memtest86plus/system/uhci.c

583 lines
21 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2021-2022 Martin Whitaker.
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include "heap.h"
#include "io.h"
#include "memrw32.h"
#include "memsize.h"
#include "pci.h"
#include "usb.h"
#include "string.h"
#include "unistd.h"
#include "uhci.h"
//------------------------------------------------------------------------------
// Constants
//------------------------------------------------------------------------------
// Values defined by the UHCI specification.
// Basic limits
#define UHCI_FL_LENGTH 1024 // Maximum number of entries in periodic frame list
// Register addresses in PCI Config space
#define UHCI_LEGSUP 0xc0 // Legacy Support register
// Legacy Support register
#define UHCI_LEGSUP_TBY60R 0x0100 // Trap By 0x60 Read Status/Clear
#define UHCI_LEGSUP_TBY60W 0x0200 // Trap By 0x60 Write Status/Clear
#define UHCI_LEGSUP_TBY64R 0x0400 // Trap By 0x64 Read Status/Clear
#define UHCI_LEGSUP_TBY64W 0x0800 // Trap By 0x64 Write Status/Clear
#define UHCI_LEGSUP_A20PTS 0x8000 // End of A20GATE Pass Through Status/Clear
#define UHCI_LEGSUP_CLEAR (UHCI_LEGSUP_TBY60R | UHCI_LEGSUP_TBY60W | UHCI_LEGSUP_TBY64R | UHCI_LEGSUP_TBY64W | UHCI_LEGSUP_A20PTS)
// Register addresses in I/O space
#define UHCI_USBCMD (io_base+0x00) // USB Command register
#define UHCI_USBSTS (io_base+0x02) // USB Status register
#define UHCI_USBINTR (io_base+0x04) // USB Interrupt Enable register
#define UHCI_FRNUM (io_base+0x06) // Frame Number register
#define UHCI_FLBASE (io_base+0x08) // Frame List Base Address register
#define UHCI_SOF (io_base+0x0c) // Start of Frame modify register
#define UHCI_PORT_SC(n) (io_base+0x10+2*n) // Port n Status and Control register (n = 0..MaxPortIdx)
// USB Command register
#define UHCI_USBCMD_R_S 0x0001 // Run/Stop
#define UHCI_USBCMD_HCR 0x0002 // Host Controller Reset
#define UHCI_USBCMD_GR 0x0004 // Global Reset
#define UHCI_USBCMD_MAXP 0x0080 // Max Packet
// USB Status register
#define UHCI_USBSTS_INT 0x0001 // Interrupt
#define UHCI_USBSTS_ERR 0x0002 // Error interrupt
#define UHCI_USBSTS_RESUME 0x0004 // Resume Detect
#define UHCI_USBSTS_HSE 0x0008 // Host System Error
#define UHCI_USBSTS_HCPE 0x0010 // Host Controller Processor Error
#define UHCI_USBSTS_HCH 0x0020 // Host Controller Halted
// USB Interrupt Enable register
#define UHCI_USBINTR_NONE 0x0000 // No interrupts enabled
// USB SOF register
#define UHCI_SOF_DEFAULT 0x40 // Default timing (1ms with 12MHz clock)
// Port Status and Control register
#define UHCI_PORT_SC_CCS 0x0001 // Current Connect Status
#define UHCI_PORT_SC_CCSC 0x0002 // Current Connect Status Change
#define UHCI_PORT_SC_PED 0x0004 // Port Enable/Disable
#define UHCI_PORT_SC_PEDC 0x0008 // Port Enable/Disable Change
#define UHCI_PORT_SC_RESUME 0x0040 // Resume Detect
#define UHCI_PORT_SC_VALID 0x0080 // Reserved bit (always set)
#define UHCI_PORT_SC_LSDA 0x0100 // Low Speed Device Attached
#define UHCI_PORT_SC_PR 0x0200 // Port Reset
#define UHCI_PORT_SC_SUSPEND 0x1000 // Suspend
