memtest86plus/boot/efisetup.c
Martin Whitaker f4a413cf6d Translate non-usable EFI memory regions to E820_RESERVED, not E820_NONE.
This is more correct. Using E820_NONE may have been confusing the code
in pmem.c that sanitises the memory map.
2022-02-13 20:44:58 +00:00

569 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
// Copyright (C) 2020-2022 Martin Whitaker.
//
// Derived from Linux 5.6 arch/x86/boot/compressed/eboot.c and extracts
// from drivers/firmware/efi/libstub:
//
// Copyright 2011 Intel Corporation; author Matt Fleming
#include <stdbool.h>
#include "boot.h"
#include "bootparams.h"
#include "efi.h"
#include "memsize.h"
#include "string.h"
#define DEBUG 0
//------------------------------------------------------------------------------
// Constants
//------------------------------------------------------------------------------
#define MAP_BUFFER_HEADROOM 8 // number of descriptors
//------------------------------------------------------------------------------
// Private Variables
//------------------------------------------------------------------------------
static efi_guid_t EFI_CONSOLE_OUT_DEVICE_GUID = { 0xd3b36f2c, 0xd551, 0x11d4, {0x9a, 0x46, 0x00, 0x90, 0x27, 0x3f, 0xc1, 0x4d} };
static efi_guid_t EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID = { 0x9042a9de, 0x23dc, 0x4a38, {0x96, 0xfb, 0x7a, 0xde, 0xd0, 0x80, 0x51, 0x6a} };
static efi_system_table_t *sys_table = NULL;
//------------------------------------------------------------------------------
// Macro Functions
//------------------------------------------------------------------------------
#define round_up(value, align) \
(((value) + (align) - 1) & ~((align) - 1))
// The following macros are used in Linux to hide differences in mixed mode.
// For now, just support native mode.
#define efi_table_attr(table, attr) \
table->attr
#define efi_call_proto(proto, func, ...) \
proto->func(proto, ##__VA_ARGS__)
#define efi_call_bs(func, ...) \
sys_table->boot_services->func(__VA_ARGS__)
#define efi_get_num_handles(size) \
(int)((size) / sizeof(efi_handle_t))
#define efi_get_handle_at(array, index) \
(array)[index]
//------------------------------------------------------------------------------
// Private Functions
//------------------------------------------------------------------------------
static void print_unicode_string(efi_char16_t *str)
{
efi_call_proto(efi_table_attr(sys_table, con_out), output_string, str);
}
static void print_string(char *str)
{
char *s8;
for (s8 = str; *s8; s8++) {
efi_char16_t ch[2] = { 0 };
ch[0] = *s8;
if (*s8 == '\n') {
efi_char16_t cr[2] = { '\r', 0 };
print_unicode_string(cr);
}
print_unicode_string(ch);
}
}
#if DEBUG
static void print_dec(unsigned value)
{
char buffer[16];
char *str = &buffer[15];
*str = '\0';
do {
str--;
*str = '0' + value % 10;
value /= 10;
} while (value > 0);
print_string(str);
}
static void print_hex(uintptr_t value)
{
char buffer[32];
char *str = &buffer[31];
*str = '\0';
do {
str--;
*str = '0' + value % 16;
if (*str > '9') *str += 'a' - '0' - 10;
value /= 16;
} while (value > 0);
print_string(str);
}
static void wait_for_key(void)
{
efi_input_key_t input_key;
while (efi_call_proto(efi_table_attr(sys_table, con_in), read_key_stroke, &input_key) == EFI_NOT_READY) {}
}
#endif
static efi_memory_desc_t *get_memory_desc(uintptr_t map_addr, size_t desc_size, size_t n)
{
return (efi_memory_desc_t *)(map_addr + n * desc_size);
}
static bool map_buffer_has_headroom(size_t buffer_size, size_t map_size, size_t desc_size)
{
size_t slack = buffer_size - map_size;
return slack / desc_size >= MAP_BUFFER_HEADROOM;
}
static efi_status_t get_memory_map(
efi_memory_desc_t **mem_map,
uintn_t *mem_map_size,
uintn_t *mem_desc_size,
uint32_t *mem_desc_version,
uintn_t *mem_map_key,
uintn_t *map_buffer_size
)
{
efi_status_t status;
*mem_map = NULL;
*map_buffer_size = *mem_map_size = 32 * sizeof(efi_memory_desc_t); // for first try
again:
status = efi_call_bs(allocate_pool, EFI_LOADER_DATA, *map_buffer_size, (void **)mem_map);
if (status != EFI_SUCCESS) {
goto fail;
}
status = efi_call_bs(get_memory_map, mem_map_size, *mem_map, mem_map_key, mem_desc_size, mem_desc_version);
if (status == EFI_BUFFER_TOO_SMALL || !map_buffer_has_headroom(*map_buffer_size, *mem_map_size, *mem_desc_size)) {
efi_call_bs(free_pool, *mem_map);
// Make sure there is some headroom so that the buffer can be reused
// for a new map after allocations are no longer permitted. It's
// unlikely that the map will grow to exceed this headroom once we
// are ready to trigger ExitBootServices().
