* Ubuntu 22.04 support * Try to fix setuptools * Try to fix arm * Try to add more packages * Test 2 * test 3 * Turn dependnecies download off * Fix * Fix * Fix * Fix * Fix * test * Fix * restore eveything * Try to restore * Restore install_openvino_dependencies.sh * clean-up raspbian * New if conditions * Removed excess dependencies * COsmetic chnages * Removed autools * Removed libgkt-2 * Added HDLDL libs * Test * Removed some dependnecies * Better fixes * Removed some dependencies * Fixed compilation * Removed all extra
339 lines
12 KiB
C++
339 lines
12 KiB
C++
// Copyright (C) 2020 Intel Corporation
|
||
// SPDX-License-Identifier: Apache-2.0
|
||
//
|
||
|
||
// ! [ov:include]
|
||
#include <openvino/core/model.hpp>
|
||
#include <openvino/opsets/opset8.hpp>
|
||
// ! [ov:include]
|
||
|
||
#include <openvino/pass/serialize.hpp>
|
||
#include <openvino/pass/visualize_tree.hpp>
|
||
#include <openvino/openvino.hpp>
|
||
#include <openvino/opsets/opset8.hpp>
|
||
#include <openvino/pass/pattern/op/wrap_type.hpp>
|
||
#include <openvino/pass/manager.hpp>
|
||
#include <openvino/pass/graph_rewrite.hpp>
|
||
#include <openvino/core/rt_info.hpp>
|
||
|
||
|
||
// ! [ov:create_simple_model]
|
||
std::shared_ptr<ov::Model> create_simple_model() {
|
||
// This example shows how to create ov::Model
|
||
//
|
||
// Parameter--->Multiply--->Add--->Result
|
||
// Constant---' /
|
||
// Constant---'
|
||
|
||
// Create opset8::Parameter operation with static shape
|
||
auto data = std::make_shared<ov::opset8::Parameter>(ov::element::f32, ov::Shape{3, 1, 2});
|
||
|
||
auto mul_constant = ov::opset8::Constant::create(ov::element::f32, ov::Shape{1}, {1.5});
|
||
auto mul = std::make_shared<ov::opset8::Multiply>(data, mul_constant);
|
||
|
||
auto add_constant = ov::opset8::Constant::create(ov::element::f32, ov::Shape{1}, {0.5});
|
||
auto add = std::make_shared<ov::opset8::Add>(mul, add_constant);
|
||
|
||
// Create opset8::Result operation
|
||
auto res = std::make_shared<ov::opset8::Result>(mul);
|
||
|
||
// Create nGraph function
|
||
return std::make_shared<ov::Model>(ov::ResultVector{res}, ov::ParameterVector{data});
|
||
}
|
||
// ! [ov:create_simple_model]
|
||
|
||
// ! [ov:create_advanced_model]
|
||
std::shared_ptr<ov::Model> create_advanced_model() {
|
||
// Advanced example with multi output operation
|
||
//
|
||
// Parameter->Split---0-->Result
|
||
// | `--1-->Relu-->Result
|
||
// `----2-->Result
|
||
|
||
auto data = std::make_shared<ov::opset8::Parameter>(ov::element::f32, ov::Shape{1, 3, 64, 64});
|
||
|
||
// Create Constant for axis value
|
||
auto axis_const = ov::opset8::Constant::create(ov::element::i64, ov::Shape{} /*scalar shape*/, {1});
|
||
|
||
// Create opset8::Split operation that splits input to three slices across 1st dimension
|
||
auto split = std::make_shared<ov::opset8::Split>(data, axis_const, 3);
|
||
|
||
// Create opset8::Relu operation that takes 1st Split output as input
|
||
auto relu = std::make_shared<ov::opset8::Relu>(split->output(1) /*specify explicit output*/);
|
||
|
||
// Results operations will be created automatically based on provided OutputVector
|
||
return std::make_shared<ov::Model>(ov::OutputVector{split->output(0), relu, split->output(2)},
|
||
ov::ParameterVector{data});
|
||
}
|
||
// ! [ov:create_advanced_model]
|
||
|
||
void ov_api_examples() {
|
||
std::shared_ptr<ov::Node> node = std::make_shared<ov::opset8::Parameter>(ov::element::f32, ov::PartialShape{ov::Dimension::dynamic(), 3, 64, 64});
|
||
|
||
// ! [ov:partial_shape]
|
||
ov::Shape static_shape;
|
||
ov::PartialShape partial_shape = node->output(0).get_partial_shape(); // get zero output partial shape
