Files
tuxclocker/src/plugins/AMD.cpp

969 lines
25 KiB
C++

#include <AMDUtils.hpp>
#include <Crypto.hpp>
#include <Plugin.hpp>
#include <TreeConstructor.hpp>
#include <Utils.hpp>
#include <cmath>
#include <errno.h>
#include <fplus/fplus.hpp>
#include <fstream>
#include <iostream>
#include <libdrm/amdgpu.h>
#include <libdrm/amdgpu_drm.h>
#include <libintl.h>
#define _(String) gettext(String)
extern int errno;
using namespace TuxClocker::Plugin;
using namespace TuxClocker::Crypto;
using namespace TuxClocker::Device;
using namespace TuxClocker;
using AssignmentFunction = std::function<std::optional<AssignmentError>(AssignmentArgument)>;
enum VoltFreqType {
MemoryPState,
CorePState,
CoreVFCurve
};
EnumerationVec performanceLevelEnumVec = {{_("Automatic"), 0}, {_("Lowest"), 1}, {_("Highest"), 2},
{_("Manual"), 3}, {_("Base Levels"), 4}, {_("Lowest Core Clock"), 5},
{_("Lowest Memory Clock"), 6}, {_("Highest Clocks"), 7}};
std::array<std::string, 8> performanceLevelSysFsNames = {"auto", "low", "high", "manual",
"profile_standard", "profile_min_sclk", "profile_min_mclk", "profile_peak"};
// Separate function so we can set this to manual when writing to pp_od_clk_voltage
std::optional<AssignmentError> setPerformanceLevel(AssignmentArgument a, AMDGPUData data) {
std::array<std::string, 8> sysFsNames = {"auto", "low", "high", "manual",
"profile_standard", "profile_min_sclk", "profile_min_mclk", "profile_peak"};
auto path = data.hwmonPath + "/power_dpm_force_performance_level";
std::ofstream file{path};
if (!file.good())
return AssignmentError::UnknownError;
if (!std::holds_alternative<uint>(a))
return AssignmentError::InvalidType;
auto arg = std::get<uint>(a);
if (!hasEnum(arg, performanceLevelEnumVec))
return AssignmentError::OutOfRange;
if (file << sysFsNames[arg])
return std::nullopt;
return AssignmentError::UnknownError;
};
// Implicitly set performance level to manual when writing to pp_od_clk_voltage
std::optional<AssignmentError> withManualPerformanceLevel(
const AssignmentFunction &func, AssignmentArgument a, AMDGPUData data) {
// Manual
auto retval = setPerformanceLevel(3u, data);
if (retval.has_value())
// Error occurred
return retval;
return func(a);
}
// Shared function to get memory and core clock pstate assignables
std::optional<Assignable> vfPointClockAssignable(
VoltFreqType vfType, uint pointIndex, Range<int> range, AMDGPUData data) {
// Eg. the 's' in s 0 400 500
const char *typeString;
const char *sectionHeader;
switch (vfType) {
case MemoryPState: {
typeString = "m";
sectionHeader = "OD_MCLK";
break;
}
case CorePState: {
typeString = "s";
sectionHeader = "OD_SCLK";
break;
}
case CoreVFCurve: {
typeString = "vc";
sectionHeader = "OD_VDDC_CURVE";
break;
}
}
auto getFunc = [=]() -> std::optional<AssignmentArgument> {
auto vfPoint = vfPointWithRead(sectionHeader, pointIndex, data);
if (!vfPoint.has_value())
return std::nullopt;
// Memory clock -> controller clock for memory clocks
if (vfType == MemoryPState)
return toMemoryClock(vfPoint->clock, data);
return vfPoint->clock;
};
if (!getFunc().has_value())
return std::nullopt;
auto setFunc = [=](AssignmentArgument a) -> std::optional<AssignmentError> {
if (!std::holds_alternative<int>(a))
