mirror of
https://github.com/memtest86plus/memtest86plus.git
synced 2024-11-23 08:26:23 -06:00
5a2bc4c960
If the memory map contains very small segments and we have many active CPUs, the tests that split the segments into chunks distributed across the CPUs may end up with chunks that are too small for the test algorithm. With 4K pages and the current limit of 256 active CPUs, this is currently only a problem for the block move and modulo-n tests, but if we ever support more than 512 active CPUs, it could affect the other tests too. For now, just skip segments that are too small in the affected tests. As it only affects the block move and modulo-n tests and only affects very small regions of memory, the loss of test coverage is negligable. This may fix issue #216.
149 lines
4.9 KiB
C
149 lines
4.9 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
// Copyright (C) 2020-2022 Martin Whitaker.
|
|
//
|
|
// Derived from an extract of memtest86+ test.c:
|
|
//
|
|
// MemTest86+ V5 Specific code (GPL V2.0)
|
|
// By Samuel DEMEULEMEESTER, sdemeule@memtest.org
|
|
// http://www.canardpc.com - http://www.memtest.org
|
|
// Thanks to Passmark for calculate_chunk() and various comments !
|
|
// ----------------------------------------------------
|
|
// test.c - MemTest-86 Version 3.4
|
|
//
|
|
// Released under version 2 of the Gnu Public License.
|
|
// By Chris Brady
|
|
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
|
|
#include "display.h"
|
|
#include "error.h"
|
|
#include "test.h"
|
|
|
|
#include "test_funcs.h"
|
|
#include "test_helper.h"
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Public Functions
|
|
//------------------------------------------------------------------------------
|
|
|
|
int test_modulo_n(int my_cpu, int iterations, testword_t pattern1, testword_t pattern2, int n, int offset)
|
|
{
|
|
int ticks = 0;
|
|
|
|
if (my_cpu == master_cpu) {
|
|
display_test_pattern_values(pattern1, offset);
|
|
}
|
|
|
|
// Write every nth location with pattern1.
|
|
for (int i = 0; i < vm_map_size; i++) {
|
|
testword_t *start, *end;
|
|
calculate_chunk(&start, &end, my_cpu, i, sizeof(testword_t));
|
|
if ((end - start) < (n - 1)) continue; // we need at least n words for this test
|
|
end -= n; // avoids pointer overflow when incrementing p
|
|
|
|
testword_t *p = start + offset; // we assume each chunk has at least 'n' words, so this won't overflow
|
|
testword_t *pe = start;
|
|
|
|
bool at_end = false;
|
|
do {
|
|
// take care to avoid pointer overflow
|
|
if ((end - pe) >= SPIN_SIZE) {
|
|
pe += SPIN_SIZE - 1;
|
|
} else {
|
|
at_end = true;
|
|
pe = end;
|
|
}
|
|
ticks++;
|
|
if (my_cpu < 0) {
|
|
continue;
|
|
}
|
|
test_addr[my_cpu] = (uintptr_t)p;
|
|
do {
|
|
write_word(p, pattern1);
|
|
} while (p <= (pe - n) && (p += n)); // test before increment in case pointer overflows
|
|
do_tick(my_cpu);
|
|
BAILOUT;
|
|
} while (!at_end && ++pe); // advance pe to next start point
|
|
}
|
|
|
|
// Write the rest of memory "iteration" times with pattern2.
|
|
for (int i = 0; i < iterations; i++) {
|
|
for (int j = 0; j < vm_map_size; j++) {
|
|
testword_t *start, *end;
|
|
calculate_chunk(&start, &end, my_cpu, j, sizeof(testword_t));
|
|
if ((end - start) < (n - 1)) continue; // we need at least n words for this test
|
|
|
|
int k = 0;
|
|
testword_t *p = start;
|
|
testword_t *pe = start;
|
|
|
|
bool at_end = false;
|
|
do {
|
|
// take care to avoid pointer overflow
|
|
if ((end - pe) >= SPIN_SIZE) {
|
|
pe += SPIN_SIZE - 1;
|
|
} else {
|
|
at_end = true;
|
|
pe = end;
|
|
}
|
|
ticks++;
|
|
if (my_cpu < 0) {
|
|
continue;
|
|
}
|
|
test_addr[my_cpu] = (uintptr_t)p;
|
|
do {
|
|
if (k != offset) {
|
|
write_word(p, pattern2);
|
|
}
|
|
k++;
|
|
if (k == n) {
|
|
k = 0;
|
|
}
|
|
} while (p++ < pe); // test before increment in case pointer overflows
|
|
do_tick(my_cpu);
|
|
BAILOUT;
|
|
} while (!at_end && ++pe); // advance pe to next start point
|
|
}
|
|
}
|
|
|
|
flush_caches(my_cpu);
|
|
|
|
// Now check every nth location.
|
|
for (int i = 0; i < vm_map_size; i++) {
|
|
testword_t *start, *end;
|
|
calculate_chunk(&start, &end, my_cpu, i, sizeof(testword_t));
|
|
if ((end - start) < (n - 1)) continue; // we need at least n words for this test
|
|
end -= n; // avoids pointer overflow when incrementing p
|
|
|
|
testword_t *p = start + offset; // we assume each chunk has at least 'offset' words, so this won't overflow
|
|
testword_t *pe = start;
|
|
|
|
bool at_end = false;
|
|
do {
|
|
// take care to avoid pointer overflow
|
|
if ((end - pe) >= SPIN_SIZE) {
|
|
pe += SPIN_SIZE - 1;
|
|
} else {
|
|
at_end = true;
|
|
pe = end;
|
|
}
|
|
ticks++;
|
|
if (my_cpu < 0) {
|
|
continue;
|
|
}
|
|
test_addr[my_cpu] = (uintptr_t)p;
|
|
do {
|
|
testword_t actual = read_word(p);
|
|
if (unlikely(actual != pattern1)) {
|
|
data_error(p, pattern1, actual, true);
|
|
}
|
|
} while (p <= (pe - n) && (p += n)); // test before increment in case pointer overflows
|
|
do_tick(my_cpu);
|
|
BAILOUT;
|
|
} while (!at_end && ++pe); // advance pe to next start point
|
|
}
|
|
|
|
return ticks;
|
|
}
|