memtest86plus/system/vmem.c
Lionel Debroux e9192d231f WIP BROKEN NX enablement, for now only for the second page directory.
TODO:
    * selective NX enablement on pd0, pd1 and pd3.
      Unconditional NX on the whole pd3 makes memtest86+ reboot in a QEMU-emulated computer.
    * if supported on all x86_64 CPUs, simply enable long mode and NX simultaneously ? A real K8 dual-core processor didn't seem to hate it, at least.
    * startup code: NX enablement for x86, on capable computers (CPUID 0x80000001, edx bit 20).
    * set the appropriate flag in the headers.
2024-11-12 10:56:56 +01:00

172 lines
5.5 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2020-2022 Martin Whitaker.
//
// Derived from memtest86+ vmem.c
//
// vmem.c - MemTest-86
//
// Virtual memory handling (PAE)
//
// Released under version 2 of the Gnu Public License.
// By Chris Brady
#include <stdbool.h>
#include <stdint.h>
#include "boot.h"
#include "cpuid.h"
#include "vmem.h"
//------------------------------------------------------------------------------
// Constants
//------------------------------------------------------------------------------
// The startup code sets up the paging tables to give us 4GB of virtual address
// space, using 2MB pages, initially identity mapped to the first 4GB of physical
// memory. We use the third GB to map the physical memory window we are currently
// testing, and the following 512MB to map the screen frame buffer, ACPI tables,
// and any hardware devices we need to access that are not in the permanently
// mapped regions.
#define MAX_REGION_PAGES 256 // VM pages
#define VM_WINDOW_START SIZE_C(2,GB)
#define VM_REGION_START (VM_WINDOW_START + SIZE_C(1,GB))
#define VM_REGION_END (VM_REGION_START + MAX_REGION_PAGES * VM_PAGE_SIZE - 1)
#define VM_SPACE_END 0xffffffff
//------------------------------------------------------------------------------
// Private Variables
//------------------------------------------------------------------------------
static unsigned int device_pages_used = 0;
static uintptr_t mapped_window = 2;
//------------------------------------------------------------------------------
// Private Functions
//------------------------------------------------------------------------------
static void load_pdbr()
{
void *page_table;
if (cpuid_info.flags.lm == 1) {
page_table = pml4;
} else {
page_table = pdp;
}
__asm__ __volatile__(
#ifdef __x86_64__
"movq %0, %%cr3\n\t"
#else
"movl %0, %%cr3\n\t"
#endif
:
: "r" (page_table)
: "rax"
);
}
//------------------------------------------------------------------------------
// Public Functions
//------------------------------------------------------------------------------
uintptr_t map_region(uintptr_t base_addr, size_t size, bool only_for_startup)
{
uintptr_t last_addr = base_addr + size - 1;
// Check if the requested region is permanently mapped. If it is only needed during startup,
// this includes the region we will eventually use for the memory test window.
if (last_addr < (only_for_startup ? VM_REGION_START : VM_WINDOW_START) || (base_addr > VM_REGION_END && last_addr <= VM_SPACE_END)) {
return base_addr;
}
// Check if the requested region is already mapped.
uintptr_t first_virt_page = 0;
uintptr_t first_phys_page = base_addr >> VM_PAGE_SHIFT;
uintptr_t last_phys_page = last_addr >> VM_PAGE_SHIFT;
uintptr_t curr_virt_page = first_virt_page;
uintptr_t curr_phys_page = first_phys_page;
while (curr_virt_page < device_pages_used && curr_phys_page <= last_phys_page) {
uintptr_t mapped_phys_page = pd3[curr_virt_page++] >> VM_PAGE_SHIFT;
if (mapped_phys_page == curr_phys_page) {
curr_phys_page++;
} else {
first_virt_page = curr_virt_page;
curr_phys_page = first_phys_page;
}
}
// If not, map it. Note that this will extend a partial match at the end of the current map.
while (curr_phys_page <= last_phys_page) {
if (device_pages_used == MAX_REGION_PAGES) return 0;
pd3[device_pages_used++] = (curr_phys_page++ << VM_PAGE_SHIFT) + 0x83;
}
// Reload the PDBR to flush any remnants of the old mapping.
load_pdbr();
// Return the mapped address.
return VM_REGION_START + first_virt_page * VM_PAGE_SIZE + base_addr % VM_PAGE_SIZE;
}
bool map_window(uintptr_t start_page)
{
uintptr_t window = start_page >> (30 - PAGE_SHIFT);
if (window < 2) {
// Less than 2 GB so no mapping is required.
return true;
}
if (cpuid_info.flags.pae == 0) {
// No PAE, so we can only access 4GB.
if (window < 4) {
mapped_window = window;
return true;
}
return false;
}
if (cpuid_info.flags.lm == 0 && (start_page >= PAGE_C(64,GB))) {
// Fail, we want an address that is out of bounds
// for PAE and no long mode (ie. 32 bit CPU).
return false;
}
// Compute the page table entries.
uint64_t flags = cpuid_info.flags.nx ? UINT64_C(0x8000000000000083) : 0x83;
for (uintptr_t i = 0; i < 512; i++) {
pd2[i] = ((uint64_t)window << 30) + (i << VM_PAGE_SHIFT) + flags;
}
// Reload the PDBR to flush any remnants of the old mapping.
load_pdbr();
mapped_window = window;
return true;
}
void *first_word_mapping(uintptr_t page)
{
void *result;
if (page < PAGE_C(2,GB)) {
// If the address is less than 2GB, it is directly mapped.
result = (void *)(page << PAGE_SHIFT);
} else {
// Otherwise it is mapped to the third GB.
uintptr_t alias = PAGE_C(2,GB) + page % PAGE_C(1,GB);
result = (void *)(alias << PAGE_SHIFT);
}
return result;
}
void *last_word_mapping(uintptr_t page, size_t word_size)
{
return (uint8_t *)first_word_mapping(page) + (PAGE_SIZE - word_size);
}
uintptr_t page_of(void *addr)
{
uintptr_t page = (uintptr_t)addr >> PAGE_SHIFT;
if (page >= PAGE_C(2,GB)) {
page = page % PAGE_C(1,GB);
page += mapped_window << (30 - PAGE_SHIFT);
}
return page;
}