memtest86plus/tests/mov_inv_walk1.c
Martin Whitaker 0e61b1605e Remove volatile qualifier from testword pointers.
Now we use the atomic read/write functions, these are redundant.
2022-02-19 13:01:42 +00:00

153 lines
5.0 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2020-2022 Martin Whitaker.
//
// Derived from an extract of memtest86+ test.c:
//
// MemTest86+ V5 Specific code (GPL V2.0)
// By Samuel DEMEULEMEESTER, sdemeule@memtest.org
// http://www.canardpc.com - http://www.memtest.org
// Thanks to Passmark for calculate_chunk() and various comments !
// ----------------------------------------------------
// test.c - MemTest-86 Version 3.4
//
// Released under version 2 of the Gnu Public License.
// By Chris Brady
#include <stdbool.h>
#include <stdint.h>
#include "display.h"
#include "error.h"
#include "test.h"
#include "test_funcs.h"
#include "test_helper.h"
//------------------------------------------------------------------------------
// Public Functions
//------------------------------------------------------------------------------
int test_mov_inv_walk1(int my_cpu, int iterations, int offset, bool inverse)
{
int ticks = 0;
testword_t pattern = (testword_t)1 << offset;
if (my_cpu == master_cpu) {
display_test_pattern_value(inverse ? ~pattern : pattern);
}
// Initialize memory with the initial pattern.
for (int i = 0; i < vm_map_size; i++) {
testword_t *start, *end;
calculate_chunk(&start, &end, my_cpu, i, sizeof(testword_t));
testword_t *p = start;
testword_t *pe = start;
bool at_end = false;
do {
// take care to avoid pointer overflow
if ((end - pe) >= SPIN_SIZE) {
pe += SPIN_SIZE - 1;
} else {
at_end = true;
pe = end;
}
ticks++;
if (my_cpu < 0) {
continue;
}
test_addr[my_cpu] = (uintptr_t)p;
do {
write_word(p, inverse ? ~pattern : pattern);
pattern = pattern << 1 | pattern >> (TESTWORD_WIDTH - 1); // rotate left
} while (p++ < pe); // test before increment in case pointer overflows
do_tick(my_cpu);
BAILOUT;
} while (!at_end && ++pe); // advance pe to next start point
}
// Check for initial pattern and then write the complement for each memory location.
// Test from bottom up and then from the top down.
for (int i = 0; i < iterations; i++) {
pattern = (testword_t)1 << offset;
flush_caches(my_cpu);
for (int j = 0; j < vm_map_size; j++) {
testword_t *start, *end;
calculate_chunk(&start, &end, my_cpu, j, sizeof(testword_t));
testword_t *p = start;
testword_t *pe = start;
bool at_end = false;
do {
// take care to avoid pointer overflow
if ((end - pe) >= SPIN_SIZE) {
pe += SPIN_SIZE - 1;
} else {
at_end = true;
pe = end;
}
ticks++;
if (my_cpu < 0) {
continue;
}
test_addr[my_cpu] = (uintptr_t)p;
do {
testword_t expect = inverse ? ~pattern : pattern;
testword_t actual = read_word(p);
if (unlikely(actual != expect)) {
data_error(p, expect, actual, true);
}
write_word(p, ~expect);
pattern = pattern << 1 | pattern >> (TESTWORD_WIDTH - 1); // rotate left
} while (p++ < pe); // test before increment in case pointer overflows
do_tick(my_cpu);
BAILOUT;
} while (!at_end && ++pe); // advance pe to next start point
}
flush_caches(my_cpu);
for (int j = vm_map_size - 1; j >= 0; j--) {
testword_t *start, *end;
calculate_chunk(&start, &end, my_cpu, j, sizeof(testword_t));
testword_t *p = end;
testword_t *ps = end;
bool at_start = false;
do {
// take care to avoid pointer underflow
if ((ps - start) >= SPIN_SIZE) {
ps -= SPIN_SIZE - 1;
} else {
at_start = true;
ps = start;
}
ticks++;
if (my_cpu < 0) {
continue;
}
test_addr[my_cpu] = (uintptr_t)ps;
do {
pattern = pattern >> 1 | pattern << (TESTWORD_WIDTH - 1); // rotate right
testword_t expect = inverse ? pattern : ~pattern;
testword_t actual = read_word(p);
if (unlikely(actual != expect)) {
data_error(p, expect, actual, true);
}
write_word(p, ~expect);
} while (p-- > ps); // test before decrement in case pointer overflows
do_tick(my_cpu);
BAILOUT;
} while (!at_start && --ps); // advance ps to next start point
}
}
return ticks;
}