*mem_map_size += *mem_desc_size * MAP_BUFFER_HEADROOM;
*map_buffer_size = *mem_map_size;
goto again;
}
if (status != EFI_SUCCESS) {
efi_call_bs(free_pool, *mem_map);
goto fail;
}
fail:
return status;
}
static efi_status_t alloc_low_memory(void **ptr, size_t size, efi_phys_addr_t min_addr)
{
efi_status_t status;
efi_memory_desc_t *mem_map = NULL;
uintn_t mem_map_size = 0;
uintn_t mem_desc_size = 0;
uint32_t mem_desc_version = 0;
uintn_t mem_map_key = 0;
uintn_t map_buffer_size = 0;
status = get_memory_map(&mem_map, &mem_map_size, &mem_desc_size, &mem_desc_version, &mem_map_key, &map_buffer_size);
if (status != EFI_SUCCESS) {
goto fail;
}
size_t num_pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
size_t num_descs = mem_map_size / mem_desc_size;
for (size_t i = 0; i < num_descs; i++) {
efi_memory_desc_t *desc = get_memory_desc((uintptr_t)mem_map, mem_desc_size, i);
if (desc->type != EFI_CONVENTIONAL_MEMORY) {
continue;
}
if (desc->num_pages < num_pages) {
continue;
}
efi_phys_addr_t start = desc->phys_addr;
efi_phys_addr_t end = start + desc->num_pages * PAGE_SIZE;
if (start < min_addr) {
start = min_addr;
}
start = round_up(start, PAGE_SIZE);
if ((start + size) > end) {
continue;
}
status = efi_call_bs(allocate_pages, EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, num_pages, &start);
if (status == EFI_SUCCESS) {
*ptr = (void *)(uintptr_t)start;
efi_call_bs(free_pool, mem_map);
return EFI_SUCCESS;
}
}
efi_call_bs(free_pool, mem_map);
status = EFI_NOT_FOUND;
fail:
return status;
}
static void get_bit_range(uint32_t mask, uint8_t *pos, uint8_t *size)
{
int first = 0;
int length = 0;
if (mask) {
while (!(mask & 0x1)) {
mask >>= 1;
first++;
}
while (mask & 0x1) {
mask >>= 1;
length++;
}
}
*pos = first;
*size = length;
}
static efi_status_t set_screen_info_from_gop(screen_info_t *si, efi_handle_t *handles, size_t handles_size)
{
efi_status_t status;
efi_graphics_output_protocol_t *gop = NULL;
for (int i = 0; i < efi_get_num_handles(handles_size); i++) {
efi_handle_t handle = efi_get_handle_at(handles, i);
efi_graphics_output_protocol_t *current_gop = NULL;
status = efi_call_bs(handle_protocol, handle, &EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID, (void **)&current_gop);
if (status != EFI_SUCCESS) {
continue;
}
void *con_out = NULL;
status = efi_call_bs(handle_protocol, handle, &EFI_CONSOLE_OUT_DEVICE_GUID, &con_out);
efi_gop_mode_t *current_mode = efi_table_attr(current_gop, mode);
efi_gop_mode_info_t *current_info = efi_table_attr(current_mode, info);
// Systems that use the UEFI Console Splitter may provide multiple GOP
// devices, not all of which are backed by real hardware. The workaround
// is to search for a GOP implementing the ConOut protocol, and if one
// isn't found, to just fall back to the first GOP.
