph::element::Type>& defaultPrecisions) {
std::shared_ptr<ov::Model> nGraphFunc;
ngraph::pass::Manager manager;
auto pass_config = manager.get_pass_config();
//! [asymmetric_quantization]
using namespace ngraph::pass::low_precision;
ngraph::pass::Manager lptManager;
lptManager.register_pass<ngraph::pass::low_precision::LowPrecision>();
lptManager.get_pass_config()->set_callback<ConvolutionBackpropDataTransformation>([&defaultPrecisions](const std::shared_ptr<const ngraph::Node>& node) -> bool {
return LayerTransformation::isAsymmetricQuantization(node, defaultPrecisions) || WeightableLayerTransformation::isAsymmetricOnWeights(node);
});
lptManager.run_passes(nGraphFunc);
//! [asymmetric_quantization]
return 0;
}
int lpt_markup_pipeline() {
std::shared_ptr<ov::Model> nGraphFunc;
ngraph::pass::Manager manager;
using namespace ngraph::pass::low_precision;
//! [lpt_markup_pipeline]
auto supportedPrecisions = std::vector<PrecisionsRestriction>({
PrecisionsRestriction::create<ngraph::opset1::Convolution>({
{{0}, {ngraph::element::u8}},
{{1}, {ngraph::element::i8}},
}),
});
auto perTensorQuantization = std::vector<QuantizationGranularityRestriction>({
QuantizationGranularityRestriction::create<ngraph::opset1::Convolution>({0})
});
ngraph::pass::Manager lptManager;
lptManager.register_pass<ngraph::pass::low_precision::LowPrecision>(supportedPrecisions, perTensorQuantization);
lptManager.run_passes(nGraphFunc);
//! [lpt_markup_pipeline]
ngraph::pass::Manager deviceSpecificManager;
deviceSpecificManager.register_pass<ngraph::pass::device::ConvertOpSet1ToDeviceSpecific>();
deviceSpecificManager.run_passes(nGraphFunc);
return 0;
}