// Link Pointer
#define UHCI_LP_TERMINATE 0x00000001 // Terminate (T) bit
#define UHCI_LP_TYPE_TD (0 << 1) // Type is Transfer Descriptor
#define UHCI_LP_TYPE_QH (1 << 1) // Type is Queue Head
#define UHCI_LP_BREADTH_FIRST (0 << 2)
#define UHCI_LP_DEPTH_FIRST (1 << 2)
// Queue Element Transfer Descriptor data structure
// - control_status member (32 bits)
#define UHCI_TD_BS_ERR 0x00020000 // Bitstuff Error
#define UHCI_TD_CRC_TO 0x00040000 // CRC or Time Out Error
#define UHCI_TD_NAK_RX 0x00080000 // NAK received
#define UHCI_TD_BABBLE 0x00100000 // Babble Detected
#define UHCI_TD_DB_ERR 0x00200000 // Data Buffer Error
#define UHCI_TD_STALLED 0x00400000 // Halted
#define UHCI_TD_ACTIVE 0x00800000 // Active
#define UHCI_TD_IOC_N (0 << 24) // Interrupt On Completion is off
#define UHCI_TD_IOC_Y (1 << 24) // Interrupt On Completion is on
#define UHCI_TD_ISO (1 << 25) // Isochronous Select
#define UHCI_TD_FULL_SPEED (0 << 26) // Full Speed
#define UHCI_TD_LOW_SPEED (1 << 26) // Low Speed
#define UHCI_TD_CERR(n) ((n) << 27) // Error Counter = n (n = 1..3)
#define UHCI_TD_SPD (1 << 29) // Short Packet Detect
// - token member (32 bits)
#define UHCI_TD_PID_OUT 0x000000e1 // PID Code is OUT
#define UHCI_TD_PID_IN 0x00000069 // PID Code is IN
#define UHCI_TD_PID_SETUP 0x0000002d // PID Code is SETUP
#define UHCI_TD_DEVICE_ADDR(n) ((n) << 8) // Device Address = n (n = 0..127)
#define UHCI_TD_ENDPOINT(n) ((n) << 15) // Endpoint = n (n = 0..15)
#define UHCI_TD_DT(n) ((n) << 19) // Data Toggle = n (n = 0,1)
#define UHCI_TD_LENGTH(n) ((((n) - 1) & 0x7ff) << 21)
// Values specific to this driver.
#define MAX_UHCI_PORTS 8 // the UHCI spec. doesn't define this, so pick a sensible number
#define MAX_KEYBOARDS 8 // per host controller
#define MAX_PACKETS 32 // per data transfer (must be >= MAX_KEYBOARDS)
#define WS_QH_SIZE (1 + MAX_KEYBOARDS) // Queue Head Descriptors
#define WS_TD_SIZE (2 + MAX_PACKETS) // Queue Transfer Descriptors
#define MILLISEC 1000 // in microseconds
//------------------------------------------------------------------------------
// Types
//------------------------------------------------------------------------------
// Data structures defined by the UHCI specification.
typedef volatile struct {
uint32_t link_ptr;
uint32_t control_status;
uint32_t token;
uint32_t buffer_ptr;
uint32_t driver_data[4];
} uhci_td_t __attribute__ ((aligned (16)));
typedef volatile struct {
uint32_t qh_link_ptr;
uint32_t qe_link_ptr;
uint32_t padding[2];
} uhci_qh_t __attribute__ ((aligned (16)));
// Data structures specific to this implementation.
typedef struct {
hcd_workspace_t base_ws;
// System memory data structures used by the host controller.
uhci_qh_t qh[WS_QH_SIZE] __attribute__ ((aligned (16)));
uhci_td_t td[WS_TD_SIZE] __attribute__ ((aligned (16)));
// Keyboard data transfer buffers.
hid_kbd_rpt_t kbd_rpt[MAX_KEYBOARDS];
// Saved keyboard reports.
hid_kbd_rpt_t prev_kbd_rpt[MAX_KEYBOARDS];
// I/O base address of the host controller registers.
uint16_t io_base;
// Number of keyboards detected.