if ((!gop || con_out) && current_info->pixel_format != PIXEL_BLT_ONLY) {
gop = current_gop;
if (con_out) {
break;
}
}
}
if (!gop) {
#if DEBUG
print_string("GOP not found\n");
#endif
return EFI_NOT_FOUND;
}
efi_gop_mode_t *mode = efi_table_attr(gop, mode);
efi_gop_mode_info_t *info = efi_table_attr(mode, info);
efi_phys_addr_t lfb_base = efi_table_attr(mode, frame_buffer_base);
si->orig_video_isVGA = VIDEO_TYPE_EFI;
si->lfb_width = info->h_resolution;
si->lfb_height = info->v_resolution;
si->lfb_base = lfb_base;
#ifdef __x86_64__
if (lfb_base >> 32) {
si->capabilities |= LFB_CAPABILITY_64BIT_BASE;
si->ext_lfb_base = lfb_base >> 32;
}
#endif
switch (info->pixel_format) {
case PIXEL_RGB_RESERVED_8BIT_PER_COLOR:
#if DEBUG
print_string("RGB32 mode\n");
#endif
si->lfb_depth = 32;
si->lfb_linelength = info->pixels_per_scan_line * 4;
si->red_size = 8;
si->red_pos = 0;
si->green_size = 8;
si->green_pos = 8;
si->blue_size = 8;
si->blue_pos = 16;
si->rsvd_size = 8;
si->rsvd_pos = 24;
break;
case PIXEL_BGR_RESERVED_8BIT_PER_COLOR:
#if DEBUG
print_string("BGR32 mode\n");
#endif
si->lfb_depth = 32;
si->lfb_linelength = info->pixels_per_scan_line * 4;
si->red_size = 8;
si->red_pos = 16;
si->green_size = 8;
si->green_pos = 8;
si->blue_size = 8;
si->blue_pos = 0;
si->rsvd_size = 8;
si->rsvd_pos = 24;
break;
case PIXEL_BIT_MASK:
#if DEBUG
print_string("Bit mask mode\n");
#endif
get_bit_range(info->pixel_info.red_mask, &si->red_pos, &si->red_size);
get_bit_range(info->pixel_info.green_mask, &si->green_pos, &si->green_size);
get_bit_range(info->pixel_info.blue_mask, &si->blue_pos, &si->blue_size);
get_bit_range(info->pixel_info.rsvd_mask, &si->rsvd_pos, &si->rsvd_size);
si->lfb_depth = si->red_size + si->green_size + si->blue_size + si->rsvd_size;
si->lfb_linelength = (info->pixels_per_scan_line * si->lfb_depth) / 8;
break;
default:
#if DEBUG
print_string("Unsupported mode\n");
#endif
si->lfb_depth = 4;
si->lfb_linelength = si->lfb_width / 2;
si->red_size = 0;
si->red_pos = 0;
si->green_size = 0;
si->green_pos = 0;
si->blue_size = 0;
si->blue_pos = 0;
si->rsvd_size = 0;
si->rsvd_pos = 0;
break;
}
si->lfb_size = si->lfb_linelength * si->lfb_height;
#if DEBUG
print_string("FB base : ");
print_hex(si->lfb_base);
print_string("\n");
print_string("FB size : ");
print_dec(si->lfb_width);
print_string(" x ");
print_dec(si->lfb_height);
print_string("\n");
print_string("FB format :");
print_string(" R"); print_dec(si->red_size);
print_string(" G"); print_dec(si->green_size);
print_string(" B"); print_dec(si->blue_size);
print_string(" A"); print_dec(si->rsvd_size);
print_string("\n");
print_string("FB stride : ");
print_dec(si->lfb_linelength);
print_string("\n");
print_string("Press any key to continue...\n");
wait_for_key();
#endif
return EFI_SUCCESS;
}
static efi_status_t set_screen_info(boot_params_t *boot_params)
{
efi_status_t status;
uintn_t handles_size = 0;
efi_handle_t *handles = NULL;
status = efi_call_bs(locate_handle, EFI_LOCATE_BY_PROTOCOL, &EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID, NULL,
&handles_size, handles);
if (status == EFI_BUFFER_TOO_SMALL) {
status = efi_call_bs(allocate_pool, EFI_LOADER_DATA, handles_size, (void **)&handles);
if (status != EFI_SUCCESS) {
return status;
}
status = efi_call_bs(locate_handle, EFI_LOCATE_BY_PROTOCOL, &EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID, NULL,
&handles_size, handles);
if (status == EFI_SUCCESS) {
status = set_screen_info_from_gop(&boot_params->screen_info, handles, handles_size);
}
efi_call_bs(free_pool, handles);
}
return status;
}
static efi_status_t set_efi_info_and_exit_boot_services(efi_handle_t handle, boot_params_t *boot_params)
{
efi_status_t status;
efi_memory_desc_t *mem_map = NULL;
uintn_t mem_map_size = 0;
uintn_t mem_desc_size = 0;
uint32_t mem_desc_version = 0;
uintn_t mem_map_key = 0;
uintn_t map_buffer_size = 0;
status = get_memory_map(&mem_map, &mem_map_size, &mem_desc_size, &mem_desc_version, &mem_map_key, &map_buffer_size);
if (status != EFI_SUCCESS) {
goto fail;
}
status = efi_call_bs(exit_boot_services, handle, mem_map_key);
if (status == EFI_INVALID_PARAMETER) {
// The memory map changed between efi_get_memory_map() and
// exit_boot_services(). Per the UEFI Spec v2.6, Section 6.4:
// EFI_BOOT_SERVICES.ExitBootServices, we need to get the
// updated map, and try again. The spec implies one retry
// should be sufficent, which is confirmed against the EDK2
// implementation. Per the spec, we can only invoke
// get_memory_map() and exit_boot_services() - we cannot alloc
// so efi_get_memory_map() cannot be used, and we must reuse
// the buffer. For all practical purposes, the headroom in the
// buffer should account for any changes in the map so the call
// to get_memory_map() is expected to succeed here.