return AssignmentError::InvalidType;
auto target = std::get<int>(a);
if (target < range.min || target > range.max)
return AssignmentError::OutOfRange;
auto vfPoint = vfPointWithRead(sectionHeader, pointIndex, data);
if (!vfPoint.has_value())
return AssignmentError::UnknownError;
// Memory clock -> controller clock for memory clocks
if (vfType == MemoryPState)
target = toControllerClock(target, data);
std::ofstream file{data.hwmonPath + "/pp_od_clk_voltage"};
char cmdString[32];
snprintf(
cmdString, 32, "%s %u %i %i", typeString, pointIndex, target, vfPoint->voltage);
if (file << cmdString && file << "c")
return std::nullopt;
return AssignmentError::UnknownError;
};
auto setWithPerfLevel = [=](AssignmentArgument a) -> std::optional<AssignmentError> {
return withManualPerformanceLevel(setFunc, a, data);
};
return Assignable{setWithPerfLevel, range, getFunc, _("MHz")};
}
std::optional<Assignable> vfPointVoltageAssignable(
VoltFreqType vfType, uint pointIndex, Range<int> range, AMDGPUData data) {
// Eg. the 's' in s 0 400 500
const char *typeString;
const char *sectionHeader;
switch (vfType) {
case MemoryPState: {
typeString = "m";
sectionHeader = "OD_MCLK";
break;
}
case CorePState: {
typeString = "s";
sectionHeader = "OD_SCLK";
break;
}
case CoreVFCurve: {
typeString = "vc";
sectionHeader = "OD_VDDC_CURVE";
break;
}
}
auto getFunc = [=]() -> std::optional<AssignmentArgument> {
auto vfPoint = vfPointWithRead(sectionHeader, pointIndex, data);
if (!vfPoint.has_value())
return std::nullopt;
return vfPoint->voltage;
};
if (!getFunc().has_value())
return std::nullopt;
auto setFunc = [=](AssignmentArgument a) -> std::optional<AssignmentError> {
if (!std::holds_alternative<int>(a))
return AssignmentError::InvalidType;
auto target = std::get<int>(a);
if (target < range.min || target > range.max)
return AssignmentError::OutOfRange;
auto vfPoint = vfPointWithRead(sectionHeader, pointIndex, data);
if (!vfPoint.has_value())
return AssignmentError::UnknownError;
std::ofstream file{data.hwmonPath + "/pp_od_clk_voltage"};
char cmdString[32];
snprintf(
cmdString, 32, "%s %u %i %i", typeString, pointIndex, vfPoint->clock, target);
if (file << cmdString && file << "c")
return std::nullopt;
return AssignmentError::UnknownError;
};
auto setWithPerfLevel = [=](AssignmentArgument a) -> std::optional<AssignmentError> {
return withManualPerformanceLevel(setFunc, a, data);
};
return Assignable{setWithPerfLevel, range, getFunc, _("mV")};
}
std::vector<TreeNode<DeviceNode>> getTemperature(AMDGPUData data) {
auto func = [=]() -> ReadResult {
uint temp;
// Always uses uintptr_t to write return data
if (amdgpu_query_sensor_info(
data.devHandle, AMDGPU_INFO_SENSOR_GPU_TEMP, sizeof(temp), &temp) == 0)
return temp / 1000;
return ReadError::UnknownError;
};
DynamicReadable dr{func, _("°C")};
if (hasReadableValue(func())) {
return {DeviceNode{
.name = _("Temperature"),
.interface = dr,
.hash = md5(data.pciId + "Temperature"),
}};
}
return {};
}
std::vector<TreeNode<DeviceNode>> getFanMode(AMDGPUData data) {
char path[96];
snprintf(path, 96, "%s/pwm1_enable", data.hwmonPath.c_str());
if (!std::ifstream{path}.good())
return {};
// TODO: does everything correctly handle enumerations that don't start at zero?