int num_keyboards;
} workspace_t __attribute__ ((aligned (256)));
//------------------------------------------------------------------------------
// Private Functions
//------------------------------------------------------------------------------
static bool io_wait_until_clr(uint16_t io_reg, uint16_t bit_mask, int max_time)
{
int timer = max_time >> 3;
while (inw(io_reg) & bit_mask) {
if (timer == 0) return false;
usleep(8);
timer--;
}
return true;
}
static bool io_wait_until_set(uint16_t io_reg, uint16_t bit_mask, int max_time)
{
int timer = max_time >> 3;
while (~inw(io_reg) & bit_mask) {
if (timer == 0) return false;
usleep(8);
timer--;
}
return true;
}
static bool reset_host_controller(uint16_t io_base)
{
outw(inw(UHCI_USBCMD) | UHCI_USBCMD_HCR, UHCI_USBCMD);
usleep(1*MILLISEC); // allow the controller some time to recover from reset
return io_wait_until_clr(UHCI_USBCMD, UHCI_USBCMD_HCR, 1000*MILLISEC);
}
static bool start_host_controller(uint16_t io_base)
{
outw(UHCI_USBCMD_R_S | UHCI_USBCMD_MAXP, UHCI_USBCMD);
return io_wait_until_clr(UHCI_USBSTS, UHCI_USBSTS_HCH, 1000*MILLISEC);
}
static bool halt_host_controller(uint16_t io_base)
{
outw(inw(UHCI_USBCMD) & ~UHCI_USBCMD_R_S, UHCI_USBCMD);
return io_wait_until_set(UHCI_USBSTS, UHCI_USBSTS_HCH, 1000*MILLISEC);
}
static bool reset_uhci_port(uint16_t io_base, int port_idx)
{
uint16_t port_status = inw(UHCI_PORT_SC(port_idx)) & ~UHCI_PORT_SC_PED;
outw(port_status | UHCI_PORT_SC_PR, UHCI_PORT_SC(port_idx));
usleep(50*MILLISEC); // USB port reset time
outw(port_status & ~UHCI_PORT_SC_PR, UHCI_PORT_SC(port_idx));
return io_wait_until_clr(UHCI_PORT_SC(port_idx), UHCI_PORT_SC_PR, 5*MILLISEC);
}
static bool enable_uhci_port(uint16_t io_base, int port_idx)
{
uint16_t port_status = inw(UHCI_PORT_SC(port_idx));
outw(port_status | UHCI_PORT_SC_PED, UHCI_PORT_SC(port_idx));
return io_wait_until_set(UHCI_PORT_SC(port_idx), UHCI_PORT_SC_PED, 1000*MILLISEC);
}
static void disable_uhci_port(uint16_t io_base, int port_idx)
{
uint16_t port_status = inw(UHCI_PORT_SC(port_idx));
outw(port_status & ~UHCI_PORT_SC_PED, UHCI_PORT_SC(port_idx));
(void)io_wait_until_clr(UHCI_PORT_SC(port_idx), UHCI_PORT_SC_PED, 1000*MILLISEC);
}
static void build_uhci_td(uhci_td_t *td, const usb_ep_t *ep, uint32_t pid, uint32_t dt, uint32_t options,
const void *buffer, size_t length)
{
uint32_t device_speed = (ep->device_speed == USB_SPEED_LOW) ? UHCI_TD_LOW_SPEED : UHCI_TD_FULL_SPEED;
if (options & UHCI_TD_IOC_Y) {
td->link_ptr = UHCI_LP_TERMINATE;
} else {
td->link_ptr = (uintptr_t)(td + 1) | UHCI_LP_TYPE_TD | UHCI_LP_DEPTH_FIRST;
}
td->control_status = UHCI_TD_CERR(3)
| device_speed
| options
| UHCI_TD_ACTIVE;
td->token = UHCI_TD_LENGTH(length)
| dt
| UHCI_TD_ENDPOINT(ep->endpoint_num)
| UHCI_TD_DEVICE_ADDR(ep->device_id)
| pid;
td->buffer_ptr = (uintptr_t)buffer;
}
static uint16_t get_uhci_done(workspace_t *ws)
{
uint16_t io_base = ws->io_base;
uint16_t status = inw(UHCI_USBSTS) & (UHCI_USBSTS_INT | UHCI_USBSTS_ERR);
if (status != 0) {
if (status & UHCI_USBSTS_ERR || ws->qh[0].qe_link_ptr != UHCI_LP_TERMINATE) {
#if 1
uintptr_t td_addr = ws->qh[0].qe_link_ptr & 0xfffffff0;
uhci_td_t *td = (uhci_td_t *)td_addr;
print_usb_info(" transfer failed TD %08x status %08x token %08x",
td_addr, (uintptr_t)td->control_status, (uintptr_t)td->token);
#endif
write32(&ws->qh[0].qe_link_ptr, UHCI_LP_TERMINATE);
status |= UHCI_USBSTS_ERR;
}
outw(UHCI_USBSTS_INT | UHCI_USBSTS_ERR, UHCI_USBSTS);
}
return status;
}
static bool wait_for_uhci_done(workspace_t *ws)
{
// Rely on the controller to timeout if the device doesn't respond.