mem_map_size = map_buffer_size;
status = efi_call_bs(get_memory_map, &mem_map_size, mem_map, &mem_map_key, &mem_desc_size, &mem_desc_version);
if (status != EFI_SUCCESS) {
goto fail;
}
status = efi_call_bs(exit_boot_services, handle, mem_map_key);
}
if (status != EFI_SUCCESS) {
goto fail;
}
#ifdef __x86_64
boot_params->efi_info.loader_signature = EFI64_LOADER_SIGNATURE;
#else
boot_params->efi_info.loader_signature = EFI32_LOADER_SIGNATURE;
#endif
boot_params->efi_info.sys_tab = (uintptr_t)sys_table;
boot_params->efi_info.mem_desc_size = mem_desc_size;
boot_params->efi_info.mem_desc_version = mem_desc_version;
boot_params->efi_info.mem_map = (uintptr_t)mem_map;
boot_params->efi_info.mem_map_size = mem_map_size;
#ifdef __X86_64__
boot_params->efi_info.sys_tab_hi = (uintptr_t)sys_table >> 32;
boot_params->efi_info.mem_map_hi = (uintptr_t)mem_map >> 32;
#endif
fail:
return status;
}
static void set_e820_map(boot_params_t *params)
{
uintptr_t mem_map_addr = params->efi_info.mem_map;
#ifdef __X86_64__
mem_map_addr |= (uintptr_t)params->efi_info.mem_map_hi << 32;
#endif
size_t mem_map_size = params->efi_info.mem_map_size;
size_t mem_desc_size = params->efi_info.mem_desc_size;
size_t num_descs = mem_map_size / mem_desc_size;
e820_entry_t *prev = NULL;
e820_entry_t *next = params->e820_map;
int num_entries = 0;
for (size_t i = 0; i < num_descs && num_entries < E820_MAP_SIZE; i++) {
efi_memory_desc_t *mem_desc = get_memory_desc(mem_map_addr, mem_desc_size, i);
e820_type_t e820_type = E820_RESERVED;
switch (mem_desc->type) {
case EFI_ACPI_RECLAIM_MEMORY:
e820_type = E820_ACPI;
break;
case EFI_LOADER_CODE:
case EFI_LOADER_DATA:
case EFI_BOOT_SERVICES_CODE:
case EFI_BOOT_SERVICES_DATA:
case EFI_CONVENTIONAL_MEMORY:
e820_type = E820_RAM;
break;
default:
continue;
}
// Merge adjacent mappings.
if (prev && prev->type == e820_type && (prev->addr + prev->size) == mem_desc->phys_addr) {
prev->size += mem_desc->num_pages << PAGE_SHIFT;
continue;
}
next->addr = mem_desc->phys_addr;
next->size = mem_desc->num_pages << PAGE_SHIFT;
next->type = e820_type;
prev = next++;
num_entries++;
}
params->e820_entries = num_entries;
}
//------------------------------------------------------------------------------
// Public Functions
//------------------------------------------------------------------------------
boot_params_t *efi_setup(efi_handle_t handle, efi_system_table_t *sys_table_arg, boot_params_t *boot_params)
{
efi_status_t status;
sys_table = sys_table_arg;
if (sys_table->header.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
print_string("bad system table signature\n");
goto fail;
}
if (boot_params == NULL) {
status = alloc_low_memory((void **)&boot_params, sizeof(boot_params_t), 0);
if (status != EFI_SUCCESS) {
print_string("failed to allocate low memory for boot params\n");
goto fail;
}
memset(boot_params, 0, sizeof(boot_params_t));
}
boot_params->code32_start = (uintptr_t)startup32;
status = set_screen_info(boot_params);
if (status != EFI_SUCCESS) {
print_string("set_screen_info() failed\n");
goto fail;
}
status = set_efi_info_and_exit_boot_services(handle, boot_params);
if (status != EFI_SUCCESS) {
print_string("set_efi_info_and_exit_boot_services() failed\n");
goto fail;
}
set_e820_map(boot_params);
return boot_params;
fail:
print_string("efi_setup() failed\n");
while (1) {
__asm__("hlt");
}
}