Files
sphinx/sphinx/search/__init__.py

285 lines
9.1 KiB
Python

# -*- coding: utf-8 -*-
"""
sphinx.search
~~~~~~~~~~~~~
Create a full-text search index for offline search.
:copyright: Copyright 2007-2011 by the Sphinx team, see AUTHORS.
:license: BSD, see LICENSE for details.
"""
import re
import cPickle as pickle
from docutils.nodes import comment, Text, NodeVisitor, SkipNode
from sphinx.util import jsdump, rpartition
class SearchLanguage(object):
"""
This class is the base class for search natural language preprocessors. If
you want to add support for a new language, you should override the methods
of this class.
You should override `lang` class property too (e.g. 'en', 'fr' and so on).
.. attribute:: stopwords
This is a set of stop words of the target language. Default `stopwords`
is empty. This word is used for building index and embedded in JS.
.. attribute:: js_stemmer_code
Return stemmer class of JavaScript version. This class' name should be
``Stemmer`` and this class must have ``stemWord`` method. This string is
embedded as-is in searchtools.js.
This class is used to preprocess search word which Sphinx HTML readers
type, before searching index. Default implementation does nothing.
"""
lang = None
stopwords = set()
js_stemmer_code = """
/**
* Dummy stemmer for languages without stemming rules.
*/
var Stemmer = function() {
this.stemWord = function(w) {
return w;
}
}
"""
_word_re = re.compile(r'\w+(?u)')
def __init__(self, options):
self.options = options
self.init(options)
def init(self, options):
"""
Initialize the class with the options the user has given.
"""
def split(self, input):
"""
This method splits a sentence into words. Default splitter splits input
at white spaces, which should be enough for most languages except CJK
languages.
"""
return self._word_re.findall(input)
def stem(self, word):
"""
This method implements stemming algorithm of the Python version.
Default implementation does nothing. You should implement this if the
language has any stemming rules.
This class is used to preprocess search words before registering them in
the search index. The stemming of the Python version and the JS version
(given in the js_stemmer_code attribute) must be compatible.
"""
return word
def word_filter(self, word):
"""
Return true if the target word should be registered in the search index.
This method is called after stemming.
"""
return not (((len(word) < 3) and (12353 < ord(word[0]) < 12436)) or
(ord(word[0]) < 256 and (len(word) < 3 or word in self.stopwords or
word.isdigit())))
from sphinx.search import en, ja
languages = {
'en': en.SearchEnglish,
'ja': ja.SearchJapanese,
}
class _JavaScriptIndex(object):
"""
The search index as javascript file that calls a function
on the documentation search object to register the index.
"""
PREFIX = 'Search.setIndex('
SUFFIX = ')'
def dumps(self, data):
return self.PREFIX + jsdump.dumps(data) + self.SUFFIX
def loads(self, s):
data = s[len(self.PREFIX):-len(self.SUFFIX)]
if not data or not s.startswith(self.PREFIX) or not \
s.endswith(self.SUFFIX):
raise ValueError('invalid data')
return jsdump.loads(data)
def dump(self, data, f):
f.write(self.dumps(data))
def load(self, f):
return self.loads(f.read())
js_index = _JavaScriptIndex()
class WordCollector(NodeVisitor):
"""
A special visitor that collects words for the `IndexBuilder`.
"""
def __init__(self, document, lang):
NodeVisitor.__init__(self, document)
self.found_words = []
self.lang = lang
def dispatch_visit(self, node):
if node.__class__ is comment:
raise SkipNode
if node.__class__ is Text:
self.found_words.extend(self.lang.split(node.astext()))
class IndexBuilder(object):
"""
Helper class that creates a searchindex based on the doctrees
passed to the `feed` method.
"""
formats = {
'jsdump': jsdump,
'pickle': pickle
}
def __init__(self, env):
self.env = env
# filename -> title
self._titles = {}
# stemmed word -> set(filenames)
self._mapping = {}
# objtype -> index
self._objtypes = {}
# objtype index -> objname (localized)
self._objnames = {}
# add language-specific SearchLanguage instance
search_language = env.config.html_search_language or env.config.language
if not search_language or search_language not in languages:
search_language = 'en'
self.lang = languages[search_language](env.config.html_search_options)
def load(self, stream, format):
"""Reconstruct from frozen data."""
if isinstance(format, basestring):
format = self.formats[format]
frozen = format.load(stream)
# if an old index is present, we treat it as not existing.
if not isinstance(frozen, dict):
raise ValueError('old format')
index2fn = frozen['filenames']
self._titles = dict(zip(index2fn, frozen['titles']))
self._mapping = {}
for k, v in frozen['terms'].iteritems():
if isinstance(v, int):
self._mapping[k] = set([index2fn[v]])
else:
self._mapping[k] = set(index2fn[i] for i in v)
# no need to load keywords/objtypes
def dump(self, stream, format):
"""Dump the frozen index to a stream."""
if isinstance(format, basestring):
format = self.formats[format]
format.dump(self.freeze(), stream)
def get_objects(self, fn2index):
rv = {}
otypes = self._objtypes
onames = self._objnames
for domainname, domain in self.env.domains.iteritems():
for fullname, dispname, type, docname, anchor, prio in \
domain.get_objects():
# XXX use dispname?
if docname not in fn2index:
continue
if prio < 0:
continue
# XXX splitting at dot is kind of Python specific
prefix, name = rpartition(fullname, '.')
pdict = rv.setdefault(prefix, {})
try:
i = otypes[domainname, type]
except KeyError:
i = len(otypes)
otypes[domainname, type] = i
otype = domain.object_types.get(type)
if otype:
# use unicode() to fire translation proxies
onames[i] = unicode(domain.get_type_name(otype))
else:
onames[i] = type
pdict[name] = (fn2index[docname], i, prio)
return rv
def get_terms(self, fn2index):
rv = {}
for k, v in self._mapping.iteritems():
if len(v) == 1:
fn, = v
if fn in fn2index:
rv[k] = fn2index[fn]
else:
rv[k] = [fn2index[fn] for fn in v if fn in fn2index]
return rv
def freeze(self):
"""Create a usable data structure for serializing."""
filenames = self._titles.keys()
titles = self._titles.values()
fn2index = dict((f, i) for (i, f) in enumerate(filenames))
terms = self.get_terms(fn2index)
objects = self.get_objects(fn2index) # populates _objtypes
objtypes = dict((v, k[0] + ':' + k[1])
for (k, v) in self._objtypes.iteritems())
objnames = self._objnames
return dict(filenames=filenames, titles=titles, terms=terms,
objects=objects, objtypes=objtypes, objnames=objnames)
def prune(self, filenames):
"""Remove data for all filenames not in the list."""
new_titles = {}
for filename in filenames:
if filename in self._titles:
new_titles[filename] = self._titles[filename]
self._titles = new_titles
for wordnames in self._mapping.itervalues():
wordnames.intersection_update(filenames)
def feed(self, filename, title, doctree):
"""Feed a doctree to the index."""
self._titles[filename] = title
visitor = WordCollector(doctree, self.lang)
doctree.walk(visitor)
def add_term(word, stem=self.lang.stem):
word = stem(word)
if self.lang.word_filter(word):
self._mapping.setdefault(word, set()).add(filename)
for word in self.lang.split(title):
add_term(word)
for word in visitor.found_words:
add_term(word)
def globalcontext_for_searchtool(self):
return dict(
search_language_stemming_code = self.lang.js_stemmer_code,
search_language_stop_words = jsdump.dumps(self.lang.stopwords),
)