memtest86plus/boot/startup32.S
Martin Whitaker d088740757 Fix the bss section size in 32-bit builds.
The AP stacks section was being discarded by the linker because the
change in section name and attributes hadn't been propagated from
the startup64.S to startup32.S.
2023-02-02 14:01:13 +01:00

821 lines
16 KiB
ArmAsm

// SPDX-License-Identifier: GPL-2.0
//
// startup32.S contains the 32-bit startup code for both the BSP and APs.
// It initialises stacks, memory management, and exception handling, clears
// the BSS, completes relocation, and finally calls the main application.
// It supports the 32-bit Linux boot protocol and EFI boot for the first
// boot of the BSP.
//
// Copyright (C) 2020-2022 Martin Whitaker.
//
// Derived from memtest86+ head.S:
//
// linux/boot/head.S
// Copyright (C) 1991, 1992 Linus Torvalds
// 1-Jan-96 Modified by Chris Brady for use as a boot/loader for MemTest-86.
// Set up the memory management for flat non-paged linear addressing.
// 17 May 2004 : Added X86_PWRCAP for AMD64 (Memtest86+ - Samuel D.)
#define __ASSEMBLY__
#include "boot.h"
#define INT64_CS 0x08
#define NUM_INT_VEC 20
.text
.code32
# The Linux 32-bit boot entry point.
.globl startup32
startup32:
cld
cli
# Jump to the shared 32-bit entry point with the boot params pointer
# in %esi and the startup address in %edi.
movl 0x214(%esi), %ebx # bootparams.code32_start
leal (startup - startup32)(%ebx), %edi
jmp startup
# The Linux 32-bit EFI handover point.
.org 0x10
.globl efi_handover
efi_handover:
popl %eax # the return address (discard)
popl %ecx # the EFI image handle
popl %edx # the EFI system table pointer
popl %esi # the boot params pointer
# Load the GOT pointer.
call 0f
0: popl %ebx
addl $_GLOBAL_OFFSET_TABLE_+[.-0b], %ebx
# Fill out the boot params structure.
subl $12, %esp # align the stack
andl $~0xf, %esp
addl $12, %esp
pushl %esi # the boot params pointer
pushl %edx # the EFI system table pointer
pushl %ecx # the EFI image handle
call efi_setup
# Fall through to the shared 32-bit entry point with the boot params
# pointer in %esi and the startup address in %edi.
movl %eax, %esi
movl 0x214(%esi), %ebx # bootparams.code32_start
leal (startup - startup32)(%ebx), %edi
# The 32-bit entry point for AP boot and for restart after relocation.
.globl startup
startup:
# Some of the startup actions are not thread safe. Use a mutex
# to protect this section of code.
leal (startup_mutex - startup)(%edi), %eax
0: lock btsl $0, (%eax)
jc 0b
# Use the startup stack until we pick the correct one.
leal (startup_stack_top - startup)(%edi), %esp
# Load the GOT pointer.
call 0f
0: popl %ebx
addl $_GLOBAL_OFFSET_TABLE_+[.-0b], %ebx
# If first boot, save the boot params pointer...
cmpl $1, first_boot@GOTOFF(%ebx)
jne 1f
movl %esi, boot_params_addr@GOTOFF(%ebx)
# ...and check if the processor supports long mode.
movl $0x80000000, %eax # check if function 0x80000001 is available
pushl %ebx # ebx is overwritten by cpuid
cpuid
popl %ebx # restore ebx
cmpl $0x80000001, %eax
jb 1f
movl $0x80000001, %eax # test the LM flag
pushl %ebx # ebx is overwritten by cpuid
cpuid
popl %ebx # restore ebx
andl $0x20000000, %edx
jz 1f
movl $1, use_long_mode@GOTOFF(%ebx)
1:
