memtest86plus/system/smbus.c
Sam Demeulemeester 7aeac7271f
Add Memory Controller Registers polling to get current DRAM Timings/Frequency (#306)
Read the memory controller configuration (instead of just relying on SPD data) to get the actual live settings.

Currently supported platforms:
* Intel SNB to RPL (Core 2nd Gen to Core 13th Gen) - Desktop only (no Server nor Mobile)
* AMD SMR to RPL (Zen to Zen4) - Desktop only (no Server, Mobile nor APU).


Individual commits below for archival:

* First functions skeleton for reading IMC/ECC Registers

* Change directory name from 'chipsets' to 'mch' (Memory Controller Hub)

* Add Intel HSW and fix new files encoding

* First Intel HSW IMC implementation

* Add an option to disable MCH registers polling

* Remove old include from Makefiles

* Better Makefile and padding fixes

* Statically init 'imc' struct to generate string relocation record

* Small typos & code fixes

* Add IMC support for Intel Core 6/7/8/9th Gen (SKL/KBL/CFL/CML) This is a bit more complex than Haswell and below because MMIO switched to 64-bit with Skylake (lot of) betatesting needed

* Add IMC read support for Intel SNB/IVB (2nd/3rd gen Core)

* Fix hard-lock on Intel SNB/IVB due to wrong access type on MCHBAR pointer

* Move AMD SMN Registers & offsets to a specific header file

* Add IMC Read support for AMD Zen/Zen2 CPUs

* Change 'IMC' to 'MCH' in Makefiles to match actual mch/ directory

* Add IMC Reading support for Intel ADL&RPL CPUs (Core Gen12&13)

* Add support for Intel Rocket Lake (Core 11th Gen) and AMD Vermeer

* Add IMC reading for AMD Zen4 'Raphael' AM5 CPUs

* Various Cleanup #1 
Change terminology from Intel-based 'MCH' (Memory Controller Hub) to more universal 'IMC' (Integrated Memory Controller) Integrate imc_type var into imc struct. Remove previously created AMD SNM header file

* Various Cleanup 2

* Change DDR5 display format for IMC specs
DDR5 Freq can be > 10000 and timings up to 63-127-127-127, which overwflow the available space.
This commit remove the raw frequency on DDR5 (which may be incorrect due to Gear mechanism) and leave a bit of space to display the Gear engaged in the future
2023-05-12 15:33:28 +02:00