EnumerationVec enumVec{{_("Manual"), 1}, {_("Automatic"), 2}};
auto getFunc = [=]() -> std::optional<AssignmentArgument> {
auto string = fileContents(path);
if (!string.has_value())
return std::nullopt;
// We only handle automatic, see below
auto value = static_cast<uint>(std::stoi(*string));
if (value != 2)
return std::nullopt;
return 2;
};
// TODO: this may be wrong
// Seems that fan speed is writable even with automatic mode, but writing '2'
// without writing fan speed afterwards seems to reset to automatic
auto setFunc = [=](AssignmentArgument a) -> std::optional<AssignmentError> {
if (!std::holds_alternative<uint>(a))
return AssignmentError::InvalidType;
auto value = std::get<uint>(a);
if (!hasEnum(value, enumVec))
return AssignmentError::OutOfRange;
if (std::ofstream{path} << "2")
return std::nullopt;
return AssignmentError::UnknownError;
};
Assignable a{setFunc, enumVec, getFunc, std::nullopt};
return {DeviceNode{
.name = _("Fan Mode"),
.interface = a,
.hash = md5(data.pciId + "Fan Mode"),
}};
}
std::vector<TreeNode<DeviceNode>> getFanSpeedWrite(AMDGPUData data) {
char path[96];
snprintf(path, 96, "%s/pwm1", data.hwmonPath.c_str());
if (!std::ifstream{path}.good())
return {};
Range<int> range{0, 100};
auto getFunc = [=]() -> std::optional<AssignmentArgument> {
auto string = fileContents(path);
if (!string.has_value())
return std::nullopt;
double ratio = static_cast<double>(std::stoi(*string)) / 255;
// ratio -> %
return std::round((ratio * 100));
};
auto setFunc = [=](AssignmentArgument a) -> std::optional<AssignmentError> {
if (!std::holds_alternative<int>(a))
return AssignmentError::InvalidType;
auto value = std::get<int>(a);
if (value < range.min || value > range.max)
return AssignmentError::OutOfRange;
// % -> PWM value (0-255)
auto ratio = static_cast<double>(value) / 100;
uint target = std::floor(ratio * 255);
if (std::ofstream{path} << target)
return std::nullopt;
return AssignmentError::UnknownError;
};
Assignable a{setFunc, range, getFunc, _("%")};
return {DeviceNode{
.name = _("Fan Speed"),
.interface = a,
.hash = md5(data.pciId + "Fan Speed Write"),
}};
}
std::vector<TreeNode<DeviceNode>> getFanSpeedRead(AMDGPUData data) {
char path[96];
snprintf(path, 96, "%s/fan1_max", data.hwmonPath.c_str());
auto contents = fileContents(path);
if (!contents.has_value())
return {};
int maxRPM = std::stoi(*contents);
snprintf(path, 96, "%s/fan1_input", data.hwmonPath.c_str());
auto func = [=]() -> ReadResult {
auto string = fileContents(path);
if (!string.has_value())
return ReadError::UnknownError;
int value = std::stoi(*string);
double ratio = static_cast<double>(value) / static_cast<double>(maxRPM);
return std::round(ratio * 100);
};
DynamicReadable dr{func, _("%")};
if (hasReadableValue(func()))
return {DeviceNode{
.name = _("Fan Speed"),
.interface = dr,
.hash = md5(data.pciId + "Fan Speed Read"),
}};
return {};
}
std::vector<TreeNode<DeviceNode>> getPowerLimit(AMDGPUData data) {
// Get delta of min and max fan RPMs
char path[96];
snprintf(path, 96, "%s/power1_cap_min", data.hwmonPath.c_str());
auto contents = fileContents(path);
if (!contents.has_value())
return {};
// uW -> W
double minLimit = static_cast<double>(std::stoi(*contents)) / 1000000;
snprintf(path, 96, "%s/power1_cap_max", data.hwmonPath.c_str());
contents = fileContents(path);
if (!contents.has_value())
return {};
double maxLimit = static_cast<double>(std::stoi(*contents)) / 1000000;
Range<double> range{minLimit, maxLimit};
snprintf(path, 96, "%s/power1_cap", data.hwmonPath.c_str());
auto getFunc = [=]() -> std::optional<AssignmentArgument> {
