[crypto] Eliminate temporary working space for bigint_mod_invert()

With a slight modification to the algorithm to ignore bits of the
residue that can never contribute to the result, it is possible to
reuse the as-yet uncalculated portions of the inverse to hold the
residue.  This removes the requirement for additional temporary
working space.

Signed-off-by: Michael Brown <mcb30@ipxe.org>
This commit is contained in:
Michael Brown 2024-11-27 12:51:04 +00:00
parent 9cbf5c4f86
commit 7c2e68cc87
3 changed files with 65 additions and 46 deletions

View File

@ -287,27 +287,22 @@ void bigint_reduce_raw ( bigint_element_t *modulus0, bigint_element_t *value0,
* @v invertend0 Element 0 of odd big integer to be inverted
* @v inverse0 Element 0 of big integer to hold result
* @v size Number of elements in invertend and result
* @v tmp Temporary working space
*/
void bigint_mod_invert_raw ( const bigint_element_t *invertend0,
bigint_element_t *inverse0,
unsigned int size, void *tmp ) {
bigint_element_t *inverse0, unsigned int size ) {
const bigint_t ( size ) __attribute__ (( may_alias ))
*invertend = ( ( const void * ) invertend0 );
bigint_t ( size ) __attribute__ (( may_alias ))
*inverse = ( ( void * ) inverse0 );
struct {
bigint_t ( size ) residue;
} *temp = tmp;
const unsigned int width = ( 8 * sizeof ( bigint_element_t ) );
bigint_element_t accum;
bigint_element_t bit;
unsigned int i;
/* Sanity check */
assert ( invertend->element[0] & 1 );
assert ( bigint_bit_is_set ( invertend, 0 ) );
/* Initialise temporary working space and output value */
memset ( &temp->residue, 0xff, sizeof ( temp->residue ) );
memset ( inverse, 0, sizeof ( *inverse ) );
/* Initialise output */
memset ( inverse, 0xff, sizeof ( *inverse ) );
/* Compute inverse modulo 2^(width)
*
@ -315,23 +310,47 @@ void bigint_mod_invert_raw ( const bigint_element_t *invertend0,
* presented in "A New Algorithm for Inversion mod p^k (Koç,
* 2017)".
*
* Each loop iteration calculates one bit of the inverse. The
* residue value is the two's complement negation of the value
* "b" as used by Koç, to allow for division by two using a
* logical right shift (since we have no arithmetic right
* shift operation for big integers).
* Each inner loop iteration calculates one bit of the
* inverse. The residue value is the two's complement
* negation of the value "b" as used by Koç, to allow for
* division by two using a logical right shift (since we have
* no arithmetic right shift operation for big integers).
*
* The residue is stored in the as-yet uncalculated portion of
* the inverse. The size of the residue therefore decreases
* by one element for each outer loop iteration. Trivial
* inspection of the algorithm shows that any higher bits
* could not contribute to the eventual output value, and so
* we may safely reuse storage this way.
*
* Due to the suffix property of inverses mod 2^k, the result
* represents the least significant bits of the inverse modulo
* an arbitrarily large 2^k.
*/
for ( i = 0 ; i < ( 8 * sizeof ( *inverse ) ) ; i++ ) {
if ( temp->residue.element[0] & 1 ) {
inverse->element[ i / width ] |=
( 1UL << ( i % width ) );
bigint_add ( invertend, &temp->residue );
for ( i = size ; i > 0 ; i-- ) {
const bigint_t ( i ) __attribute__ (( may_alias ))
*addend = ( ( const void * ) invertend );
bigint_t ( i ) __attribute__ (( may_alias ))
*residue = ( ( void * ) inverse );
/* Calculate one element's worth of inverse bits */
for ( accum = 0, bit = 1 ; bit ; bit <<= 1 ) {
if ( bigint_bit_is_set ( residue, 0 ) ) {
accum |= bit;
bigint_add ( addend, residue );
}
bigint_shr ( residue );
}
bigint_shr ( &temp->residue );
/* Store in the element no longer required to hold residue */
inverse->element[ i - 1 ] = accum;
}
/* Correct order of inverse elements */
for ( i = 0 ; i < ( size / 2 ) ; i++ ) {
accum = inverse->element[i];
inverse->element[i] = inverse->element[ size - 1 - i ];
inverse->element[ size - 1 - i ] = accum;
}
}

