Files
openvino/tests/layer_tests/pytorch_tests/test_empty.py
Ekaterina Aidova eaae00c2ca [PT FE]: support aten::empty_like (#21258)
* [PT FE]: support aten::empty_like

* Update src/frontends/pytorch/src/op/full.cpp

Co-authored-by: Maxim Vafin <maxim.vafin@intel.com>

---------

Co-authored-by: Maxim Vafin <maxim.vafin@intel.com>
2023-11-27 07:15:19 +00:00

200 lines
7.9 KiB
Python

# Copyright (C) 2018-2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import torch
from pytorch_layer_test_class import PytorchLayerTest
class TestEmptyNumeric(PytorchLayerTest):
def _prepare_input(self):
return (np.random.randn(10, 10, 10),)
def create_model(self, dtype):
class aten_empty(torch.nn.Module):
def __init__(self, dtype) -> None:
dtype_map = {
"float32": torch.float32,
"float64": torch.float64,
"int64": torch.int64,
"int32": torch.int32,
"uint8": torch.uint8,
"int8": torch.int8
}
super().__init__()
self.dtype = dtype_map[dtype]
def forward(self, input_tensor):
size = input_tensor.shape
empty = torch.empty(size, dtype=self.dtype)
# We don't want to compare values, just shape and type,
# so we call zeros_like on data. Multiplying by zero would
# produce sporadic errors if nan would be in empty.
return torch.zeros_like(empty)
ref_net = None
return aten_empty(dtype), ref_net, "aten::empty"
@pytest.mark.parametrize('dtype', ("float32", "float64", "int64", "int32", "uint8", "int8"))
@pytest.mark.nightly
@pytest.mark.precommit
def test_empty(self, ie_device, precision, ir_version, dtype):
self._test(*self.create_model(dtype), ie_device, precision, ir_version)
class TestEmptyLike(PytorchLayerTest):
def _prepare_input(self, shape, dtype=np.float32, out=False):
if not out:
return (np.random.randn(*shape).astype(dtype if dtype is not None else np.float32),)
return (np.random.randn(*shape), np.ones(shape, dtype=(dtype if dtype is not None else np.float32)))
def create_model(self, dtype, out):
class aten_empty_like(torch.nn.Module):
def __init__(self, dtype=None, out=False):
dtype_map = {
"float32": torch.float32,
"float64": torch.float64,
"int64": torch.int64,
"int32": torch.int32,
"uint8": torch.uint8,
"int8": torch.int8
}
super().__init__()
self.dtype = dtype_map.get(dtype, None)
if out:
self.forward = self.forward_out
def forward(self, input_tensor):
empty = torch.empty_like(input_tensor, dtype=self.dtype)
# We don't want to compare values, just shape and type,
# so we call zeros_like on data. Multiplying by zero would
# produce sporadic errors if nan would be in empty.
return torch.zeros_like(empty)
def forward_out(self, input_tensor, out_tensor):
torch.empty_like(input_tensor, out=out_tensor)
# We don't want to compare values, just shape and type,
# so we call zeros_like on data. Multiplying by zero would
# produce sporadic errors if nan would be in empty.
return torch.zeros_like(out_tensor)
ref_net = None
return aten_empty_like(dtype, out), ref_net, "aten::empty_like"
@pytest.mark.parametrize('dtype', (None, "float32", "float64", "int64", "int32", "uint8", "int8"))
@pytest.mark.parametrize("input_shape", [[2,], [1, 10], [10, 5, 2]])
@pytest.mark.parametrize("out", [True, False])
@pytest.mark.nightly
@pytest.mark.precommit
def test_empty(self, ie_device, precision, ir_version, dtype, input_shape, out):
self._test(*self.create_model(dtype, out), ie_device, precision, ir_version,
kwargs_to_prepare_input={"shape": input_shape, "out": out, "dtype": dtype})
class TestEmptyBoolean(PytorchLayerTest):
def _prepare_input(self):
return (np.random.randn(10, 10, 10),)
def create_model(self):
class aten_empty(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.false = torch.tensor([False])
def forward(self, input_tensor):
size = input_tensor.shape
empty = torch.empty(size, dtype=torch.bool)
# We don't want to compare values, just shape and type,
# so we do "and" operation with False.
return empty & self.false
ref_net = None
return aten_empty(), ref_net, "aten::empty"
@pytest.mark.nightly
@pytest.mark.precommit
def test_empty_bool(self, ie_device, precision, ir_version, ):
self._test(*self.create_model(), ie_device, precision, ir_version)
class TestNewEmpty(PytorchLayerTest):
def _prepare_input(self, input_dtype=np.float32):
return (np.random.randn(1, 3, 10, 10).astype(input_dtype),)
def create_model(self, shape, dtype=None, used_dtype=False):
import torch
dtype_map = {
"float32": torch.float32,
"float64": torch.float64,
"int64": torch.int64,
"int32": torch.int32,
"uint8": torch.uint8,
"int8": torch.int8,
"bool": torch.bool
}
class aten_empty(torch.nn.Module):
def __init__(self, shape):
super(aten_empty, self).__init__()
self.shape = shape
self.zero = torch.tensor([0])
def forward(self, input_tensor: torch.Tensor):
empty = input_tensor.new_empty(self.shape)
# We don't want to compare values, just shape and type,
# so we call zeros_like on data. Multiplying by zero would
# produce sporadic errors if nan would be in empty.
return torch.zeros_like(empty)
class aten_empty_with_dtype(torch.nn.Module):
def __init__(self, shape, dtype):
super(aten_empty_with_dtype, self).__init__()
self.shape = shape
self.dtype = dtype
self.zero = torch.tensor([0], dtype=self.dtype)
def forward(self, input_tensor: torch.Tensor):
empty = input_tensor.new_empty(self.shape, dtype=self.dtype)
# We don't want to compare values, just shape and type,
# so we call zeros_like on data. Multiplying by zero would
# produce sporadic errors if nan would be in empty.
return torch.zeros_like(empty)
ref_net = None
model = aten_empty(shape)
if used_dtype:
dtype = dtype_map[dtype]
model = aten_empty_with_dtype(shape, dtype)
return model, ref_net, "aten::new_empty"
@pytest.mark.parametrize("shape", [[1], [1, 2], [1, 2, 3], [1, 2, 3, 4], [2, 3, 4, 5, 6]])
@pytest.mark.parametrize("input_dtype", [np.uint8, np.int8, np.int32, np.int64, np.float32, np.float64])
@pytest.mark.nightly
@pytest.mark.precommit
def test_new_empty(self, shape, input_dtype, ie_device, precision, ir_version):
self._test(*self.create_model(shape), ie_device, precision, ir_version,
kwargs_to_prepare_input={'input_dtype': input_dtype}, use_convert_model=True)
@pytest.mark.parametrize("shape", [[1], [1, 2], [1, 2, 3], [1, 2, 3, 4], [2, 3, 4, 5, 6]])
@pytest.mark.parametrize("input_dtype", [bool, np.uint8, np.int8, np.int32, np.int64, np.float32, np.float64])
@pytest.mark.parametrize("dtype", ["bool", "uint8", "int8", "int32", "int64", "float32", "float64"])
@pytest.mark.nightly
def test_new_empty_with_dtype(self, shape, dtype, input_dtype, ie_device, precision, ir_version):
self._test(*self.create_model(shape, dtype=dtype, used_dtype=True), ie_device, precision, ir_version,
kwargs_to_prepare_input={'input_dtype': input_dtype}, use_convert_model=True)