|
||
if (!partial_shape.is_dynamic() /* or partial_shape.is_static() */) {
|
||
static_shape = partial_shape.get_shape();
|
||
}
|
||
// ! [ov:partial_shape]
|
||
}
|
||
|
||
// ! [ov:serialize]
|
||
void serialize_example(const std::shared_ptr<ov::Model>& f) {
|
||
// Need include:
|
||
// * openvino/pass/manager.hpp
|
||
// * openvino/pass/serialize.hpp
|
||
ov::pass::Manager manager;
|
||
|
||
// Serialize ov::Model to IR
|
||
manager.register_pass<ov::pass::Serialize>("/path/to/file/model.xml", "/path/to/file/model.bin");
|
||
|
||
manager.run_passes(f);
|
||
}
|
||
// ! [ov:serialize]
|
||
|
||
// ! [ov:visualize]
|
||
void visualize_example(const std::shared_ptr<ov::Model>& m) {
|
||
// Need include:
|
||
// * openvino/pass/manager.hpp
|
||
// * openvino/pass/visualize_tree.hpp
|
||
ov::pass::Manager manager;
|
||
|
||
// Serialize ov::Model to before.svg file before transformation
|
||
manager.register_pass<ov::pass::VisualizeTree>("image.svg");
|
||
|
||
manager.run_passes(m);
|
||
}
|
||
// ! [ov:visualize]
|
||
|
||
void model_inputs() {
|
||
ov::Core core;
|
||
std::shared_ptr<ov::Model> model = core.read_model("model.xml");
|
||
//! [all_inputs_ouputs]
|
||
/* Take information about all topology inputs */
|
||
auto inputs = model->inputs();
|
||
/* Take information about all topology outputs */
|
||
auto outputs = model->outputs();
|
||
//! [all_inputs_ouputs]
|
||
}
|
||
|
||
void pattern_matcher_examples(std::shared_ptr<ov::Node> node) {
|
||
{
|
||
// ! [pattern:simple_example]
|
||
// Pattern example
|
||
auto input = std::make_shared<ov::opset8::Parameter>(ov::element::i64, ov::Shape{1});
|
||
auto shapeof = std::make_shared<ov::opset8::ShapeOf>(input);
|
||
|
||
// Create Matcher with Parameter->ShapeOf pattern
|
||
auto m = std::make_shared<ov::pass::pattern::Matcher>(shapeof, "MyPatternBasedTransformation");
|
||
// ! [pattern:simple_example]
|
||
|
||
// ! [pattern:callback_example]
|
||
ov::graph_rewrite_callback callback = [](ov::pass::pattern::Matcher& m) {
|
||
// Get root node
|
||
std::shared_ptr<ov::Node> root_node = m.get_match_root();
|
||
|
||
// Get all nodes matched by pattern
|
||
ov::NodeVector nodes = m.get_matched_nodes();
|
||
|
||
// Transformation code
|
||
return false;
|
||
};
|
||
// ! [pattern:callback_example]
|
||
}
|
||
|
||
{
|
||
// ! [pattern:label_example]
|
||
// Detect Multiply with arbitrary first input and second as Constant
|
||
// ov::pattern::op::Label - represent arbitrary input
|
||
auto input = ov::pass::pattern::any_input();
|
||
auto value = ov::opset8::Constant::create(ov::element::f32, ov::Shape{1}, {0.5});
|
||
auto mul = std::make_shared<ov::opset8::Multiply>(input, value);
|
||
auto m = std::make_shared<ov::pass::pattern::Matcher>(mul, "MultiplyMatcher");
|
||
// ! [pattern:label_example]
|
||
}
|
||
|
||
{
|
||
// ! [pattern:concat_example]
|
||
// Detect Concat operation with arbitrary number of inputs
|
||
auto concat = ov::pass::pattern::wrap_type<ov::opset8::Concat>();
|
||
auto m = std::make_shared<ov::pass::pattern::Matcher>(concat, "ConcatMatcher");
|
||
// ! [pattern:concat_example]
|
||
}
|
||
|
||
{
|
||
// ! [pattern:predicate_example]
|
||
// Detect Multiply->Add sequence where mul has exactly one consumer
|
||
auto mul = ov::pass::pattern::wrap_type<ov::opset8::Multiply>(ov::pass::pattern::consumers_count(1)/*сheck consumers count*/);
|
||
auto add = ov::pass::pattern::wrap_type<ov::opset8::Add>({mul, ov::pass::pattern::any_input()});
|
||
auto m = std::make_shared<ov::pass::pattern::Matcher>(add, "MultiplyAddMatcher");
|
||