# Pick the correct stack.
call smp_my_cpu_num
movl $AP_STACK_SIZE, %edx
mul %edx
addl $(BSP_STACK_SIZE - LOCALS_SIZE), %eax
leal _stacks@GOTOFF(%ebx), %esp
addl %eax, %esp
# Initialise the GDT descriptor.
leal gdt@GOTOFF(%ebx), %eax
movl %eax, 2 + gdt_descr@GOTOFF(%ebx)
# Load the GDT and the segment registers.
lgdt gdt_descr@GOTOFF(%ebx)
leal flush@GOTOFF(%ebx), %eax
movw $KERNEL_CS, -2(%esp)
movl %eax, -6(%esp)
ljmp *-6(%esp)
flush: movw $KERNEL_DS, %ax
movw %ax, %ds
movw %ax, %es
movw %ax, %fs
movw %ax, %gs
movw %ax, %ss
# Initialise the IDT. If we are going to operate in long mode, we need
# a 64-bit IDT, otherwise we need a 32-bit IDT.
leal idt@GOTOFF(%ebx), %edi
cmpl $1, use_long_mode@GOTOFF(%ebx)
je init_idt64
jmp init_idt32
# Initialise the IDT descriptor.
init_idt_descr:
movw %ax, idt_descr@GOTOFF(%ebx)
leal idt@GOTOFF(%ebx), %eax
movl %eax, 2 + idt_descr@GOTOFF(%ebx)
# Load the IDT.
lidt idt_descr@GOTOFF(%ebx)
# Zero the BSS (if first boot).
cmpl $1, first_boot@GOTOFF(%ebx)
jne 1f
xorl %eax, %eax
leal _bss@GOTOFF(%ebx), %edi
leal _end@GOTOFF(%ebx), %ecx
subl %edi, %ecx
0: movl %eax, (%edi)
addl $4, %edi
subl $4, %ecx
jnz 0b
movl $0, first_boot@GOTOFF(%ebx)
1:
# Initialise the FPU.
finit
# Call the dynamic linker to fix up the addresses in the GOT.
call reloc
# Disable paging (needed during restart). Also disable write protect
# (in case set by EFI boot).
movl %cr0, %eax
andl $0x7ffeffff, %eax
movl %eax, %cr0
# Enable PAE if supported.
pushl %ebx # ebx is overwritten by cpuid
movl $0x00000001, %eax # test the PAE flag
cpuid
andl $0x00000040, %edx
popl %ebx # restore ebx
jz 1f # bail if not supported
movl %cr4, %eax # enable PAE
orl $0x00000020, %eax
movl %eax, %cr4
leal pdp@GOTOFF(%ebx), %eax # set the page directory base address
movl %eax, %cr3
# Enable long mode if supported.
cmpl $1, use_long_mode@GOTOFF(%ebx)
jne 0f
movl $0xc0000080, %ecx # enable long mode
rdmsr
orl $0x00000100, %eax
wrmsr
leal pml4@GOTOFF(%ebx), %eax # set the page directory base address
movl %eax, %cr3
# Enable paging and protection.
0: movl %cr0, %eax
orl $0x80000001, %eax
movl %eax, %cr0
1:
# Release the startup mutex.
movl $0, startup_mutex@GOTOFF(%ebx)
# Run the application.
call main
# In case we return, simulate an exception.
pushfl
pushl %cs
call 0f
0: pushl $0 # error code
pushl $257 # vector
jmp int_handler32
# The EFI PE32 boot entry point.
.org 0x1e0
.globl efi_boot
efi_boot:
popl %eax # the return address (discard)
popl %ecx # the EFI image handle
popl %edx # the EFI system table pointer
pushl $0 # the boot params pointer (0 = not yet allocated)
pushl %edx # the EFI system table pointer
pushl %ecx # the EFI image handle
call efi_handover # never returns
# Initialise the 64-bit IDT.
init_idt64:
leal vec64_0@GOTOFF(%ebx), %esi
movw $NUM_INT_VEC, %cx
0: movl %esi, %edx
movl $(INT64_CS << 16), %eax
movw %dx, %ax # selector = 0x0008 = long mode cs
movw $0x8E00, %dx # interrupt gate - dpl=0, present
movl %eax, (%edi)
movl %edx, 4(%edi)