1707 lines
50 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2004-2023 Sam Demeulemeester
#include "display.h"
#include "io.h"
#include "tsc.h"
#include "pci.h"
#include "unistd.h"
#include "string.h"
#include "cpuinfo.h"
#include "memctrl.h"
#include "smbus.h"
#include "smbios.h"
#include "jedec_id.h"
#include "hwquirks.h"
#define LINE_SPD 13
#define MAX_SPD_SLOT 8
ram_info ram = { 0, 0, 0, 0, 0, 0, "N/A"};
int smbdev, smbfun;
unsigned short smbusbase = 0;
uint32_t smbus_id = 0;
static uint16_t extra_initial_sleep_for_smb_transaction = 0;
static int8_t spd_page = -1;
static int8_t last_adr = -1;
// Functions Prototypes
static void read_sku(char *sku, uint8_t slot_idx, uint16_t offset, uint8_t max_len);
static void parse_spd_rdram (spd_info *spdi, uint8_t slot_idx);
static void parse_spd_sdram (spd_info *spdi, uint8_t slot_idx);
static void parse_spd_ddr (spd_info *spdi, uint8_t slot_idx);
static void parse_spd_ddr2 (spd_info *spdi, uint8_t slot_idx);
static void parse_spd_ddr3 (spd_info *spdi, uint8_t slot_idx);
static void parse_spd_ddr4 (spd_info *spdi, uint8_t slot_idx);
static void parse_spd_ddr5 (spd_info *spdi, uint8_t slot_idx);
static void print_spdi(spd_info spdi, uint8_t lidx);
static bool setup_smb_controller(void);
static bool find_smb_controller(uint16_t vid, uint16_t did);
static uint8_t get_spd(uint8_t slot_idx, uint16_t spd_adr);
static bool nv_mcp_get_smb(void);
static bool amd_sb_get_smb(void);
static bool fch_zen_get_smb(void);
static bool piix4_get_smb(uint8_t address);
static bool ich5_get_smb(void);
static bool ali_get_smb(uint8_t address);
static uint8_t ich5_process(void);
static uint8_t ich5_read_spd_byte(uint8_t adr, uint16_t cmd);
static uint8_t nf_read_spd_byte(uint8_t smbus_adr, uint8_t spd_adr);
static uint8_t ali_m1563_read_spd_byte(uint8_t smbus_adr, uint8_t spd_adr);
static uint8_t ali_m1543_read_spd_byte(uint8_t smbus_adr, uint8_t spd_adr);
static inline uint8_t bcd_to_ui8(uint8_t bcd)
{
return bcd - 6 * (bcd >> 4);
}
void print_smbus_startup_info(void)
{
uint8_t spdidx = 0, spd_line_idx = 0;
spd_info curspd;
ram.freq = 0;
curspd.isValid = false;
if (quirk.type & QUIRK_TYPE_SMBUS) {
quirk.process();
}
if (!setup_smb_controller() || smbusbase == 0) {
return;
}
for (spdidx = 0; spdidx < MAX_SPD_SLOT; spdidx++) {
memset(&curspd, 0, sizeof(curspd));
curspd.slot_num = spdidx;
if (get_spd(spdidx, 0) != 0xFF) {
switch(get_spd(spdidx, 2))
{
default:
continue;
case 0x12: // DDR5
parse_spd_ddr5(&curspd, spdidx);
break;
case 0x0C: // DDR4
parse_spd_ddr4(&curspd, spdidx);
break;
case 0x0B: // DDR3
parse_spd_ddr3(&curspd, spdidx);
break;
case 0x08: // DDR2
parse_spd_ddr2(&curspd, spdidx);
break;
case 0x07: // DDR
parse_spd_ddr(&curspd, spdidx);
break;
case 0x04: // SDRAM
parse_spd_sdram(&curspd, spdidx);
break;
case 0x01: // RAMBUS - RDRAM
if (get_spd(spdidx, 1) == 8) {
parse_spd_rdram(&curspd, spdidx);
}
break;
}
if (curspd.isValid) {