uint16_t status = 0;
while (true) {
status = get_uhci_done(ws);
if (status != 0) break;
usleep(10);
}
return ~status & UHCI_USBSTS_ERR;
}
//------------------------------------------------------------------------------
// Driver Methods
//------------------------------------------------------------------------------
static bool reset_root_hub_port(const usb_hcd_t *hcd, int port_num)
{
const workspace_t *ws = (const workspace_t *)hcd->ws;
return reset_uhci_port(ws->io_base, port_num - 1);
}
static bool setup_request(const usb_hcd_t *hcd, const usb_ep_t *ep, const usb_setup_pkt_t *setup_pkt)
{
workspace_t *ws = (workspace_t *)hcd->ws;
write32(&ws->qh[0].qe_link_ptr, UHCI_LP_TERMINATE);
build_uhci_td(&ws->td[0], ep, UHCI_TD_PID_SETUP, UHCI_TD_DT(0), UHCI_TD_IOC_N, setup_pkt, sizeof(usb_setup_pkt_t));
build_uhci_td(&ws->td[1], ep, UHCI_TD_PID_IN, UHCI_TD_DT(1), UHCI_TD_IOC_Y, 0, 0);
write32(&ws->qh[0].qe_link_ptr, (uintptr_t)(&ws->td[0]) | UHCI_LP_TYPE_TD);
return wait_for_uhci_done(ws);
}
static bool get_data_request(const usb_hcd_t *hcd, const usb_ep_t *ep, const usb_setup_pkt_t *setup_pkt,
const void *buffer, size_t length)
{
workspace_t *ws = (workspace_t *)hcd->ws;
size_t packet_size = ep->max_packet_size;
if (length > (MAX_PACKETS * packet_size)) {
return false;
}
write32(&ws->qh[0].qe_link_ptr, UHCI_LP_TERMINATE);
int pkt_num = 0;
build_uhci_td(&ws->td[pkt_num], ep, UHCI_TD_PID_SETUP, UHCI_TD_DT(pkt_num & 1), UHCI_TD_IOC_N, setup_pkt, sizeof(usb_setup_pkt_t)); pkt_num++;
while (length > packet_size) {
build_uhci_td(&ws->td[pkt_num], ep, UHCI_TD_PID_IN, UHCI_TD_DT(pkt_num & 1), UHCI_TD_SPD, buffer, packet_size); pkt_num++;
buffer = (uint8_t *)buffer + packet_size;
length -= packet_size;
}
build_uhci_td(&ws->td[pkt_num], ep, UHCI_TD_PID_IN, UHCI_TD_DT(pkt_num & 1), UHCI_TD_IOC_N, buffer, length); pkt_num++;
build_uhci_td(&ws->td[pkt_num], ep, UHCI_TD_PID_OUT, UHCI_TD_DT(1), UHCI_TD_IOC_Y, 0, 0);
write32(&ws->qh[0].qe_link_ptr, (uintptr_t)(&ws->td[0]) | UHCI_LP_TYPE_TD);
return wait_for_uhci_done(ws);
}
static void poll_keyboards(const usb_hcd_t *hcd)
{
workspace_t *ws = (workspace_t *)hcd->ws;
uint16_t io_base = ws->io_base;
uint32_t status = inw(UHCI_USBSTS) & (UHCI_USBSTS_INT | UHCI_USBSTS_ERR);
if (status != 0) {
outw(UHCI_USBSTS_INT | UHCI_USBSTS_ERR, UHCI_USBSTS);
for (int kbd_idx = 0; kbd_idx < ws->num_keyboards; kbd_idx++) {
uhci_qh_t *kbd_qh = &ws->qh[1 + kbd_idx];
uhci_td_t *kbd_td = &ws->td[2 + kbd_idx];
status = kbd_td->control_status;
if (status & UHCI_TD_ACTIVE) continue;
hid_kbd_rpt_t *kbd_rpt = &ws->kbd_rpt[kbd_idx];
uint32_t error_mask = UHCI_TD_STALLED | UHCI_TD_DB_ERR | UHCI_TD_BABBLE | UHCI_TD_NAK_RX | UHCI_TD_CRC_TO | UHCI_TD_BS_ERR;
if (~status & error_mask) {
hid_kbd_rpt_t *prev_kbd_rpt = &ws->prev_kbd_rpt[kbd_idx];
if (process_usb_keyboard_report(hcd, kbd_rpt, prev_kbd_rpt)) {
*prev_kbd_rpt = *kbd_rpt;
}
write32(&kbd_td->token, read32(&kbd_td->token) ^ UHCI_TD_DT(1));
}
// Reenable the TD.