auto string = fileContents(path);
if (!string.has_value())
return std::nullopt;
int cur_uW = std::stoi(*string);
return static_cast<double>(cur_uW) / 1000000;
};
auto setFunc = [=](AssignmentArgument a) -> std::optional<AssignmentError> {
if (!std::holds_alternative<double>(a))
return AssignmentError::InvalidType;
auto value = std::get<double>(a);
if (value < range.min || value > range.max)
return AssignmentError::OutOfRange;
// W -> uW
auto target = std::round(value * 1000000);
if (std::ofstream{path} << target)
return std::nullopt;
return AssignmentError::UnknownError;
};
Assignable a{setFunc, range, getFunc, _("W")};
return {DeviceNode{
.name = _("Power Limit"),
.interface = a,
.hash = md5(data.pciId + "Power Limit"),
}};
}
std::vector<TreeNode<DeviceNode>> getPowerUsage(AMDGPUData data) {
auto func = [=]() -> ReadResult {
uint power;
if (amdgpu_query_sensor_info(data.devHandle, AMDGPU_INFO_SENSOR_GPU_AVG_POWER,
sizeof(power), &power) == 0)
return power;
return ReadError::UnknownError;
};
DynamicReadable dr{func, _("W")};
if (hasReadableValue(func())) {
return {DeviceNode{
.name = _("Power Usage"),
.interface = dr,
.hash = md5(data.pciId + "Power Usage"),
}};
}
return {};
}
std::vector<TreeNode<DeviceNode>> getCoreClockRead(AMDGPUData data) {
auto func = [=]() -> ReadResult {
uint clock;
if (amdgpu_query_sensor_info(
data.devHandle, AMDGPU_INFO_SENSOR_GFX_SCLK, sizeof(clock), &clock) == 0)
return clock;
return ReadError::UnknownError;
};
DynamicReadable dr{func, _("MHz")};
if (hasReadableValue(func())) {
return {DeviceNode{
.name = _("Core Clock"),
.interface = dr,
.hash = md5(data.pciId + "Core Clock"),
}};
}
return {};
}
std::vector<TreeNode<DeviceNode>> getMemoryClockRead(AMDGPUData data) {
auto func = [=]() -> ReadResult {
uint clock;
// TODO: is this actually the clock speed or memory controller clock?
if (amdgpu_query_sensor_info(
data.devHandle, AMDGPU_INFO_SENSOR_GFX_MCLK, sizeof(clock), &clock) == 0)
return clock;
return ReadError::UnknownError;
};
DynamicReadable dr{func, _("MHz")};
if (hasReadableValue(func())) {
return {DeviceNode{
.name = _("Memory Clock"),
.interface = dr,
.hash = md5(data.pciId + "Memory Clock"),
}};
}
return {};
}
std::vector<TreeNode<DeviceNode>> getVoltFreqFreq(AMDGPUData data) {
static amdgpu_device_handle latestDev = nullptr;
static int pointId = 0;
std::vector<TreeNode<DeviceNode>> retval = {};
if (data.devHandle != latestDev)
// Start from zero for new device
pointId = 0;
latestDev = data.devHandle;
// TODO: assuming range is the same for all points
auto range = parsePstateRangeLineWithRead("VDDC_CURVE_SCLK[0]", data);
if (!range.has_value()) {
pointId++;
return {};
}
// Make a copy so the lambda keeps using the right id
auto id = pointId;
pointId++;
auto assignable = vfPointClockAssignable(CoreVFCurve, id, *range, data);
if (!assignable.has_value())
return {};
// The rest of this code should work the same on Navi and RDNA 3
auto name = (*data.ppTableType == Navi) ? _("Core Clock") : _("Core Clock Offset");
return {DeviceNode{
.name = name,
.interface = *assignable,
.hash = md5(data.pciId + "VFClock" + std::to_string(id)),
}};
}
std::vector<TreeNode<DeviceNode>> getVoltFreqVolt(AMDGPUData data) {
static amdgpu_device_handle latestDev = nullptr;
static int pointId = 0;
std::vector<TreeNode<DeviceNode>> retval = {};
if (data.devHandle != latestDev)
// Start from zero for new device
pointId = 0;
latestDev = data.devHandle;
// TODO: assuming range is the same for all points
auto range = parsePstateRangeLineWithRead("VDDC_CURVE_VOLT[0]", data);
if (!range.has_value()) {
pointId++;
return {};
