memtest86plus/app/display.c

620 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2020-2022 Martin Whitaker.
// Copyright (C) 2004-2023 Sam Demeulemeester.
#include <stdbool.h>
#include <stdint.h>
#include "cpuid.h"
#include "cpuinfo.h"
#include "hwctrl.h"
#include "io.h"
#include "keyboard.h"
#include "memctrl.h"
#include "serial.h"
#include "pmem.h"
#include "smbios.h"
#include "smbus.h"
#include "temperature.h"
#include "tsc.h"
#include "barrier.h"
#include "spinlock.h"
#include "config.h"
#include "error.h"
#include "build_version.h"
#include "tests.h"
#include "display.h"
//------------------------------------------------------------------------------
// Constants
//------------------------------------------------------------------------------
#define POP_STAT_R 12
#define POP_STAT_C 18
#define POP_STAT_W 44
#define POP_STAT_H 11
#define POP_STAT_LAST_R (POP_STAT_R + POP_STAT_H - 1)
#define POP_STAT_LAST_C (POP_STAT_C + POP_STAT_W - 1)
#define POP_STATUS_REGION POP_STAT_R, POP_STAT_C, POP_STAT_LAST_R, POP_STAT_LAST_C
#define SPINNER_PERIOD 100 // milliseconds
#define NUM_SPIN_STATES 4
static const char spin_state[NUM_SPIN_STATES] = { '|', '/', '-', '\\' };
static const char cpu_mode_str[3][4] = { "PAR", "SEQ", "RR " };
//------------------------------------------------------------------------------
// Private Variables
//------------------------------------------------------------------------------
static bool scroll_lock = false;
static bool scroll_wait = false;
static int spin_idx = 0; // current spinner position
static int pass_ticks = 0; // current value (ticks_per_pass is final value)
static int test_ticks = 0; // current value (ticks_per_test is final value)
static int pass_bar_length = 0; // currently displayed length
static int test_bar_length = 0; // currently displayed length
static uint64_t run_start_time = 0; // TSC time stamp
static uint64_t next_spin_time = 0; // TSC time stamp
static int prev_sec = -1; // previous second
static bool timed_update_done = false; // update cycle status
bool big_status_displayed = false;
static uint16_t popup_status_save_buffer[POP_STAT_W * POP_STAT_H];
//------------------------------------------------------------------------------
// Variables
//------------------------------------------------------------------------------
int scroll_message_row;
int max_cpu_temp = 0;
display_mode_t display_mode = DISPLAY_MODE_NA;
//------------------------------------------------------------------------------
// Public Functions
//------------------------------------------------------------------------------
void display_init(void)
{
cursor_off();
clear_screen();
/* The commented horizontal lines provide visual cue for where and how
* they will appear on the screen. They are drawn down below using
* Extended ASCII characters.
*/
set_foreground_colour(BLACK);
set_background_colour(WHITE);
clear_screen_region(0, 0, 0, 27);
prints(0, 0, " Memtest86+ v" MT_VERSION);
set_foreground_colour(RED);
printc(0, 15, '+');
set_foreground_colour(WHITE);
set_background_colour(BLUE);
prints(1, 0, "CLK/Temp: N/A | Pass %");
prints(2, 0, "L1 Cache: N/A | Test %");
prints(3, 0, "L2 Cache: N/A | Test #");
prints(4, 0, "L3 Cache: N/A | Testing:");
prints(5, 0, "Memory : N/A | Pattern:");
// prints(6, 0, "--------------------------------------------------------------------------------");
prints(7, 0, "CPU: SMP: N/A | Time: Status: Init.");
prints(8, 0, "Using: | Pass: Errors:");
// prints(9, 0, "--------------------------------------------------------------------------------");
if (ecc_status.ecc_enabled) {
prints(8, 57, "Err: ECC:");
}
for (int i = 0;i < 80; i++) {
print_char(6, i, 0xc4);
print_char(9, i, 0xc4);
}
for (int i = 0; i < 6; i++) {
print_char(i, 28, 0xb3);
}
for (int i = 7; i < 10; i++) {
print_char(i, 42, 0xb3);
}
print_char(6, 28, 0xc1);
print_char(6, 42, 0xc2);
print_char(9, 42, 0xc1);
set_foreground_colour(BLUE);
set_background_colour(WHITE);
clear_screen_region(ROW_FOOTER, 0, ROW_FOOTER, SCREEN_WIDTH - 1);
prints(ROW_FOOTER, 0, " <ESC> Exit <F1> Configuration <Space> Scroll Lock");
prints(ROW_FOOTER, 64, MT_VERSION "." GIT_HASH);
#if TESTWORD_WIDTH > 32
prints(ROW_FOOTER, 76, ".x64");
#else
prints(ROW_FOOTER, 76, ".x32");
#endif
set_foreground_colour(WHITE);
set_background_colour(BLUE);
if (cpu_model) {
display_cpu_model(cpu_model);
}
if (clks_per_msec) {
display_cpu_clk((int)(clks_per_msec / 1000));
}
#if TESTWORD_WIDTH < 64
if (cpuid_info.flags.lm) {
display_cpu_addr_mode(" [LM]");
} else if (cpuid_info.flags.pae) {
display_cpu_addr_mode("[PAE]");
}
#endif
if (l1_cache) {
display_l1_cache_size(l1_cache);
}
if (l2_cache) {
display_l2_cache_size(l2_cache);
}
if (l3_cache) {
display_l3_cache_size(l3_cache);
}
if (l1_cache_speed) {
display_l1_cache_speed(l1_cache_speed);
}
if (l2_cache_speed) {
display_l2_cache_speed(l2_cache_speed);
}
if (l3_cache_speed) {
display_l3_cache_speed(l3_cache_speed);
}
if (ram_speed) {
display_ram_speed(ram_speed);
}
if (num_pm_pages) {
// Round to nearest MB.