if (spd_line_idx == 0) {
prints(LINE_SPD-2, 0, "Memory SPD Information");
prints(LINE_SPD-1, 0, "----------------------");
}
print_spdi(curspd, spd_line_idx);
spd_line_idx++;
}
}
}
}
static void print_spdi(spd_info spdi, uint8_t lidx)
{
uint8_t curcol;
uint16_t i;
// Print Slot Index, Module Size, type & Max frequency (Jedec or XMP)
curcol = printf(LINE_SPD+lidx, 0, " - Slot %i: %kB %s-%i",
spdi.slot_num,
spdi.module_size * 1024,
spdi.type,
spdi.freq);
// Print ECC status
if (spdi.hasECC) {
curcol = prints(LINE_SPD+lidx, ++curcol, "ECC");
}
// Print XMP/EPP Status
if (spdi.XMP > 0 && spdi.XMP < 20) {
curcol = prints(LINE_SPD+lidx, ++curcol, "XMP");
} else if (spdi.XMP == 20) {
curcol = prints(LINE_SPD+lidx, ++curcol, "EPP");
}
// Print Manufacturer from JEDEC106
for (i = 0; i < JEP106_CNT; i++) {
if (spdi.jedec_code == jep106[i].jedec_code) {
curcol = printf(LINE_SPD+lidx, ++curcol, "- %s", jep106[i].name);
break;
}
}
// If not present in JEDEC106, display raw JEDEC ID
if (spdi.jedec_code == 0) {
curcol = prints(LINE_SPD+lidx, ++curcol, "- Noname");
} else if (i == JEP106_CNT) {
curcol = printf(LINE_SPD+lidx, ++curcol, "- Unknown (0x%x)", spdi.jedec_code);
}
// Print SKU
if (*spdi.sku)
curcol = prints(LINE_SPD+lidx, curcol + 1, spdi.sku);
// Check manufacturing date and print if valid.
// fab_year is uint8_t and carries only the last two digits.
// - for 0..31 we assume 20xx, and 0 means 2000.
// - for 96..99 we assume 19xx.
// - values 32..95 and > 99 are considered invalid.
if (curcol <= 69 && spdi.fab_week <= 53 && spdi.fab_week != 0 &&
(spdi.fab_year < 32 || (spdi.fab_year >= 96 && spdi.fab_year <= 99))) {
curcol = printf(LINE_SPD+lidx, ++curcol, "(%02i%02i-W%02i)",
spdi.fab_year >= 96 ? 19 : 20,
spdi.fab_year, spdi.fab_week);
}
// Populate global ram var
ram.type = spdi.type;
if (ram.freq == 0 || ram.freq > spdi.freq) {
ram.freq = spdi.freq;
}
if (ram.tCL < spdi.tCL) {
ram.tCL = spdi.tCL;
ram.tCL_dec = spdi.tCL_dec;
ram.tRCD = spdi.tRCD;
ram.tRP = spdi.tRP;
ram.tRAS = spdi.tRAS;
}
}
static void read_sku(char *sku, uint8_t slot_idx, uint16_t offset, uint8_t max_len)
{
uint8_t sku_len;
if (max_len > SPD_SKU_LEN)
max_len = SPD_SKU_LEN;
for (sku_len = 0; sku_len < max_len; sku_len++) {
uint8_t sku_byte = get_spd(slot_idx, offset + sku_len);
// Stop on the first non-ASCII char
if (sku_byte < 0x20 || sku_byte > 0x7F)
break;
sku[sku_len] = (char)sku_byte;
}
// Trim spaces from the end
while (sku_len && sku[sku_len - 1] == 0x20)
sku_len--;
sku[sku_len] = '\0';
}
static void parse_spd_ddr5(spd_info *spdi, uint8_t slot_idx)
{
spdi->type = "DDR5";
// Compute module size for symmetric & asymmetric configuration
for (int sbyte_adr = 1; sbyte_adr <= 2; sbyte_adr++) {
uint32_t cur_rank = 0;
uint8_t sbyte = get_spd(slot_idx, sbyte_adr * 4);
// SDRAM Density per die
switch (sbyte & 0x1F)
{
default:
break;
case 0b00001:
cur_rank = 512;
break;
case 0b00010:
cur_rank = 1024;
break;
case 0b00011:
cur_rank = 1536;
break;
case 0b00100:
cur_rank = 2048;
break;
case 0b00101:
cur_rank = 3072;
break;
case 0b00110:
cur_rank = 4096;
break;
case 0b00111:
cur_rank = 6144;
break;
case 0b01000:
cur_rank = 8192;
break;
}
// Die per package
if ((sbyte >> 5) > 1 && (sbyte >> 5) <= 5) {
cur_rank *= 1U << (((sbyte >> 5) & 7) - 1);
}
sbyte = get_spd(slot_idx, 235);
spdi->hasECC = (((sbyte >> 3) & 3) > 0);
// Channels per DIMM
if (((sbyte >> 5) & 3) == 1) {
cur_rank *= 2;
}
// Primary Bus Width per Channel
cur_rank *= 1U << ((sbyte & 3) + 3);
// I/O Width
sbyte = get_spd(slot_idx, (sbyte_adr * 4) + 2);
cur_rank /= 1U << (((sbyte >> 5) & 3) + 2);
sbyte = get_spd(slot_idx, 234);
// Package ranks per Channel
cur_rank *= 1U << ((sbyte >> 3) & 7);
// Add current rank to total package size
spdi->module_size += cur_rank;
// If not Asymmetrical, don't process the second rank
if ((sbyte >> 6) == 0) {
break;
}
}
// Compute Frequency (including XMP)
uint16_t tCK, tCKtmp, tns;
int xmp_offset = 0;
spdi->XMP = ((get_spd(slot_idx, 640) == 0x0C && get_spd(slot_idx, 641) == 0x4A)) ? 3 : 0;
if (spdi->XMP == 3) {
// XMP 3.0 (enumerate all profiles to find the fastest)
tCK = 0;
for (int offset = 0; offset < 3*64; offset += 64) {
tCKtmp = get_spd(slot_idx, 710 + offset) << 8 |
get_spd(slot_idx, 709 + offset);
if (tCKtmp != 0 && (tCK == 0 || tCKtmp < tCK)) {
xmp_offset = offset;
tCK = tCKtmp;
}
}
} else {
// JEDEC
tCK = get_spd(slot_idx, 21) << 8 |
get_spd(slot_idx, 20);
}
if (tCK == 0) {
return;
}
spdi->freq = (float)(1.0f / tCK * 2.0f * 1000.0f * 1000.0f);
spdi->freq = (spdi->freq + 50) / 100 * 100;
// Module Timings
if (spdi->XMP == 3) {
// ------------------
// XMP Specifications
// ------------------
// CAS# Latency
tns = (uint16_t)get_spd(slot_idx, 718 + xmp_offset) << 8 |
(uint16_t)get_spd(slot_idx, 717 + xmp_offset);
spdi->tCL = (tns + tCK - DDR5_ROUNDING_FACTOR) / tCK;
spdi->tCL += spdi->tCL % 2; // if tCL is odd, round to upper even.
// RAS# to CAS# Latency
tns = (uint16_t)get_spd(slot_idx, 720 + xmp_offset) << 8 |
(uint16_t)get_spd(slot_idx, 719 + xmp_offset);
spdi->tRCD = (tns + tCK - DDR5_ROUNDING_FACTOR) / tCK;
// RAS# Precharge
tns = (uint16_t)get_spd(slot_idx, 722 + xmp_offset) << 8 |
(uint16_t)get_spd(slot_idx, 721 + xmp_offset);
spdi->tRP = (tns + tCK - DDR5_ROUNDING_FACTOR) / tCK;
// Row Active Time
tns = (uint16_t)get_spd(slot_idx, 724 + xmp_offset) << 8 |
(uint16_t)get_spd(slot_idx, 723 + xmp_offset);
spdi->tRAS = (tns + tCK - DDR5_ROUNDING_FACTOR) / tCK;
// Row Cycle Time
tns = (uint16_t)get_spd(slot_idx, 726 + xmp_offset) << 8 |
(uint16_t)get_spd(slot_idx, 725 + xmp_offset);
spdi->tRC = (tns + tCK - DDR5_ROUNDING_FACTOR) / tCK;
} else {
// --------------------
// JEDEC Specifications
// --------------------
// CAS# Latency
tns = (uint16_t)get_spd(slot_idx, 31) << 8 |
(uint16_t)get_spd(slot_idx, 30);
spdi->tCL = (tns + tCK - DDR5_ROUNDING_FACTOR) / tCK;