write32(&kbd_td->control_status, kbd_td->driver_data[0]);
write32(&kbd_qh->qe_link_ptr, (uintptr_t)kbd_td | UHCI_LP_TYPE_TD);
}
}
}
//------------------------------------------------------------------------------
// Driver Method Table
//------------------------------------------------------------------------------
static const hcd_methods_t methods = {
.reset_root_hub_port = reset_root_hub_port,
.allocate_slot = NULL,
.release_slot = NULL,
.assign_address = assign_usb_address, // use default method
.configure_hub_ep = NULL,
.configure_kbd_ep = NULL,
.setup_request = setup_request,
.get_data_request = get_data_request,
.poll_keyboards = poll_keyboards
};
//------------------------------------------------------------------------------
// Public Functions
//------------------------------------------------------------------------------
bool uhci_reset(int bus, int dev, int func, uint16_t io_base)
{
// Disable PCI and SMM interrupts.
pci_config_write16(bus, dev, func, UHCI_LEGSUP, UHCI_LEGSUP_CLEAR);
// Ensure the controller is halted and then reset it.
if (!halt_host_controller(io_base)) return false;
if (!reset_host_controller(io_base)) return false;
return true;
}
bool uhci_probe(uint16_t io_base, usb_hcd_t *hcd)
{
// Record the heap state to allow us to free memory.
uintptr_t initial_heap_mark = heap_mark(HEAP_TYPE_LM_1);
// Allocate the frame list. This needs to be aligned on a 4K page boundary.
uintptr_t fl_addr = heap_alloc(HEAP_TYPE_LM_1, UHCI_FL_LENGTH * sizeof(uint32_t), PAGE_SIZE);
if (fl_addr == 0) {
goto no_keyboards_found;
}
uint32_t *fl = (uint32_t *)fl_addr;
// Allocate and initialise a workspace for this controller. This needs to be permanently mapped into virtual memory.
uintptr_t workspace_addr = heap_alloc(HEAP_TYPE_LM_1, sizeof(workspace_t), PAGE_SIZE);
if (workspace_addr == 0) {
goto no_keyboards_found;
}
workspace_t *ws = (workspace_t *)workspace_addr;
memset(ws, 0, sizeof(workspace_t));
ws->io_base = io_base;
// Initialise the asynchronous queue head.
ws->qh[0].qh_link_ptr = UHCI_LP_TERMINATE;
ws->qh[0].qe_link_ptr = UHCI_LP_TERMINATE;
// Initialise the frame list to execute the asynchronous queue.
for (int i = 0; i < UHCI_FL_LENGTH; i++) {
fl[i] = (uintptr_t)(&ws->qh[0]) | UHCI_LP_TYPE_QH;
}
// Initialise the driver object for this controller.
hcd->methods = &methods;
hcd->ws = &ws->base_ws;
// Initialise the host controller.
outw(UHCI_USBINTR_NONE, UHCI_USBINTR);
outw(0, UHCI_FRNUM);
outl(fl_addr, UHCI_FLBASE);
outb(UHCI_SOF_DEFAULT, UHCI_SOF);
if (!start_host_controller(io_base)) {
goto no_keyboards_found;
}
// Construct a hub descriptor for the root hub.