display_memory_size(1024 * ((num_pm_pages + 128) / 256));
}
scroll_message_row = ROW_SCROLL_T;
}
void display_cpu_topology(void)
{
extern int num_enabled_cpus;
int num_cpu_sockets = 1;
// Display Thread Count and Thread Dispatch Mode
if (smp_enabled) {
if (cpuid_info.topology.is_hybrid && cpuid_info.topology.ecore_count > 0 && exclude_ecores) {
display_threading(num_enabled_cpus - cpuid_info.topology.ecore_count, cpu_mode_str[cpu_mode]);
} else {
display_threading(num_enabled_cpus, cpu_mode_str[cpu_mode]);
}
} else {
display_threading_disabled();
}
// If topology failed, assume topology according to APIC
if (cpuid_info.topology.core_count <= 0) {
cpuid_info.topology.core_count = num_enabled_cpus;
cpuid_info.topology.thread_count = num_enabled_cpus;
if(cpuid_info.flags.htt && num_enabled_cpus >= 2 && num_enabled_cpus % 2 == 0) {
cpuid_info.topology.core_count /= 2;
}
}
// Compute number of sockets according to individual CPU core count
if (num_enabled_cpus > cpuid_info.topology.thread_count &&
num_enabled_cpus % cpuid_info.topology.thread_count == 0) {
num_cpu_sockets = num_enabled_cpus / cpuid_info.topology.thread_count;
}
// Display P/E-Core count for Hybrid CPUs.
if (cpuid_info.topology.is_hybrid) {
if (cpuid_info.topology.pcore_count > 1) {
if (cpuid_info.flags.htt &&
(cpuid_info.topology.thread_count - cpuid_info.topology.ecore_count) == cpuid_info.topology.pcore_count) {
cpuid_info.topology.pcore_count /= 2;
}
display_cpu_topo_hybrid(cpuid_info.topology.pcore_count,
cpuid_info.topology.ecore_count,
cpuid_info.topology.thread_count);
} else {
display_cpu_topo_hybrid_short(cpuid_info.topology.thread_count);
}
return;
}
// Condensed display for multi-socket motherboard
if (num_cpu_sockets > 1) {
display_cpu_topo_multi_socket(num_cpu_sockets,
num_cpu_sockets * cpuid_info.topology.core_count,
num_cpu_sockets * cpuid_info.topology.thread_count);
return;
}
if (cpuid_info.topology.thread_count < 100) {
display_cpu_topo(cpuid_info.topology.core_count,
cpuid_info.topology.thread_count);
} else {
display_cpu_topo_short(cpuid_info.topology.core_count,
cpuid_info.topology.thread_count);
}
}
void post_display_init(void)
{
print_smbios_startup_info();
print_smbus_startup_info();
if (imc.freq) {
// Try to get RAM information from IMC
display_spec_mode("IMC: ");
if (imc.type[3] == '5') {
display_spec_ddr5(imc.freq, imc.type, imc.tCL, imc.tCL_dec, imc.tRCD, imc.tRP, imc.tRAS);
} else {
display_spec_ddr(imc.freq, imc.type, imc.tCL, imc.tCL_dec, imc.tRCD, imc.tRP, imc.tRAS);
}
display_mode = DISPLAY_MODE_IMC;
} else if (ram.freq > 0 && ram.tCL > 0) {
// If not available, grab max memory specs from SPD
display_spec_mode("RAM: ");
if (ram.freq <= 166) {
display_spec_sdr(ram.freq, ram.type, ram.tCL, ram.tRCD, ram.tRP, ram.tRAS);
} else {
display_spec_ddr(ram.freq, ram.type, ram.tCL, ram.tCL_dec, ram.tRCD, ram.tRP, ram.tRAS);
}
display_mode = DISPLAY_MODE_SPD;
} else {
// If nothing available, fallback to "Using Core" Display
display_mode = DISPLAY_MODE_NA;
}
}
void display_start_run(void)
{
if (!enable_trace && !enable_sm) {
clear_message_area();
}
clear_screen_region(7, 49, 7, 57); // run time
if (ecc_status.ecc_enabled) {
clear_screen_region(8, 49, 8, 53); // pass number
clear_screen_region(8, 61, 8, 68); // error count
clear_screen_region(8, 74, 8, SCREEN_WIDTH - 1); // ecc error count
} else {
clear_screen_region(8, 49, 8, 59); // pass number
clear_screen_region(8, 68, 8, SCREEN_WIDTH - 1); // error count
}
display_pass_count(0);
error_count = 0;
display_error_count();
if (clks_per_msec > 0) {
// If we've measured the CPU speed, we know the TSC is available.
