memtest86plus/tests/block_move.c

236 lines
8.7 KiB
C
Raw Normal View History

2020-05-24 15:30:55 -05:00
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2020-2022 Martin Whitaker.
2020-05-24 15:30:55 -05:00
//
// Derived from an extract of memtest86+ test.c:
//
// MemTest86+ V5 Specific code (GPL V2.0)
// By Samuel DEMEULEMEESTER, sdemeule@memtest.org
// http://www.canardpc.com - http://www.memtest.org
// Thanks to Passmark for calculate_chunk() and various comments !
// ----------------------------------------------------
// test.c - MemTest-86 Version 3.4
//
// Released under version 2 of the Gnu Public License.
// By Chris Brady
#include <stdbool.h>
#include <stdint.h>
#include "display.h"
#include "error.h"
#include "test.h"
#include "test_funcs.h"
#include "test_helper.h"
//------------------------------------------------------------------------------
// Public Functions
//------------------------------------------------------------------------------
int test_block_move(int my_cpu, int iterations)
2020-05-24 15:30:55 -05:00
{
int ticks = 0;
if (my_cpu == master_cpu) {
2020-05-24 15:30:55 -05:00
display_test_pattern_name("block move");
}
// Initialize memory with the initial pattern.
for (int i = 0; i < vm_map_size; i++) {
testword_t *start, *end;
calculate_chunk(&start, &end, my_cpu, i, 16 * sizeof(testword_t));
2020-05-24 15:30:55 -05:00
testword_t *p = start;
testword_t *pe = start;
bool at_end = false;
do {
// take care to avoid pointer overflow
if ((end - pe) >= SPIN_SIZE) {
pe += SPIN_SIZE - 1;
} else {
at_end = true;
pe = end;
}
ticks++;
if (my_cpu < 0) {
2020-05-24 15:30:55 -05:00
continue;
}
test_addr[my_cpu] = (uintptr_t)p;
2020-05-24 15:30:55 -05:00
testword_t pattern1 = 1;
do {
testword_t pattern2 = ~pattern1;
write_word(p + 0, pattern1);
write_word(p + 1, pattern1);
write_word(p + 2, pattern1);
write_word(p + 3, pattern1);
write_word(p + 4, pattern2);
write_word(p + 5, pattern2);
write_word(p + 6, pattern1);
write_word(p + 7, pattern1);
write_word(p + 8, pattern1);
write_word(p + 9, pattern1);
write_word(p + 10, pattern2);
write_word(p + 11, pattern2);
write_word(p + 12, pattern1);
write_word(p + 13, pattern1);
write_word(p + 14, pattern2);
write_word(p + 15, pattern2);
2020-05-24 15:30:55 -05:00
pattern1 = pattern1 << 1 | pattern1 >> (TESTWORD_WIDTH - 1); // rotate left
} while (p <= (pe - 16) && (p += 16)); // test before increment in case pointer overflows
do_tick(my_cpu);
2020-05-24 15:30:55 -05:00
BAILOUT;
} while (!at_end && ++pe); // advance pe to next start point
}
flush_caches(my_cpu);
2020-05-24 15:30:55 -05:00
// Now move the data around. First move the data up half of the segment size
// we are testing. Then move the data to the original location + 32 bytes.