// Matcher can be used to match pattern manually on given node
|
||
if (m->match(node->output(0))) {
|
||
// Successfully matched
|
||
}
|
||
// ! [pattern:predicate_example]
|
||
}
|
||
|
||
}
|
||
|
||
bool openvino_api_examples(std::shared_ptr<ov::Node> node) {
|
||
{
|
||
// ! [ov:ports_example]
|
||
// Let's suppose that node is opset8::Convolution operation
|
||
// as we know opset8::Convolution has two input ports (data, weights) and one output port
|
||
ov::Input<ov::Node> data = node->input(0);
|
||
ov::Input<ov::Node> weights = node->input(1);
|
||
ov::Output<ov::Node> output = node->output(0);
|
||
|
||
// Getting shape and type
|
||
auto pshape = data.get_partial_shape();
|
||
auto el_type = data.get_element_type();
|
||
|
||
// Getting parent for input port
|
||
ov::Output<ov::Node> parent_output;
|
||
parent_output = data.get_source_output();
|
||
|
||
// Another short way to get partent for output port
|
||
parent_output = node->input_value(0);
|
||
|
||
// Getting all consumers for output port
|
||
auto consumers = output.get_target_inputs();
|
||
// ! [ov:ports_example]
|
||
}
|
||
|
||
{
|
||
// ! [ngraph:shape_check]
|
||
auto partial_shape = node->input(0).get_partial_shape(); // get zero input partial shape
|
||
|
||
// Check that input shape rank is static
|
||
if (!partial_shape.rank().is_static()) {
|
||
return false;
|
||
}
|
||
auto rank_size = partial_shape.rank().get_length();
|
||
|
||
// Check that second dimension is not dynamic
|
||
if (rank_size < 2 || partial_shape[1].is_dynamic()) {
|
||
return false;
|
||
}
|
||
auto dim = partial_shape[1].get_length();
|
||
// ! [ngraph:shape_check]
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
// ! [ov:replace_node]
|
||
bool ov_replace_node(std::shared_ptr<ov::Node> node) {
|
||
// Step 1. Verify that node has opset8::Negative type
|
||
auto neg = std::dynamic_pointer_cast<ov::opset8::Negative>(node);
|
||
if (!neg) {
|
||
return false;
|
||
}
|
||
|
||
// Step 2. Create opset8::Multiply operation where the first input is negative operation input and second as Constant with -1 value
|
||
auto mul = std::make_shared<ov::opset8::Multiply>(neg->input_value(0),
|
||
ov::opset8::Constant::create(neg->get_element_type(), ov::Shape{1}, {-1}));
|
||
|
||
mul->set_friendly_name(neg->get_friendly_name());
|
||
ov::copy_runtime_info(neg, mul);
|
||
|
||
// Step 3. Replace Negative operation with Multiply operation
|
||
ov::replace_node(neg, mul);
|
||
return true;
|
||
|
||
// Step 4. Negative operation will be removed automatically because all consumers was moved to Multiply operation
|
||
}
|
||
// ! [ov:replace_node]
|
||
|
||
bool ov_manual_replace_node(std::shared_ptr<ov::Node> node) {
|
||
auto neg = std::dynamic_pointer_cast<ov::opset8::Negative>(node);
|
||
if (!neg) {
|
||
return false;
|
||
}
|
||
|
||
auto mul = std::make_shared<ov::opset8::Multiply>(neg->input_value(0),
|
||
ov::opset8::Constant::create(neg->get_element_type(), ov::Shape{1}, {-1}));
|
||
|
||
mul->set_friendly_name(neg->get_friendly_name());
|
||
ov::copy_runtime_info(neg, mul);
|
||
|
||
// ! [ov:manual_replace]
|
||
// All neg->output(0) consumers will be moved to mul->output(0) port
|
||
neg->output(0).replace(mul->output(0));
|
||
// ! [ov:manual_replace]
|
||
return true;
|
||
}
|
||
|
||
// ! [ov:insert_node]
|
||
// Step 1. Lets suppose that we have a node with single output port and we want to insert additional operation new_node after it
|
||
void insert_example(std::shared_ptr<ov::Node> node) {
|
||
// Get all consumers for node
|
||
auto consumers = node->output(0).get_target_inputs();
|
||
|
||
// Step 2. Create new node. Let it be opset8::Relu.
