Files
openvino/docs/snippets/ov_preprocessing_migration.cpp
Ilya Lavrenov 86b175534a Docs: complete migration guide (#10652)
* Updated glossary

* Removed references to OpenVX

* Moved migration_ov_2_0 to OpenVINO User guide

* Replaced IE with OV runtime

* Complete migration guide

* Migration 2.0

* Self-review

* Added property migration guide

* Fixed table

* Added preprocessing migration

* Update docs/OV_Runtime_UG/migration_ov_2_0/preprocessing.md

Co-authored-by: Mikhail Nosov <mikhail.nosov@intel.com>

* Update docs/OV_Runtime_UG/migration_ov_2_0/preprocessing.md

Co-authored-by: Mikhail Nosov <mikhail.nosov@intel.com>

* Update docs/snippets/ov_preprocessing_migration.cpp

Co-authored-by: Mikhail Nosov <mikhail.nosov@intel.com>

* reivew fixes

* Preprocessing intro updated

* Updated config migration guide

* Updates

* Fixes

Co-authored-by: Mikhail Nosov <mikhail.nosov@intel.com>
2022-03-02 12:16:58 +03:00

125 lines
3.8 KiB
C++

// Copyright (C) 2018-2022 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include <openvino/runtime/core.hpp>
#include <openvino/opsets/opset8.hpp>
#include <openvino/core/preprocess/pre_post_process.hpp>
#include "inference_engine.hpp"
int main_new() {
std::string model_path;
std::string tensor_name;
ov::Core core;
std::shared_ptr<ov::Model> model = core.read_model(model_path);
ov::preprocess::PrePostProcessor ppp(model);
{
//! [ov_mean_scale]
ov::preprocess::PrePostProcessor ppp(model);
ov::preprocess::InputInfo& input = ppp.input(tensor_name);
// we only need to know where is C dimension
input.model().set_layout("...C");
// specify scale and mean values, order of operations is important
input.preprocess().mean(116.78f).scale({ 57.21f, 57.45f, 57.73f });
// insert preprocessing operations to the 'model'
model = ppp.build();
//! [ov_mean_scale]
}
{
//! [ov_conversions]
ov::preprocess::PrePostProcessor ppp(model);
ov::preprocess::InputInfo& input = ppp.input(tensor_name);
input.tensor().set_layout("NHWC").set_element_type(ov::element::u8);
input.model().set_layout("NCHW");
// layout and precision conversion is inserted automatically,
// because tensor format != model input format
model = ppp.build();
//! [ov_conversions]
}
{
//! [ov_color_space]
ov::preprocess::PrePostProcessor ppp(model);
ov::preprocess::InputInfo& input = ppp.input(tensor_name);
input.tensor().set_color_format(ov::preprocess::ColorFormat::NV12_TWO_PLANES);
// add NV12 to BGR conversion
input.preprocess().convert_color(ov::preprocess::ColorFormat::BGR);
// and insert operations to the model
model = ppp.build();
//! [ov_color_space]
}
{
//! [ov_image_scale]
ov::preprocess::PrePostProcessor ppp(model);
ov::preprocess::InputInfo& input = ppp.input(tensor_name);
// scale from the specified tensor size
input.tensor().set_spatial_static_shape(448, 448);
// need to specify H and W dimensions in model, others are not important
input.model().set_layout("??HW");
// scale to model shape
input.preprocess().resize(ov::preprocess::ResizeAlgorithm::RESIZE_LINEAR);
// and insert operations to the model
model = ppp.build();
//! [ov_image_scale]
}
return 0;
}
int main_old() {
std::string model_path;
std::string operation_name;
InferenceEngine::Core core;
InferenceEngine::CNNNetwork network = core.ReadNetwork(model_path);
{
//! [mean_scale]
auto preProcess = network.getInputsInfo()[operation_name]->getPreProcess();
preProcess.init(3);
preProcess[0]->meanValue = 116.78f;
preProcess[1]->meanValue = 116.78f;
preProcess[2]->meanValue = 116.78f;
preProcess[0]->stdScale = 57.21f;
preProcess[1]->stdScale = 57.45f;
preProcess[2]->stdScale = 57.73f;
preProcess.setVariant(InferenceEngine::MEAN_VALUE);
//! [mean_scale]
}
{
//! [conversions]
auto inputInfo = network.getInputsInfo()[operation_name];
inputInfo->setPrecision(InferenceEngine::Precision::U8);
inputInfo->setLayout(InferenceEngine::Layout::NHWC);
// model input layout is always NCHW in Inference Engine
// for shapes with 4 dimensions
//! [conversions]
}
{
//! [color_space]
auto preProcess = network.getInputsInfo()[operation_name]->getPreProcess();
// Inference Engine supposes NV12 as two inputs which need to be passed
// as InferenceEngine::NV12Blob composed of two Y and UV planes
preProcess.setColorFormat(InferenceEngine::NV12);
//! [color_space]
}
{
//! [image_scale]
auto preProcess = network.getInputsInfo()[operation_name]->getPreProcess();
// Inference Engine supposes input for resize is always in NCHW layout
// while for OpenVINO Runtime API 2.0 `H` and `W` dimensions must be specified
// Also, current code snippet supposed resize from dynamic shapes
preProcess.setResizeAlgorithm(InferenceEngine::ResizeAlgorithm::RESIZE_BILINEAR);
//! [image_scale]
}
return 0;
}