View File

@ -242,30 +242,17 @@ FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
} while ( 0 )
/**
* Compute inverse of odd big integer modulo its own size
* Compute inverse of odd big integer modulo any power of two
*
* @v invertend Odd big integer to be inverted
* @v inverse Big integer to hold result
* @v tmp Temporary working space
*/
#define bigint_mod_invert( invertend, inverse, tmp ) do { \
unsigned int size = bigint_size (invertend); \
#define bigint_mod_invert( invertend, inverse ) do { \
unsigned int size = bigint_size ( invertend ); \
bigint_mod_invert_raw ( (invertend)->element, \
(inverse)->element, size, tmp ); \
(inverse)->element, size ); \
} while ( 0 )
/**
* Calculate temporary working space required for modular inversion
*
* @v invertend Odd big integer to be inverted
* @ret len Length of temporary working space
*/
#define bigint_mod_invert_tmp_len( invertend ) ( { \
unsigned int size = bigint_size (invertend); \
sizeof ( struct { \
bigint_t ( size ) temp_residue; \
} ); } )
/**
* Perform modular multiplication of big integers
*
@ -408,8 +395,7 @@ void bigint_multiply_raw ( const bigint_element_t *multiplicand0,
void bigint_reduce_raw ( bigint_element_t *modulus0, bigint_element_t *value0,
unsigned int size );
void bigint_mod_invert_raw ( const bigint_element_t *invertend0,
bigint_element_t *inverse0,
unsigned int size, void *tmp );
bigint_element_t *inverse0, unsigned int size );
void bigint_mod_multiply_raw ( const bigint_element_t *multiplicand0,
const bigint_element_t *multiplier0,
const bigint_element_t *modulus0,

View File

@ -197,13 +197,13 @@ void bigint_reduce_sample ( bigint_element_t *modulus0,
void bigint_mod_invert_sample ( const bigint_element_t *invertend0,
bigint_element_t *inverse0,
unsigned int size, void *tmp ) {
unsigned int size ) {
const bigint_t ( size ) __attribute__ (( may_alias ))
*invertend = ( ( const void * ) invertend0 );
bigint_t ( size ) __attribute__ (( may_alias ))
*inverse = ( ( void * ) inverse0 );
bigint_mod_invert ( invertend, inverse, tmp );
bigint_mod_invert ( invertend, inverse );
}
void bigint_mod_multiply_sample ( const bigint_element_t *multiplicand0,
@ -600,8 +600,6 @@ void bigint_mod_exp_sample ( const bigint_element_t *base0,
bigint_required_size ( sizeof ( invertend_raw ) ); \
bigint_t ( size ) invertend_temp; \
bigint_t ( size ) inverse_temp; \
size_t tmp_len = bigint_mod_invert_tmp_len ( &invertend_temp ); \
uint8_t tmp[tmp_len]; \
{} /* Fix emacs alignment */ \
\
assert ( bigint_size ( &invertend_temp ) == \
@ -610,7 +608,7 @@ void bigint_mod_exp_sample ( const bigint_element_t *base0,
sizeof ( invertend_raw ) ); \
DBG ( "Modular invert:\n" ); \
DBG_HDA ( 0, &invertend_temp, sizeof ( invertend_temp ) ); \
bigint_mod_invert ( &invertend_temp, &inverse_temp, tmp ); \
bigint_mod_invert ( &invertend_temp, &inverse_temp ); \
DBG_HDA ( 0, &inverse_temp, sizeof ( inverse_temp ) ); \
bigint_done ( &inverse_temp, inverse_raw, \
sizeof ( inverse_raw ) ); \
@ -1827,6 +1825,10 @@ static void bigint_test_exec ( void ) {
0xff, 0xff ),
BIGINT ( 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff ) );
bigint_mod_invert_ok ( BIGINT ( 0xa4, 0xcb, 0xbc, 0xc9, 0x9f, 0x7a,
0x65, 0xbf ),
BIGINT ( 0xb9, 0xd5, 0xf4, 0x88, 0x0b, 0xf8,
0x8a, 0x3f ) );
bigint_mod_invert_ok ( BIGINT ( 0x95, 0x6a, 0xc5, 0xe7, 0x2e, 0x5b,
0x44, 0xed, 0xbf, 0x7e, 0xfe, 0x8d,
0xf4, 0x5a, 0x48, 0xc1 ),
@ -1839,6 +1841,18 @@ static void bigint_test_exec ( void ) {
BIGINT ( 0xf2, 0x9c, 0x63, 0x29, 0xfa, 0xe4,
0xbf, 0x90, 0xa6, 0x9a, 0xec, 0xcf,
0x5f, 0xe2, 0x21, 0xcd ) );
bigint_mod_invert_ok ( BIGINT ( 0xb9, 0xbb, 0x7f, 0x9c, 0x7a, 0x32,
0x43, 0xed, 0x9d, 0xd4, 0x0d, 0x6f,
0x32, 0xfa, 0x4b, 0x62, 0x38, 0x3a,
0xbf, 0x4c, 0xbd, 0xa8, 0x47, 0xce,
0xa2, 0x30, 0x34, 0xe0, 0x2c, 0x09,
0x14, 0x89 ),
BIGINT ( 0xfc, 0x05, 0xc4, 0x2a, 0x90, 0x99,
0x82, 0xf8, 0x81, 0x1d, 0x87, 0xb8,
0xca, 0xe4, 0x95, 0xe2, 0xac, 0x18,
0xb3, 0xe1, 0x3e, 0xc6, 0x5a, 0x03,
0x51, 0x6f, 0xb7, 0xe3, 0xa5, 0xd6,
0xa1, 0xb9 ) );
bigint_mod_multiply_ok ( BIGINT ( 0x37 ),
BIGINT ( 0x67 ),
BIGINT ( 0x3f ),