|
||
auto new_node = std::make_shared<ov::opset8::Relu>(node);
|
||
|
||
// Step 3. Reconnect all consumers to new_node
|
||
for (auto input : consumers) {
|
||
input.replace_source_output(new_node);
|
||
}
|
||
}
|
||
// ! [ov:insert_node]
|
||
|
||
// ! [ov:insert_node_with_copy]
|
||
void insert_example_with_copy(std::shared_ptr<ov::Node> node) {
|
||
// Make a node copy
|
||
auto node_copy = node->clone_with_new_inputs(node->input_values());
|
||
// Create new node
|
||
auto new_node = std::make_shared<ov::opset8::Relu>(node_copy);
|
||
ov::replace_node(node, new_node);
|
||
}
|
||
// ! [ov:insert_node_with_copy]
|
||
|
||
void eliminate_example(std::shared_ptr<ov::Node> node) {
|
||
// ! [ov:eliminate_node]
|
||
// Suppose we have a node that we want to remove
|
||
bool success = ov::replace_output_update_name(node->output(0), node->input_value(0));
|
||
// ! [ov:eliminate_node]
|
||
}
|
||
|
||
void replace_friendly_name() {
|
||
auto div = std::make_shared<ov::opset8::Divide>();
|
||
// ! [ov:replace_friendly_name]
|
||
// Replace Div operation with Power and Multiply sub-graph and set original friendly name to Multiply operation
|
||
auto pow = std::make_shared<ov::opset8::Power>(div->input(1).get_source_output(),
|
||
ov::op::v0::Constant::create(div->get_input_element_type(1), ov::Shape{1}, {-1}));
|
||
auto mul = std::make_shared<ov::opset8::Multiply>(div->input(0).get_source_output(), pow);
|
||
mul->set_friendly_name(div->get_friendly_name());
|
||
ngraph::replace_node(div, mul);
|
||
// ! [ov:replace_friendly_name]
|
||
}
|
||
|
||
void constant_subgraph() {
|
||
// ! [ov:constant_subgraph]
|
||
// After ConstantFolding pass Power will be replaced with Constant
|
||
auto input = std::make_shared<ov::opset8::Parameter>(ov::element::f32, ov::Shape{1});
|
||
auto pow = std::make_shared<ov::opset8::Power>(ov::opset8::Constant::create(ov::element::f32, ov::Shape{1}, {2}),
|
||
ov::opset8::Constant::create(ov::element::f32, ov::Shape{1}, {3}));
|
||
auto mul = std::make_shared<ov::opset8::Multiply>(input /* not constant input */, pow);
|
||
// ! [ov:constant_subgraph]
|
||
}
|
||
|
||
void copy_runtime_info_snippet() {
|
||
std::shared_ptr<ov::Node> transpose, reshape, div, pow, mul, conv, bias, conv_fused, a, b, c, e, f;
|
||
// ! [ov:copy_runtime_info]
|
||
// Replace Transpose with Reshape operation (1:1)
|
||
ov::copy_runtime_info(transpose, reshape);
|
||
|
||
// Replace Div operation with Power and Multiply sub-graph (1:N)
|
||
ov::copy_runtime_info(div, {pow, mul});
|
||
|
||
// Fuse Convolution with Add operation (N:1)
|
||
ov::copy_runtime_info({conv, bias}, {conv_fused});
|
||
|
||
// Any other transformation that replaces one sub-graph with another sub-graph (N:M)
|
||
ov::copy_runtime_info({a, b, c}, {e, f});
|
||
// ! [ov:copy_runtime_info]
|
||
}
|