}
// Make a copy so the lambda keeps using the right id
auto id = pointId;
pointId++;
auto assignable = vfPointVoltageAssignable(CoreVFCurve, id, *range, data);
if (!assignable.has_value())
return {};
// The rest of this code should work the same on Navi and RDNA 3
auto name = (*data.ppTableType == Navi) ? _("Core Voltage") : _("Core Voltage Offset");
return {DeviceNode{
.name = name,
.interface = *assignable,
.hash = md5(data.pciId + "VFVoltage" + std::to_string(id)),
}};
}
std::vector<TreeNode<DeviceNode>> getCorePStateFreq(AMDGPUData data) {
static amdgpu_device_handle latestDev = nullptr;
static int pointId = 0;
std::vector<TreeNode<DeviceNode>> retval = {};
if (data.devHandle != latestDev)
// Start from zero for new device
pointId = 0;
latestDev = data.devHandle;
auto range = parsePstateRangeLineWithRead("SCLK", data);
if (!range.has_value()) {
pointId++;
return {};
}
// Make a copy so the lambda keeps using the right id
auto id = pointId;
auto assignable = vfPointClockAssignable(CorePState, id, *range, data);
pointId++;
if (!assignable.has_value())
return {};
return {DeviceNode{
.name = _("Core Clock"),
.interface = *assignable,
.hash = md5(data.pciId + "CorePStateFreq" + std::to_string(id)),
}};
}
std::vector<TreeNode<DeviceNode>> getCorePStateVolt(AMDGPUData data) {
static amdgpu_device_handle latestDev = nullptr;
static int pointId = 0;
std::vector<TreeNode<DeviceNode>> retval = {};
if (data.devHandle != latestDev)
// Start from zero for new device
pointId = 0;
latestDev = data.devHandle;
auto range = parsePstateRangeLineWithRead("VDDC", data);
if (!range.has_value()) {
pointId++;
return {};
}
// Make a copy so the lambda keeps using the right id
auto id = pointId;
auto assignable = vfPointVoltageAssignable(CorePState, id, *range, data);
pointId++;
if (!assignable.has_value())
return {};
return {DeviceNode{
.name = _("Core Voltage"),
.interface = *assignable,
.hash = md5(data.pciId + "CorePStateVolt" + std::to_string(id)),
}};
}
std::vector<TreeNode<DeviceNode>> getMemoryPStateFreq(AMDGPUData data) {
static amdgpu_device_handle latestDev = nullptr;
static int pointId = 0;
std::vector<TreeNode<DeviceNode>> retval = {};
if (data.devHandle != latestDev)
// Start from zero for new device
pointId = 0;
latestDev = data.devHandle;
auto rangeController = parsePstateRangeLineWithRead("MCLK", data);
if (!rangeController.has_value()) {
pointId++;
return {};
}
// Controller clock -> effective clock
Range<int> range{
toMemoryClock(rangeController->min, data), toMemoryClock(rangeController->max, data)};
// Make a copy so the lambda keeps using the right id
auto id = pointId;
// Conversion back to controller clock is handled there
auto assignable = vfPointClockAssignable(MemoryPState, id, range, data);
pointId++;
if (!assignable.has_value())
return {};
return {DeviceNode{
.name = _("Memory Clock"),
.interface = *assignable,
.hash = md5(data.pciId + "MemoryPStateFreq" + std::to_string(id)),
}};
}
std::vector<TreeNode<DeviceNode>> getMemoryPStateVolt(AMDGPUData data) {
static amdgpu_device_handle latestDev = nullptr;
static int pointId = 0;
std::vector<TreeNode<DeviceNode>> retval = {};
if (data.devHandle != latestDev)
// Start from zero for new device
pointId = 0;
latestDev = data.devHandle;
auto range = parsePstateRangeLineWithRead("VDDC", data);
if (!range.has_value()) {
pointId++;
return {};
}
// Make a copy so the lambda keeps using the right id
auto id = pointId;
auto assignable = vfPointVoltageAssignable(MemoryPState, id, *range, data);
pointId++;
if (!assignable.has_value())
return {};
return {DeviceNode{
