* add placeholder for python version of first snippet * fix problem with placeholder * fix wrong file name * fix fragment name * update python snippets * move imports to the top of the code fragments
108 lines
3.1 KiB
Python
108 lines
3.1 KiB
Python
# Copyright (C) 2018-2022 Intel Corporation
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
|
|
#! [ov_imports]
|
|
from openvino.runtime import Core, Layout, Type
|
|
from openvino.preprocess import ColorFormat, PrePostProcessor, ResizeAlgorithm
|
|
#! [ov_imports]
|
|
|
|
#! [imports]
|
|
import openvino.inference_engine as ie
|
|
#! [imports]
|
|
|
|
#include "inference_engine.hpp"
|
|
|
|
model_path = ''
|
|
tensor_name = ''
|
|
|
|
core = Core()
|
|
model = core.read_model(model=model_path)
|
|
|
|
#! [ov_mean_scale]
|
|
ppp = PrePostProcessor(model)
|
|
input = ppp.input(tensor_name)
|
|
# we only need to know where is C dimension
|
|
input.model().set_layout(Layout('...C'))
|
|
# specify scale and mean values, order of operations is important
|
|
input.preprocess().mean([116.78]).scale([57.21, 57.45, 57.73])
|
|
# insert preprocessing operations to the 'model'
|
|
model = ppp.build()
|
|
#! [ov_mean_scale]
|
|
|
|
#! [ov_conversions]
|
|
ppp = PrePostProcessor(model)
|
|
input = ppp.input(tensor_name)
|
|
input.tensor().set_layout(Layout('NCHW')).set_element_type(Type.u8)
|
|
input.model().set_layout(Layout('NCHW'))
|
|
# layout and precision conversion is inserted automatically,
|
|
# because tensor format != model input format
|
|
model = ppp.build()
|
|
#! [ov_conversions]
|
|
|
|
#! [ov_color_space]
|
|
ppp = PrePostProcessor(model)
|
|
input = ppp.input(tensor_name)
|
|
input.tensor().set_color_format(ColorFormat.NV12_TWO_PLANES)
|
|
# add NV12 to BGR conversion
|
|
input.preprocess().convert_color(ColorFormat.BGR)
|
|
# and insert operations to the model
|
|
model = ppp.build()
|
|
#! [ov_color_space]
|
|
|
|
#! [ov_image_scale]
|
|
ppp = PrePostProcessor(model)
|
|
input = ppp.input(tensor_name)
|
|
# need to specify H and W dimensions in model, others are not important
|
|
input.model().set_layout(Layout('??HW'))
|
|
# scale to model shape
|
|
input.preprocess().resize(ResizeAlgorithm.RESIZE_LINEAR, 448, 448)
|
|
# and insert operations to the model
|
|
model = ppp.build()
|
|
#! [ov_image_scale]
|
|
|
|
|
|
|
|
model_path = ''
|
|
operation_name = ''
|
|
|
|
core = Core()
|
|
network = core.ReadNetwork(model_path)
|
|
|
|
|
|
#! [mean_scale]
|
|
preProcess = network.getInputsInfo()[operation_name].getPreProcess()
|
|
preProcess.init(3)
|
|
preProcess[0].meanValue = 116.78
|
|
preProcess[1].meanValue = 116.78
|
|
preProcess[2].meanValue = 116.78
|
|
preProcess[0].stdScale = 57.21
|
|
preProcess[1].stdScale = 57.45
|
|
preProcess[2].stdScale = 57.73
|
|
preProcess.setVariant(ie.MEAN_VALUE)
|
|
#! [mean_scale]
|
|
|
|
#! [conversions]
|
|
inputInfo = network.getInputsInfo()[operation_name]
|
|
inputInfo.setPrecision(ie.Precision.U8)
|
|
inputInfo.setLayout(ie.Layout.NHWC)
|
|
# model input layout is always NCHW in Inference Engine
|
|
# for shapes with 4 dimensions
|
|
#! [conversions]
|
|
|
|
#! [color_space]
|
|
|
|
preProcess = network.getInputsInfo()[operation_name].getPreProcess()
|
|
# Inference Engine supposes NV12 as two inputs which need to be passed
|
|
# as InferenceEngine::NV12Blob composed of two Y and UV planes
|
|
preProcess.setColorFormat(ie.NV12)
|
|
#! [color_space]
|
|
|
|
#! [image_scale]
|
|
preProcess = network.getInputsInfo()[operation_name].getPreProcess()
|
|
# Inference Engine supposes input for resize is always in NCHW layout
|
|
# while for OpenVINO Runtime API 2.0 `H` and `W` dimensions must be specified
|
|
# Also, current code snippet supposed resize from dynamic shapes
|
|
preProcess.setResizeAlgorithm(ie.ResizeAlgorithm.RESIZE_BILINEAR)
|
|
#! [image_scale]
|