Merge branch '3.x' into escape-combined-args-kwargs

This commit is contained in:
Keewis
2020-07-25 15:15:06 +02:00
207 changed files with 5734 additions and 611 deletions

View File

@@ -20,6 +20,12 @@ import pytest
from sphinx.ext.napoleon import Config
from sphinx.ext.napoleon.docstring import GoogleDocstring, NumpyDocstring
from sphinx.ext.napoleon.docstring import (
_tokenize_type_spec,
_recombine_set_tokens,
_convert_numpy_type_spec,
_token_type
)
class NamedtupleSubclass(namedtuple('NamedtupleSubclass', ('attr1', 'attr2'))):
@@ -57,19 +63,22 @@ class NamedtupleSubclassTest(BaseDocstringTest):
Sample namedtuple subclass
.. attribute:: attr1
:type: Arbitrary type
Quick description of attr1
:type: Arbitrary type
.. attribute:: attr2
:type: Another arbitrary type
Quick description of attr2
:type: Another arbitrary type
.. attribute:: attr3
:type: Type
Adds a newline after the type
:type: Type
"""
self.assertEqual(expected, actual)
@@ -413,9 +422,10 @@ Attributes:
actual = str(GoogleDocstring(docstring))
expected = """\
.. attribute:: in_attr
:type: :class:`numpy.ndarray`
super-dooper attribute
:type: :class:`numpy.ndarray`
"""
self.assertEqual(expected, actual)
@@ -427,9 +437,10 @@ Attributes:
actual = str(GoogleDocstring(docstring))
expected = """\
.. attribute:: in_attr
:type: numpy.ndarray
super-dooper attribute
:type: numpy.ndarray
"""
self.assertEqual(expected, actual)
@@ -1992,6 +2003,154 @@ definition_after_normal_text : int
actual = str(NumpyDocstring(docstring, config))
self.assertEqual(expected, actual)
def test_token_type(self):
tokens = (
("1", "literal"),
("'string'", "literal"),
('"another_string"', "literal"),
("{1, 2}", "literal"),
("{'va{ue', 'set'}", "literal"),
("optional", "control"),
("default", "control"),
(", ", "delimiter"),
(" of ", "delimiter"),
(" or ", "delimiter"),
(": ", "delimiter"),
("True", "obj"),
("None", "obj"),
("name", "obj"),
(":py:class:`Enum`", "reference"),
)
for token, expected in tokens:
actual = _token_type(token)
self.assertEqual(expected, actual)
def test_tokenize_type_spec(self):
specs = (
"str",
"int or float or None, optional",
'{"F", "C", "N"}',
"{'F', 'C', 'N'}, default: 'F'",
"{'F', 'C', 'N or C'}, default 'F'",
'"ma{icious"',
r"'with \'quotes\''",
)
tokens = (
["str"],
["int", " or ", "float", " or ", "None", ", ", "optional"],
["{", '"F"', ", ", '"C"', ", ", '"N"', "}"],
["{", "'F'", ", ", "'C'", ", ", "'N'", "}", ", ", "default", ": ", "'F'"],
["{", "'F'", ", ", "'C'", ", ", "'N or C'", "}", ", ", "default", " ", "'F'"],
['"ma{icious"'],
[r"'with \'quotes\''"],
)
for spec, expected in zip(specs, tokens):
actual = _tokenize_type_spec(spec)
self.assertEqual(expected, actual)
def test_recombine_set_tokens(self):
tokens = (
["{", "1", ", ", "2", "}"],
["{", '"F"', ", ", '"C"', ", ", '"N"', "}", ", ", "optional"],
["{", "'F'", ", ", "'C'", ", ", "'N'", "}", ", ", "default", ": ", "None"],
)
combined_tokens = (
["{1, 2}"],
['{"F", "C", "N"}', ", ", "optional"],
["{'F', 'C', 'N'}", ", ", "default", ": ", "None"],
)
for tokens_, expected in zip(tokens, combined_tokens):
actual = _recombine_set_tokens(tokens_)
self.assertEqual(expected, actual)
def test_recombine_set_tokens_invalid(self):
tokens = (
["{", "1", ", ", "2"],
['"F"', ", ", '"C"', ", ", '"N"', "}", ", ", "optional"],
["{", "1", ", ", "2", ", ", "default", ": ", "None"],
)
combined_tokens = (
["{1, 2"],
['"F"', ", ", '"C"', ", ", '"N"', "}", ", ", "optional"],
["{1, 2", ", ", "default", ": ", "None"],
)
for tokens_, expected in zip(tokens, combined_tokens):
actual = _recombine_set_tokens(tokens_)
self.assertEqual(expected, actual)
def test_convert_numpy_type_spec(self):
translations = {
"DataFrame": "pandas.DataFrame",
}
specs = (
"",
"optional",
"str, optional",
"int or float or None, default: None",
'{"F", "C", "N"}',
"{'F', 'C', 'N'}, default: 'N'",
"DataFrame, optional",
)
converted = (
"",
"*optional*",
":class:`str`, *optional*",
":class:`int` or :class:`float` or :obj:`None`, *default*: :obj:`None`",
'``{"F", "C", "N"}``',
"``{'F', 'C', 'N'}``, *default*: ``'N'``",
":class:`pandas.DataFrame`, *optional*",
)
for spec, expected in zip(specs, converted):
actual = _convert_numpy_type_spec(spec, translations=translations)
self.assertEqual(expected, actual)
def test_parameter_types(self):
docstring = dedent("""\
Parameters
----------
param1 : DataFrame
the data to work on
param2 : int or float or None
a parameter with different types
param3 : dict-like, optional
a optional mapping
param4 : int or float or None, optional
a optional parameter with different types
param5 : {"F", "C", "N"}, optional
a optional parameter with fixed values
""")
expected = dedent("""\
:param param1: the data to work on
:type param1: DataFrame
:param param2: a parameter with different types
:type param2: :class:`int` or :class:`float` or :obj:`None`
:param param3: a optional mapping
:type param3: :term:`dict-like <mapping>`, *optional*
:param param4: a optional parameter with different types
:type param4: :class:`int` or :class:`float` or :obj:`None`, *optional*
:param param5: a optional parameter with fixed values
:type param5: ``{"F", "C", "N"}``, *optional*
""")
translations = {
"dict-like": ":term:`dict-like <mapping>`",
}
config = Config(
napoleon_use_param=True,
napoleon_use_rtype=True,
napoleon_type_aliases=translations,
)
actual = str(NumpyDocstring(docstring, config))
self.assertEqual(expected, actual)
def test_keywords_with_types(self):
docstring = """\
Do as you please
@@ -2019,9 +2178,31 @@ def warns(warning, match):
warnings = [w for w in raw_warnings.split("\n") if w.strip()]
assert len(warnings) == 1 and all(match_re.match(w) for w in warnings)
warning.truncate(0)
class TestNumpyDocstring:
def test_token_type_invalid(self, warning):
tokens = (
"{1, 2",
"}",
"'abc",
"def'",
'"ghi',
'jkl"',
)
errors = (
r".+: invalid value set \(missing closing brace\):",
r".+: invalid value set \(missing opening brace\):",
r".+: malformed string literal \(missing closing quote\):",
r".+: malformed string literal \(missing opening quote\):",
r".+: malformed string literal \(missing closing quote\):",
r".+: malformed string literal \(missing opening quote\):",
)
for token, error in zip(tokens, errors):
with warns(warning, match=error):
_token_type(token)
@pytest.mark.parametrize(
["spec", "pattern"],
(