// SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2020-2022 Martin Whitaker. // // Derived from an extract of memtest86+ test.c: // // MemTest86+ V5 Specific code (GPL V2.0) // By Samuel DEMEULEMEESTER, sdemeule@memtest.org // http://www.canardpc.com - http://www.memtest.org // Thanks to Passmark for calculate_chunk() and various comments ! // ---------------------------------------------------- // test.c - MemTest-86 Version 3.4 // // Released under version 2 of the Gnu Public License. // By Chris Brady #include #include #include "unistd.h" #include "display.h" #include "error.h" #include "test.h" #include "test_funcs.h" #include "test_helper.h" //------------------------------------------------------------------------------ // Private Functions //------------------------------------------------------------------------------ static int pattern_fill(int my_cpu, testword_t pattern) { int ticks = 0; if (my_cpu == master_cpu) { display_test_pattern_value(pattern); } for (int i = 0; i < vm_map_size; i++) { testword_t *start = vm_map[i].start; testword_t *end = vm_map[i].end; testword_t *p = start; testword_t *pe = start; bool at_end = false; do { // take care to avoid pointer overflow if ((end - pe) >= SPIN_SIZE) { pe += SPIN_SIZE - 1; } else { at_end = true; pe = end; } ticks++; if (my_cpu < 0) { continue; } test_addr[my_cpu] = (uintptr_t)p; do { write_word(p, pattern); } while (p++ < pe); // test before increment in case pointer overflows do_tick(my_cpu); BAILOUT; } while (!at_end && ++pe); // advance pe to next start point } flush_caches(my_cpu); return ticks; } static int pattern_check(int my_cpu, testword_t pattern) { int ticks = 0; for (int i = 0; i < vm_map_size; i++) { testword_t *start = vm_map[i].start; testword_t *end = vm_map[i].end; testword_t *p = start; testword_t *pe = start; bool at_end = false; do { // take care to avoid pointer overflow if ((end - pe) >= SPIN_SIZE) { pe += SPIN_SIZE - 1; } else { at_end = true; pe = end; } ticks++; if (my_cpu < 0) { continue; } test_addr[my_cpu] = (uintptr_t)p; do { testword_t actual = read_word(p); if (unlikely(actual != pattern)) { data_error(p, pattern, actual, true); } } while (p++ < pe); // test before increment in case pointer overflows do_tick(my_cpu); BAILOUT; } while (!at_end && ++pe); // advance pe to next start point } return ticks; } static int fade_delay(int my_cpu, int sleep_secs) { int ticks = 0; if (my_cpu == master_cpu) { display_test_stage_description("fade over %i seconds", sleep_secs); } while (sleep_secs > 0) { sleep_secs--; ticks++; if (my_cpu < 0) { continue; } sleep(1); do_tick(my_cpu); BAILOUT; } return ticks; } //------------------------------------------------------------------------------ // Public Functions //------------------------------------------------------------------------------ int test_bit_fade(int my_cpu, int stage, int sleep_secs) { const testword_t all_zero = 0; const testword_t all_ones = ~all_zero; static int last_stage = -1; int ticks = 0; switch (stage) { case 0: ticks = pattern_fill(my_cpu, all_zero); break; case 1: // Only sleep once. if (stage != last_stage) { ticks = fade_delay(my_cpu, sleep_secs); } break; case 2: ticks = pattern_check(my_cpu, all_zero); break; case 3: ticks = pattern_fill(my_cpu, all_ones); break; case 4: // Only sleep once. if (stage != last_stage) { ticks = fade_delay(my_cpu, sleep_secs); } break; case 5: ticks = pattern_check(my_cpu, all_ones); break; default: break; } last_stage = stage; return ticks; }