run_start_time = get_tsc();
next_spin_time = run_start_time + SPINNER_PERIOD * clks_per_msec;
}
display_spinner('-');
display_status("Testing");
if (enable_tty){
tty_full_redraw();
}
}
void display_start_pass(void)
{
clear_screen_region(1, 39, 1, SCREEN_WIDTH - 1); // progress bar
display_pass_percentage(0);
pass_bar_length = 0;
pass_ticks = 0;
}
void display_start_test(void)
{
clear_screen_region(2, 39, 3, SCREEN_WIDTH - 1); // progress bar, test details
clear_screen_region(4, 39, 4, SCREEN_WIDTH - 6); // Avoid erasing paging mode
clear_screen_region(5, 39, 5, SCREEN_WIDTH - 1);
clear_screen_region(3, 36, 3, 37); // test number
display_test_percentage(0);
display_test_number(test_num);
display_test_description(test_list[test_num].description);
test_bar_length = 0;
test_ticks = 0;
#if 0
uint64_t current_time = get_tsc();
int secs = (current_time - run_start_time) / (1000 * (uint64_t)clks_per_msec);
int mins = secs / 60; secs %= 60;
int hours = mins / 60; mins %= 60;
do_trace(0, "T %i: %i:%02i:%02i", test_num, hours, mins, secs);
#endif
}
void display_error_count(void)
{
if (ecc_status.ecc_enabled) {
display_err_count_with_ecc(error_count, error_count_cecc);
} else {
display_err_count_without_ecc(error_count);
}
}
void display_temperature(void)
{
if (!enable_temperature) {
return;
}
int actual_cpu_temp = get_cpu_temperature();
if (actual_cpu_temp == 0) {
if (max_cpu_temp == 0) {
enable_temperature = false;
}
return;
}
if (max_cpu_temp < actual_cpu_temp ) {
max_cpu_temp = actual_cpu_temp;
}
int offset = actual_cpu_temp / 100 + max_cpu_temp / 100;
clear_screen_region(1, 18, 1, 22);
printf(1, 20-offset, "%2i/%2i%cC", actual_cpu_temp, max_cpu_temp, 0xF8);
}
void display_big_status(bool pass)
{
if (!enable_big_status || big_status_displayed) {
return;
}
save_screen_region(POP_STATUS_REGION, popup_status_save_buffer);
set_background_colour(BLACK);
set_foreground_colour(pass ? GREEN : RED);
clear_screen_region(POP_STATUS_REGION);
if (pass) {
prints(POP_STAT_R+1, POP_STAT_C+5, "###### ## ##### ##### ");
prints(POP_STAT_R+2, POP_STAT_C+5, "## ## #### ## ## ## ## ");
prints(POP_STAT_R+3, POP_STAT_C+5, "## ## ## ## ## ## ");
prints(POP_STAT_R+4, POP_STAT_C+5, "###### ## ## ##### ##### ");
prints(POP_STAT_R+5, POP_STAT_C+5, "## ######## ## ## ");
prints(POP_STAT_R+6, POP_STAT_C+5, "## ## ## ## ## ## ## ");
prints(POP_STAT_R+7, POP_STAT_C+5, "## ## ## ##### ##### ");
} else {
prints(POP_STAT_R+1, POP_STAT_C+5, "####### ## ###### ## ");
prints(POP_STAT_R+2, POP_STAT_C+5, "## #### ## ## ");
prints(POP_STAT_R+3, POP_STAT_C+5, "## ## ## ## ## ");
prints(POP_STAT_R+4, POP_STAT_C+5, "##### ## ## ## ## ");
prints(POP_STAT_R+5, POP_STAT_C+5, "## ######## ## ## ");
prints(POP_STAT_R+6, POP_STAT_C+5, "## ## ## ## ## ");
prints(POP_STAT_R+7, POP_STAT_C+5, "## ## ## ###### ###### ");
}
prints(POP_STAT_R+8, POP_STAT_C+5, " ");
prints(POP_STAT_R+9, POP_STAT_C+5, "Press any key to remove this banner ");
set_background_colour(BLUE);
set_foreground_colour(WHITE);
big_status_displayed = true;
}
void restore_big_status(void)
{
if (!big_status_displayed) {
return;
}
restore_screen_region(POP_STATUS_REGION, popup_status_save_buffer);
big_status_displayed = false;
}
void check_input(void)
{
char input_key = get_key();
if (input_key == '\0') {
return;
} else if (big_status_displayed) {