.name = _("Memory Voltage"),
.interface = *assignable,
.hash = md5(data.pciId + "MemoryPStateVolt" + std::to_string(id)),
}};
}
std::vector<TreeNode<DeviceNode>> getVoltFreqNodes(AMDGPUData data) {
// Root item for voltage and frequency of a point
std::vector<TreeNode<DeviceNode>> retval;
if (!data.ppTableType.has_value() &&
(*data.ppTableType != Navi && *data.ppTableType != SMU13))
return {};
auto path = data.hwmonPath + "/pp_od_clk_voltage";
auto tableContents = fileContents(path);
if (!tableContents.has_value())
return {};
auto lines = pstateSectionLines("OD_VDDC_CURVE", *tableContents);
char name[32];
for (int i = 0; i < lines.size(); i++) {
snprintf(name, 32, "%s %i", _("Point"), i);
DeviceNode node{
.name = name,
.interface = std::nullopt,
.hash = md5(data.pciId + "VFPoint" + std::to_string(i)),
};
retval.push_back(node);
}
return retval;
}
std::vector<TreeNode<DeviceNode>> getCorePStateNodes(AMDGPUData data) {
// Root item for voltage and frequency of a pstate
std::vector<TreeNode<DeviceNode>> retval;
if (!data.ppTableType.has_value() || *data.ppTableType != Vega10)
return {};
auto path = data.hwmonPath + "/pp_od_clk_voltage";
auto tableContents = fileContents(path);
if (!tableContents.has_value())
return {};
auto lines = pstateSectionLines("OD_SCLK", *tableContents);
char name[32];
for (int i = 0; i < lines.size(); i++) {
snprintf(name, 32, "%s %i", _("State"), i);
DeviceNode node{
.name = name,
.interface = std::nullopt,
.hash = md5(data.pciId + "PState" + std::to_string(i)),
};
retval.push_back(node);
}
return retval;
}
std::vector<TreeNode<DeviceNode>> getMemoryPStateNodes(AMDGPUData data) {
// Root item for voltage and frequency of a pstate
std::vector<TreeNode<DeviceNode>> retval;
if (!data.ppTableType.has_value() || *data.ppTableType != Vega10)
return {};
auto path = data.hwmonPath + "/pp_od_clk_voltage";
auto tableContents = fileContents(path);
if (!tableContents.has_value())
return {};
auto lines = pstateSectionLines("OD_MCLK", *tableContents);
char name[32];
for (int i = 0; i < lines.size(); i++) {
snprintf(name, 32, "%s %i", _("State"), i);
DeviceNode node{
.name = name,
.interface = std::nullopt,
.hash = md5(data.pciId + "MemoryPState" + std::to_string(i)),
};
retval.push_back(node);
}
return retval;
}
std::vector<TreeNode<DeviceNode>> getVoltageRead(AMDGPUData data) {
auto func = [=](int sensorType) -> ReadResult {
uint volt;
if (amdgpu_query_sensor_info(data.devHandle, sensorType, sizeof(volt), &volt) == 0)
return volt;
return ReadError::UnknownError;
};
// Try to get northbridge voltage if graphics voltage can't be fetched
std::optional<int> sensorType;
if (hasReadableValue(func(AMDGPU_INFO_SENSOR_VDDGFX)))
sensorType = AMDGPU_INFO_SENSOR_VDDGFX;
if (hasReadableValue(func(AMDGPU_INFO_SENSOR_VDDNB)))
sensorType = AMDGPU_INFO_SENSOR_VDDNB;
if (!sensorType.has_value())
return {};
auto funcWithSensorType = [=]() -> ReadResult { return func(*sensorType); };
DynamicReadable dr{funcWithSensorType, _("mV")};
return {DeviceNode{
.name = _("Core Voltage"),
.interface = dr,
.hash = md5(data.pciId + "Core Voltage"),
}};
}
std::vector<TreeNode<DeviceNode>> getForcePerfLevel(AMDGPUData data) {
// Performance parameter control
auto path = data.hwmonPath + "/power_dpm_force_performance_level";
auto getFunc = [=]() -> std::optional<AssignmentArgument> {
auto string = fileContents(path);
if (!string.has_value())
return std::nullopt;
for (int i = 0; i < performanceLevelEnumVec.size(); i++) {
if (string->find(performanceLevelSysFsNames[i]) != std::string::npos)
return performanceLevelEnumVec[i].key;
}
return std::nullopt;
};