addl $(vec64_1-vec64_0), %esi
addl $16, %edi
dec %cx
jnz 0b
movw $(NUM_INT_VEC*16 - 1), %ax
jmp init_idt_descr
# Initialise the 32-bit IDT.
init_idt32:
leal vec32_0@GOTOFF(%ebx), %esi
movw $NUM_INT_VEC, %cx
0: movl %esi, %edx
movl $(KERNEL_CS << 16), %eax
movw %dx, %ax # selector = 0x0010 = cs
movw $0x8E00, %dx # interrupt gate - dpl=0, present
movl %eax, (%edi)
movl %edx, 4(%edi)
addl $(vec32_1-vec32_0), %esi
addl $8, %edi
dec %cx
jnz 0b
movw $(NUM_INT_VEC*8 - 1), %ax
jmp init_idt_descr
# Individual interrupt vector handlers for long mode. These need to be
# spaced equally, to allow the IDT initialisation loop above to work,
# so we use noops to pad out where required.
.code64
vec64_0:
pushq $0 # error code
pushq $0 # vector
jmp int_handler64
vec64_1:
pushq $0 # error code
pushq $1 # vector
jmp int_handler64
vec64_2:
pushq $0 # error code
pushq $2 # vector
jmp int_handler64
vec64_3:
pushq $0 # error code
pushq $3 # vector
jmp int_handler64
vec64_4:
pushq $0 # error code
pushq $4 # vector
jmp int_handler64
vec64_5:
pushq $0 # error code
pushq $5 # vector
jmp int_handler64
vec64_6:
pushq $0 # error code
pushq $6 # vector
jmp int_handler64
vec64_7:
pushq $0 # error code
pushq $7 # vector
jmp int_handler64
vec64_8:
nop;nop # error code already provided
pushq $8 # vector
jmp int_handler64
vec64_9:
pushq $0 # error code
pushq $9 # vector
jmp int_handler64
vec64_10:
nop;nop # error code already provided
pushq $10 # vector
jmp int_handler64
vec64_11:
nop;nop # error code already provided
pushq $11 # vector
jmp int_handler64
vec64_12:
nop;nop # error code already provided
pushq $12 # vector
jmp int_handler64
vec64_13:
nop;nop # error code already provided
pushq $13 # vector
jmp int_handler64
vec64_14:
nop;nop # error code already provided
pushq $14 # vector
jmp int_handler64
vec64_15:
pushq $0 # error code
pushq $15 # vector
jmp int_handler64
vec64_16:
pushq $0 # error code
pushq $16 # vector
jmp int_handler64
vec64_17:
nop;nop # error code
pushq $17 # vector
jmp int_handler64
vec64_18:
pushq $0 # error code
pushq $18 # vector
jmp int_handler64
vec64_19:
pushq $0 # error code
pushq $19 # vector
jmp int_handler64
# The interrupt handler code for long mode. Pass the register state to the
# common interrupt handler. On entry this expects the stack to contain:
#
# rsp+30 ss
# rsp+28 rsp
# rsp+20 rflags
# rsp+18 cs
# rsp+10 rip
# rsp+08 error code
# rsp+00 vector number
#
# We create a new stack frame in the format expected by int_handler. We can
# reuse the space currently occupied by the vector number and the error code,
# as they are not needed on return.
int_handler64:
subq $16, %rsp
movl %ebp, 0x04(%rsp) # save the state of ebp
leal 0x48(%rsp), %ebp # save the state of esp before the interrupt
movl %ebp, 0x00(%rsp)
movl 0x10(%rsp), %ebp # save the vector number
movl %ebp, 0x08(%rsp)
movl 0x18(%rsp), %ebp # save the error code
movl %ebp, 0x0c(%rsp)
movl 0x20(%rsp), %ebp # save the state of eip
movl %ebp, 0x10(%rsp)
movl 0x28(%rsp), %ebp # save the state of cs
movl %ebp, 0x14(%rsp)
movl 0x30(%rsp), %ebp # save the state of eflags
movl %ebp, 0x18(%rsp)
leal int_handler(%rip), %ebp
movw $KERNEL_CS, -2(%rsp)
movl %ebp, -6(%rsp)
lcall *-6(%rsp)