usb_hub_t root_hub;
memset(&root_hub, 0, sizeof(root_hub));
root_hub.ep0 = NULL;
root_hub.num_ports = MAX_UHCI_PORTS;
usleep(100*MILLISEC); // USB maximum device attach time
// Scan the ports, looking for hubs and keyboards.
usb_ep_t keyboards[MAX_KEYBOARDS];
int num_keyboards = 0;
int num_devices = 0;
for (int port_idx = 0; port_idx < root_hub.num_ports; port_idx++) {
// If we've filled the keyboard info table, abort now.
if (num_keyboards >= MAX_KEYBOARDS) break;
// Check if we've passed the last port.
uint16_t port_status = inw(UHCI_PORT_SC(port_idx));
if ((~port_status & UHCI_PORT_SC_VALID) || port_status == 0xffff) {
root_hub.num_ports = port_idx;
break;
}
// Check if anything is connected to this port.
if (~port_status & UHCI_PORT_SC_CCS) continue;
// Reset the port.
if (!reset_uhci_port(io_base, port_idx)) continue;
usleep(10*MILLISEC); // USB reset recovery time
// Enable the port.
if (!enable_uhci_port(io_base, port_idx)) continue;
port_status = inw(UHCI_PORT_SC(port_idx));
// Check the port is active.
if (~port_status & UHCI_PORT_SC_PED) continue;
num_devices++;
// Get the port speed.
usb_speed_t port_speed = port_status & UHCI_PORT_SC_LSDA ? USB_SPEED_LOW : USB_SPEED_FULL;
// Look for keyboards attached directly or indirectly to this port.
if (find_attached_usb_keyboards(hcd, &root_hub, 1 + port_idx, port_speed, num_devices,
&num_devices, keyboards, MAX_KEYBOARDS, &num_keyboards)) {
continue;
}
// If we didn't find any keyboard interfaces, we can disable the port.
disable_uhci_port(io_base, port_idx);
}
print_usb_info(" Found %i device%s, %i keyboard%s",
num_devices, num_devices != 1 ? "s" : "",
num_keyboards, num_keyboards != 1 ? "s" : "");
if (num_keyboards == 0) {
(void)halt_host_controller(io_base);
goto no_keyboards_found;
}
ws->num_keyboards = num_keyboards;
// Initialise the interrupt QH and TD for each keyboard interface and find the minimum interval.
int min_interval = UHCI_FL_LENGTH;
uint32_t first_qh_ptr = UHCI_LP_TERMINATE;
for (int kbd_idx = 0; kbd_idx < num_keyboards; kbd_idx++) {
usb_ep_t *kbd = &keyboards[kbd_idx];
uhci_qh_t *kbd_qh = &ws->qh[1 + kbd_idx];
uhci_td_t *kbd_td = &ws->td[2 + kbd_idx];
hid_kbd_rpt_t *kbd_rpt = &ws->kbd_rpt[kbd_idx];
build_uhci_td(kbd_td, kbd, UHCI_TD_PID_IN, UHCI_TD_DT(0), UHCI_TD_IOC_Y, kbd_rpt, sizeof(hid_kbd_rpt_t));
kbd_td->driver_data[0] = kbd_td->control_status;
kbd_qh->qe_link_ptr = (uintptr_t)kbd_td | UHCI_LP_TYPE_TD;
kbd_qh->qh_link_ptr = first_qh_ptr;
first_qh_ptr = (uintptr_t)kbd_qh | UHCI_LP_TYPE_QH;
if (kbd->interval < min_interval) {
min_interval = kbd->interval;
}
}
// Re-initialise the frame list to execute the periodic schedule.
for (int i = 0; i < UHCI_FL_LENGTH; i++) {
write32(&fl[i], UHCI_LP_TERMINATE);
}
for (int i = 0; i < UHCI_FL_LENGTH; i += min_interval) {
write32(&fl[i], first_qh_ptr);
}
return true;
no_keyboards_found:
heap_rewind(HEAP_TYPE_LM_1, initial_heap_mark);
return false;
}