for (int i = 0; i < vm_map_size; i++) {
testword_t *start, *end;
calculate_chunk(&start, &end, my_cpu, i, 16 * sizeof(testword_t));
2020-05-24 15:30:55 -05:00
testword_t *p = start;
testword_t *pe = start;
bool at_end = false;
do {
// take care to avoid pointer overflow
if ((end - pe) >= SPIN_SIZE) {
pe += SPIN_SIZE - 1;
} else {
at_end = true;
pe = end;
}
size_t half_length = (pe - p + 1) / 2;
testword_t *pm = p + half_length;
for (int j = 0; j < iterations; j++) {
ticks++;
if (my_cpu < 0) {
2020-05-24 15:30:55 -05:00
continue;
}
test_addr[my_cpu] = (uintptr_t)p;
2020-05-24 15:30:55 -05:00
#ifdef __x86_64__
__asm__ __volatile__ (
"cld\n"
"jmp L110\n\t"
".p2align 4,,7\n\t"
"L110:\n\t"
// At the end of all this
// - the second half equals the initial value of the first half
// - the first half is right shifted 64-bytes (with wrapping)
// Move first half to second half
"movq %1,%%rdi\n\t" // Destination, pm (mid point)
"movq %0,%%rsi\n\t" // Source, p (start point)
"movq %2,%%rcx\n\t" // Length, half_length (size of a half in DWORDS)
"rep\n\t"
"movsq\n\t"
// Move the second half, less the last 64 bytes, to the first half, offset plus 64 bytes
"movq %0,%%rdi\n\t"
"addq $64,%%rdi\n\t" // Destination, p (start-point) plus 32 bytes
"movq %1,%%rsi\n\t" // Source, pm (mid-point)
"movq %2,%%rcx\n\t"
"subq $8,%%rcx\n\t" // Length, half_length (size of a half in QWORDS) minus 8 QWORDS (64 bytes)
"rep\n\t"
"movsq\n\t"
// Move last 8 QWORDS (64 bytes) of the second half to the start of the first half
"movq %0,%%rdi\n\t" // Destination, p(start-point)
// Source, 8 QWORDS from the end of the second half, left over by the last rep/movsl
"movq $8,%%rcx\n\t" // Length, 8 QWORDS (64 bytes)
"rep\n\t"
"movsq\n\t"
:: "g" (p), "g" (pm), "g" (half_length)
: "rdi", "rsi", "rcx"
);
#else
__asm__ __volatile__ (
"cld\n"
"jmp L110\n\t"
".p2align 4,,7\n\t"
"L110:\n\t"
// At the end of all this
// - the second half equals the initial value of the first half
// - the first half is right shifted 32 bytes (with wrapping)
// Move first half to second half
"movl %1,%%edi\n\t" // Destination, pm (mid point)
"movl %0,%%esi\n\t" // Source, p (start point)
"movl %2,%%ecx\n\t" // Length, half_length (size of a half in DWORDS)
"rep\n\t"
"movsl\n\t"
// Move the second half, less the last 32 bytes, to the first half, offset plus 32 bytes
"movl %0,%%edi\n\t"
"addl $32,%%edi\n\t" // Destination, p (start-point) plus 32 bytes
"movl %1,%%esi\n\t" // Source, pm (mid-point)
"movl %2,%%ecx\n\t"
"subl $8,%%ecx\n\t" // Length, half_length (size of a half in DWORDS) minus 8 DWORDS (32 bytes)
"rep\n\t"
"movsl\n\t"
// Move last 8 DWORDS (32 bytes) of the second half to the start of the first half
"movl %0,%%edi\n\t" // Destination, p(start-point)
// Source, 8 DWORDS from the end of the second half, left over by the last rep/movsl
"movl $8,%%ecx\n\t" // Length, 8 DWORDS (32 bytes)
"rep\n\t"
"movsl\n\t"
:: "g" (p), "g" (pm), "g" (half_length)
: "edi", "esi", "ecx"
);
#endif
do_tick(my_cpu);
2020-05-24 15:30:55 -05:00
BAILOUT;
}
} while (!at_end && ++pe); // advance pe to next start point
}
flush_caches(my_cpu);
2020-05-24 15:30:55 -05:00
// Now check the data. The error checking is rather crude. We just check that the
// adjacent words are the same.
for (int i = 0; i < vm_map_size; i++) {
testword_t *start, *end;
calculate_chunk(&start, &end, my_cpu, i, 16 * sizeof(testword_t));
2020-05-24 15:30:55 -05:00
testword_t *p = start;
testword_t *pe = start;
bool at_end = false;
do {
// take care to avoid pointer overflow
if ((end - pe) >= SPIN_SIZE) {
pe += SPIN_SIZE - 1;
} else {
at_end = true;
pe = end;
}
ticks++;
if (my_cpu < 0) {
2020-05-24 15:30:55 -05:00
continue;
}
test_addr[my_cpu] = (uintptr_t)p;
2020-05-24 15:30:55 -05:00
do {
testword_t p0 = read_word(p + 0);
testword_t p1 = read_word(p + 1);
if (unlikely(p0 != p1)) {
data_error(p, p0, p1, false);
2020-05-24 15:30:55 -05:00
}
} while (p <= (pe - 2) && (p += 2)); // test before increment in case pointer overflows
do_tick(my_cpu);
2020-05-24 15:30:55 -05:00
BAILOUT;
} while (!at_end && ++pe); // advance pe to next start point
}
return ticks;
}