movl 0x04(%rsp), %ebp # restore the saved state of ebp
addq $32, %rsp # discard the stack frame we created
iretq
# Individual interrupt vector handlers for protected mode. These need to be
# spaced equally, to allow the IDT initialisation loop above to work, so we
# use noops to pad out where required.
.code32
vec32_0:
pushl $0 # error code
pushl $0 # vector
jmp int_handler32
vec32_1:
pushl $0 # error code
pushl $1 # vector
jmp int_handler32
vec32_2:
pushl $0 # error code
pushl $2 # vector
jmp int_handler32
vec32_3:
pushl $0 # error code
pushl $3 # vector
jmp int_handler32
vec32_4:
pushl $0 # error code
pushl $4 # vector
jmp int_handler32
vec32_5:
pushl $0 # error code
pushl $5 # vector
jmp int_handler32
vec32_6:
pushl $0 # error code
pushl $6 # vector
jmp int_handler32
vec32_7:
pushl $0 # error code
pushl $7 # vector
jmp int_handler32
vec32_8:
nop;nop # error code already provided
pushl $8 # vector
jmp int_handler32
vec32_9:
pushl $0 # error code
pushl $9 # vector
jmp int_handler32
vec32_10:
nop;nop # error code already provided
pushl $10 # vector
jmp int_handler32
vec32_11:
nop;nop # error code already provided
pushl $11 # vector
jmp int_handler32
vec32_12:
nop;nop # error code already provided
pushl $12 # vector
jmp int_handler32
vec32_13:
nop;nop # error code already provided
pushl $13 # vector
jmp int_handler32
vec32_14:
nop;nop # error code already provided
pushl $14 # vector
jmp int_handler32
vec32_15:
pushl $0 # error code
pushl $15 # vector
jmp int_handler32
vec32_16:
pushl $0 # error code
pushl $16 # vector
jmp int_handler32
vec32_17:
nop;nop # error code
pushl $17 # vector
jmp int_handler32
vec32_18:
pushl $0 # error code
pushl $18 # vector
jmp int_handler32
vec32_19:
pushl $0 # error code
pushl $19 # vector
jmp int_handler32
# The interrupt handler code for protected mode. Pass the register state to
# the common interrupt handler. On entry this expects the stack to contain:
#
# esp+10 eflags
# esp+0c cs
# esp+08 eip
# esp+04 error code
# esp+00 vector number
#
# It adds the additional state expected by int_handler to the bottom of the
# stack frame.
int_handler32:
pushl %ebp # save the state of ebp
leal 24(%esp), %ebp # save the state of esp before the interrupt
pushl %ebp
leal int_handler@GOTOFF(%ebx), %ebp
movw $KERNEL_CS, -2(%esp)
movl %ebp, -6(%esp)
lcall *-6(%esp)
popl %ebp # discard the saved state of esp
popl %ebp # restore the saved state of ebp
addl $8, %esp # discard the vector number and error code
iret
# The common interrupt handler code. Pass the register state to the application
# interrupt handler. On entry this expects the stack to contain:
#
# esp+18 eflags
# esp+14 cs
# esp+10 eip
# esp+0c error code
# esp+08 vector number
# esp+04 ebp
# esp+00 esp
#
# It adds the additional state expected by the application to the bottom of the
# stack frame.
int_handler:
pushl %esi
pushl %edi
pushl %edx
pushl %ecx
pushl %ebx
pushl %eax
pushl %ss
pushl %es
pushl %ds
pushl %esp # pointer to trap regs struct on the stack
cld
call interrupt
addl $16, %esp
popl %eax
popl %ebx
popl %ecx
popl %edx
popl %edi
popl %esi
lret
# The interrupt descriptor table, used for both long mode and protected mode.
.align 4
.word 0 # for alignment
.globl idt_descr
idt_descr:
.word 0 # size: filled in at run time
.quad 0 # addr: filled in at run time
.align 8
.globl idt
idt:
.fill 2*NUM_INT_VEC, 8, 0 # filled in at run time
idt_end:
# The global descriptor table.
.align 4
.word 0 # for alignment
gdt_descr:
.word gdt_end - gdt - 1 # size
.long 0 # addr: filled in at run time
.align 4
.globl gdt
gdt:
.quad 0x0000000000000000 # NULL descriptor
.quad 0x00209a0000000000 # 0x08 64-bit code at 0x000000
.quad 0x00cf9a000000ffff # 0x10 main 4gb code at 0x000000
.quad 0x00cf92000000ffff # 0x18 main 4gb data at 0x000000
.globl gdt_end
gdt_end:
.data
.macro ptes64 start, count=64
.quad \start + 0x0000000 + 0x83
.quad \start + 0x0200000 + 0x83
.quad \start + 0x0400000 + 0x83
.quad \start + 0x0600000 + 0x83
.quad \start + 0x0800000 + 0x83
.quad \start + 0x0A00000 + 0x83
.quad \start + 0x0C00000 + 0x83
.quad \start + 0x0E00000 + 0x83
.if \count-1
ptes64 "(\start+0x01000000)",\count-1
.endif
.endm
.macro maxdepth depth=1
.if \depth-1
maxdepth \depth-1
.endif
.endm
maxdepth
# The long mode level 4 page map table.
.align 4096
.globl pml4
pml4:
.long pdp + 0x3 # relocated at run time
.long 0
# Page Directory Pointer Table:
# 4 Entries, pointing to the Page Directory Tables.
.align 4096
.globl pdp
pdp:
.long pd0 + 0x1 # relocated at run time
.long 0
.long pd1 + 0x1 # relocated at run time
.long 0
.long pd2 + 0x1 # relocated at run time
.long 0
.long pd3 + 0x1 # relocated at run time
.long 0
# Page Directory Tables:
# There are 4 tables. The first two map the first 2 GB of memory. The third
# is used with PAE to map the rest of memory in 1 GB segments. The fourth is
# reserved for mapping the video frame buffer. We use 2 MB pages so only the
# Page Directory Table is used (no page tables).
.align 4096
.globl pd0
pd0:
ptes64 0x0000000000000000
.align 4096
.globl pd1
pd1:
ptes64 0x0000000040000000
.align 4096
.globl pd2
pd2:
ptes64 0x0000000080000000
.align 4096
.globl pd3
pd3:
ptes64 0x00000000C0000000
.previous
# ap_trampoline is the entry point for CPUs other than the bootstrap
# CPU (BSP). It gets copied to a page in low memory, to enable the APs
# to boot when the main program has been loaded in high memory.
.code16
.align 4
.globl ap_trampoline
ap_trampoline:
movw %cs, %ax
movw %ax, %ds
# Load the startup address and use it to patch the jump address.
movl (ap_startup_addr - ap_trampoline), %edi
movl %edi, (ap_jump - ap_trampoline + 2)
# Patch and load the GDT descriptor. It should point to the main
# GDT descriptor, which has already been initialised by the BSP.
movl %edi, %eax
addl $(gdt - startup), %eax
movl %eax, (ap_gdt_descr - ap_trampoline + 2)
data32 lgdt ap_gdt_descr - ap_trampoline
# Switch to protected mode and reload the segment registers.
movl %cr0, %eax
orl $1, %eax
movl %eax, %cr0
jmp ap_flush
ap_flush:
movw $KERNEL_DS, %ax
movw %ax, %ds
movw %ax, %es
movw %ax, %fs
movw %ax, %gs
movw %ax, %ss
# Jump to the main entry point with the startup address in %edi.
ap_jump:
data32 ljmp $KERNEL_CS, $0
.align 4
.word 0 # for alignment
ap_gdt_descr:
.word gdt_end - gdt - 1 # gdt limit
.long 0 # gdt base - filled in at run time
.globl ap_startup_addr
ap_startup_addr:
.long 0 # filled in at run time
.globl ap_trampoline_end
ap_trampoline_end:
.previous
# Variables.
.data
.align 4
.globl boot_params_addr
boot_params_addr:
.long 0
startup_mutex:
.long 0
first_boot:
.long 1
use_long_mode:
.long 0
.previous
# Startup stack.
.bss
.align 16
startup_stack_base:
. = . + 64
startup_stack_top:
.previous
# Main stack area.
.section ".stacks", "aw", @nobits
.align 16
. = . + STACKS_SIZE
.previous