memtest86plus/tests/mov_inv_random.c
Martin Whitaker 16d55b7dad Remove distinction between physical and virtual CPUs.
This is no longer needed, now we can display as many CPUs as we can
physically handle.
2022-01-31 22:59:14 +00:00

124 lines
3.6 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2020-2022 Martin Whitaker.
//
// Derived from an extract of memtest86+ test.c:
//
// MemTest86+ V5 Specific code (GPL V2.0)
// By Samuel DEMEULEMEESTER, sdemeule@memtest.org
// http://www.canardpc.com - http://www.memtest.org
// Thanks to Passmark for calculate_chunk() and various comments !
// ----------------------------------------------------
// test.c - MemTest-86 Version 3.4
//
// Released under version 2 of the Gnu Public License.
// By Chris Brady
#include <stdbool.h>
#include <stdint.h>
#include "cpuid.h"
#include "tsc.h"
#include "display.h"
#include "error.h"
#include "test.h"
#include "test_funcs.h"
#include "test_helper.h"
//------------------------------------------------------------------------------
// Public Functions
//------------------------------------------------------------------------------
int test_mov_inv_random(int my_cpu)
{
int ticks = 0;
uint64_t seed;
if (cpuid_info.flags.rdtsc) {
seed = get_tsc();
} else {
seed = UINT64_C(0x12345678) * (1 + pass_num);
}
if (my_cpu == master_cpu) {
display_test_pattern_value(seed);
}
// Initialize memory with the initial pattern.
random_seed(my_cpu, seed);
for (int i = 0; i < vm_map_size; i++) {
testword_t *start, *end;
calculate_chunk(&start, &end, my_cpu, i, sizeof(testword_t));
volatile testword_t *p = start;
volatile testword_t *pe = start;
bool at_end = false;
do {
// take care to avoid pointer overflow
if ((end - pe) >= SPIN_SIZE) {
pe += SPIN_SIZE - 1;
} else {
at_end = true;
pe = end;
}
ticks++;
if (my_cpu < 0) {
continue;
}
test_addr[my_cpu] = (uintptr_t)p;
do {
write_word(p, random(my_cpu));
} while (p++ < pe); // test before increment in case pointer overflows
do_tick(my_cpu);
BAILOUT;
} while (!at_end && ++pe); // advance pe to next start point
}
// Check for initial pattern and then write the inverse pattern for each
// memory location. Repeat.
testword_t invert = 0;
for (int i = 0; i < 2; i++) {
flush_caches(my_cpu);
random_seed(my_cpu, seed);
for (int j = 0; j < vm_map_size; j++) {
testword_t *start, *end;
calculate_chunk(&start, &end, my_cpu, j, sizeof(testword_t));
volatile testword_t *p = start;
volatile testword_t *pe = start;
bool at_end = false;
do {
// take care to avoid pointer overflow
if ((end - pe) >= SPIN_SIZE) {
pe += SPIN_SIZE - 1;
} else {
at_end = true;
pe = end;
}
ticks++;
if (my_cpu < 0) {
continue;
}
test_addr[my_cpu] = (uintptr_t)p;
do {
testword_t expect = random(my_cpu) ^ invert;
testword_t actual = read_word(p);
if (unlikely(actual != expect)) {
data_error(p, expect, actual, true);
}
write_word(p, ~expect);
} while (p++ < pe); // test before increment in case pointer overflows
do_tick(my_cpu);
BAILOUT;
} while (!at_end && ++pe); // advance pe to next start point
}
invert = ~invert;
}
return ticks;
}