auto setFunc = [=](AssignmentArgument a) -> std::optional<AssignmentError> {
return setPerformanceLevel(a, data);
};
Assignable a{setFunc, performanceLevelEnumVec, getFunc, std::nullopt};
if (getFunc().has_value())
return {DeviceNode{
.name = _("Performance Parameter Control"),
.interface = std::nullopt,
.hash = md5(data.pciId + "Performance Parameter Control"),
}};
return {};
}
std::vector<TreeNode<DeviceNode>> getVoltFreqRoot(AMDGPUData data) {
if (data.ppTableType.has_value() &&
(*data.ppTableType == Navi || *data.ppTableType == SMU13))
return {DeviceNode{
.name = _("Voltage-Frequency Curve"),
.interface = std::nullopt,
.hash = md5(data.pciId + "Voltage-Frequency Curve"),
}};
return {};
}
std::vector<TreeNode<DeviceNode>> getClocksRoot(AMDGPUData data) {
return {DeviceNode{
.name = _("Clocks"),
.interface = std::nullopt,
.hash = md5(data.pciId + "Clocks"),
}};
}
std::vector<TreeNode<DeviceNode>> getPerformanceRoot(AMDGPUData data) {
return {DeviceNode{
.name = _("Performance"),
.interface = std::nullopt,
.hash = md5(data.pciId + "Performance"),
}};
}
std::vector<TreeNode<DeviceNode>> getFanRoot(AMDGPUData data) {
return {DeviceNode{
.name = _("Fans"),
.interface = std::nullopt,
.hash = md5(data.pciId + "Fans"),
}};
}
std::vector<TreeNode<DeviceNode>> getPowerRoot(AMDGPUData data) {
// Root for power usage and power limit
return {DeviceNode{
.name = _("Power"),
.interface = std::nullopt,
.hash = md5(data.pciId + "Power"),
}};
}
std::vector<TreeNode<DeviceNode>> getCorePStateRoot(AMDGPUData data) {
if (!data.ppTableType.has_value() || *data.ppTableType != Vega10)
return {};
return {DeviceNode{
.name = _("Core Performance States"),
.interface = std::nullopt,
.hash = md5(data.pciId + "Core Performance States"),
}};
}
std::vector<TreeNode<DeviceNode>> getMemoryPStateRoot(AMDGPUData data) {
if (!data.ppTableType.has_value() || *data.ppTableType != Vega10)
return {};
return {DeviceNode{
.name = _("Memory Performance States"),
.interface = std::nullopt,
.hash = md5(data.pciId + "Memory Performance States"),
}};
}
std::vector<TreeNode<DeviceNode>> getGPUName(AMDGPUData data) {
auto name = amdgpu_get_marketing_name(data.devHandle);
if (name) {
return {DeviceNode{
.name = name,
.interface = std::nullopt,
.hash = md5(data.pciId),
}};
}
return {};
}
// clang-format off
auto gpuTree = TreeConstructor<AMDGPUData, DeviceNode>{
getGPUName, {
{getTemperature, {}},
{getFanRoot, {
{getFanMode, {}},
{getFanSpeedWrite, {}},
{getFanSpeedRead, {}}
}},
{getPowerRoot, {
{getPowerLimit, {}},
{getPowerUsage, {}}
}},
{getPerformanceRoot, {
{getClocksRoot, {
{getMemoryClockRead, {}},
{getCoreClockRead, {}}
}},
{getVoltageRead, {}},
{getForcePerfLevel, {}},
{getVoltFreqRoot, {
{getVoltFreqNodes, {
{getVoltFreqFreq, {}},
{getVoltFreqVolt, {}}
}}
}},
{getCorePStateRoot, {
{getCorePStateNodes, {
{getCorePStateFreq, {}},
{getCorePStateVolt, {}}
}}
}},
{getMemoryPStateRoot, {
{getMemoryPStateNodes, {
{getMemoryPStateFreq, {}},
{getMemoryPStateVolt, {}}
}}
}}
}}
}
};
// clang-format on
class AMDPlugin : public DevicePlugin {
public:
std::optional<InitializationError> initializationError() { return std::nullopt; }
TreeNode<DeviceNode> deviceRootNode();
~AMDPlugin();
private:
std::vector<AMDGPUData> m_gpuDataVec;
};
TreeNode<DeviceNode> AMDPlugin::deviceRootNode() {
TreeNode<DeviceNode> root;
auto dataVec = fromFilesystem();
m_gpuDataVec = dataVec;
for (auto &data : dataVec)
constructTree(gpuTree, root, data);
return root;
}
AMDPlugin::~AMDPlugin() {
for (auto info : m_gpuDataVec) {
amdgpu_device_deinitialize(info.devHandle);
}
}
TUXCLOCKER_PLUGIN_EXPORT(AMDPlugin)