restore_big_status();
enable_big_status = false;
}
switch (input_key) {
case ESC:
clear_message_area();
display_notice("Rebooting...");
reboot();
break;
case '1':
config_menu(false);
break;
case ' ':
set_scroll_lock(!scroll_lock);
break;
case '\n':
scroll_wait = false;
break;
default:
break;
}
}
void set_scroll_lock(bool enabled)
{
scroll_lock = enabled;
set_foreground_colour(BLUE);
prints(ROW_FOOTER, 48, scroll_lock ? "unlock" : "lock ");
set_foreground_colour(WHITE);
}
void toggle_scroll_lock(void)
{
set_scroll_lock(!scroll_lock);
}
void scroll(void)
{
if (scroll_message_row < ROW_SCROLL_B) {
scroll_message_row++;
} else {
if (scroll_lock) {
display_footer_message("<Enter> Single step ");
}
scroll_wait = true;
do {
check_input();
} while (scroll_wait && scroll_lock);
scroll_wait = false;
clear_footer_message();
scroll_screen_region(ROW_SCROLL_T, 0, ROW_SCROLL_B, SCREEN_WIDTH - 1);
}
}
void do_tick(int my_cpu)
{
int act_sec = 0;
bool use_spin_wait = (power_save < POWER_SAVE_HIGH);
if (use_spin_wait) {
barrier_spin_wait(run_barrier);
} else {
barrier_halt_wait(run_barrier);
}
if (master_cpu == my_cpu) {
check_input();
error_update();
}
if (use_spin_wait) {
barrier_spin_wait(run_barrier);
} else {
barrier_halt_wait(run_barrier);
}
// Only the master CPU does the update.
if (master_cpu != my_cpu) {
return;
}
test_ticks++;
pass_ticks++;
pass_type_t pass_type = (pass_num == 0) ? FAST_PASS : FULL_PASS;
int pct = 0;
if (ticks_per_test[pass_type][test_num] > 0) {
pct = 100 * test_ticks / ticks_per_test[pass_type][test_num];
if (pct > 100) {
pct = 100;
}
}
display_test_percentage(pct);
display_test_bar((BAR_LENGTH * pct) / 100);
pct = 0;
if (ticks_per_pass[pass_type] > 0) {
pct = 100 * pass_ticks / ticks_per_pass[pass_type];
if (pct > 100) {
pct = 100;
}
}
display_pass_percentage(pct);
display_pass_bar((BAR_LENGTH * pct) / 100);
bool update_spinner = true;
if (clks_per_msec > 0) {
uint64_t current_time = get_tsc();
int secs = (current_time - run_start_time) / (1000 * (uint64_t)clks_per_msec);
int mins = secs / 60; secs %= 60; act_sec = secs;
int hours = mins / 60; mins %= 60;
display_run_time(hours, mins, secs);
if (current_time >= next_spin_time) {
next_spin_time = current_time + SPINNER_PERIOD * clks_per_msec;
} else {
update_spinner = false;
}
}
/* ---------------
* Timed functions
* --------------- */
// update spinner every SPINNER_PERIOD ms
if (update_spinner) {
spin_idx = (spin_idx + 1) % NUM_SPIN_STATES;
display_spinner(spin_state[spin_idx]);
}
// This only tick one time per second
if (!timed_update_done) {
// Display FAIL banner if (new) errors detected
if (err_banner_redraw && !big_status_displayed && error_count > 1) {
display_big_status(false);
}
// Check ECC Errors
memctrl_poll_ecc();
// Update temperature
display_temperature();
// Update TTY one time every TTY_UPDATE_PERIOD second(s)
if (enable_tty) {
if (act_sec % tty_update_period == 0) {
tty_partial_redraw();
}
}
timed_update_done = true;
}
if (act_sec != prev_sec) {
prev_sec = act_sec;
timed_update_done = false;
}
}
void do_trace(int my_cpu, const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
spin_lock(error_mutex);
scroll();
printi(scroll_message_row, 0, my_cpu, 2, false, false);
vprintf(scroll_message_row, 4, fmt, args);
spin_unlock(error_mutex);
va_end(args);
}