spdi->tCL += spdi->tCL % 2;
// RAS# to CAS# Latency
tns = (uint16_t)get_spd(slot_idx, 33) << 8 |
(uint16_t)get_spd(slot_idx, 32);
spdi->tRCD = (tns + tCK - DDR5_ROUNDING_FACTOR) / tCK;
// RAS# Precharge
tns = (uint16_t)get_spd(slot_idx, 35) << 8 |
(uint16_t)get_spd(slot_idx, 34);
spdi->tRP = (tns + tCK - DDR5_ROUNDING_FACTOR) / tCK;
// Row Active Time
tns = (uint16_t)get_spd(slot_idx, 37) << 8 |
(uint16_t)get_spd(slot_idx, 36);
spdi->tRAS = (tns + tCK - DDR5_ROUNDING_FACTOR) / tCK;
// Row Cycle Time
tns = (uint16_t)get_spd(slot_idx, 39) << 8 |
(uint16_t)get_spd(slot_idx, 38);
spdi->tRC = (tns + tCK - DDR5_ROUNDING_FACTOR) / tCK;
}
// Module manufacturer
spdi->jedec_code = (get_spd(slot_idx, 512) & 0x1F) << 8;
spdi->jedec_code |= get_spd(slot_idx, 513) & 0x7F;
read_sku(spdi->sku, slot_idx, 521, 30);
spdi->fab_year = bcd_to_ui8(get_spd(slot_idx, 515));
spdi->fab_week = bcd_to_ui8(get_spd(slot_idx, 516));
spdi->isValid = true;
}
static void parse_spd_ddr4(spd_info *spdi, uint8_t slot_idx)
{
spdi->type = "DDR4";
// Compute module size in MB with shifts
spdi->module_size = 1U << (
((get_spd(slot_idx, 4) & 0xF) + 5) + // Total SDRAM capacity: (256 Mbits << byte4[3:0] with an oddity for values >= 8) / 1 KB
((get_spd(slot_idx, 13) & 0x7) + 3) - // Primary Bus Width: 8 << byte13[2:0]
((get_spd(slot_idx, 12) & 0x7) + 2) + // SDRAM Device Width: 4 << byte12[2:0]
((get_spd(slot_idx, 12) >> 3) & 0x7) + // Number of Ranks: byte12[5:3]
((get_spd(slot_idx, 6) >> 4) & 0x7) // Die count - 1: byte6[6:4]
);
spdi->hasECC = (((get_spd(slot_idx, 13) >> 3) & 1) == 1);
// Module max clock
float tns, tCK, ramfreq, fround;
if (get_spd(slot_idx, 384) == 0x0C && get_spd(slot_idx, 385) == 0x4A) {
// Max XMP
tCK = (uint8_t)get_spd(slot_idx, 396) * 0.125f +
(int8_t)get_spd(slot_idx, 431) * 0.001f;
spdi->XMP = 2;
} else {
// Max JEDEC
tCK = (uint8_t)get_spd(slot_idx, 18) * 0.125f +
(int8_t)get_spd(slot_idx, 125) * 0.001f;
}
ramfreq = 1.0f / tCK * 2.0f * 1000.0f;
// Round DRAM Freq to nearest x00/x33/x66
fround = ((int)(ramfreq * 0.01 + .5) / 0.01) - ramfreq;
ramfreq += fround;
if (fround < -16.5) {
ramfreq += 33;
} else if (fround > 16.5) {
ramfreq -= 34;
}
spdi->freq = ramfreq;
// Module Timings
if (spdi->XMP == 2) {
// ------------------
// XMP Specifications
// ------------------
// CAS# Latency
tns = (uint8_t)get_spd(slot_idx, 401) * 0.125f +
(int8_t)get_spd(slot_idx, 430) * 0.001f;
spdi->tCL = (uint16_t)(tns/tCK + ROUNDING_FACTOR);
// RAS# to CAS# Latency
tns = (uint8_t)get_spd(slot_idx, 402) * 0.125f +
(int8_t)get_spd(slot_idx, 429) * 0.001f;
spdi->tRCD = (uint16_t)(tns/tCK + ROUNDING_FACTOR);
// RAS# Precharge
tns = (uint8_t)get_spd(slot_idx, 403) * 0.125f +
(int8_t)get_spd(slot_idx, 428) * 0.001f;
spdi->tRP = (uint16_t)(tns/tCK + ROUNDING_FACTOR);
// Row Active Time
tns = (uint8_t)get_spd(slot_idx, 405) * 0.125f +
(int8_t)get_spd(slot_idx, 427) * 0.001f +
(uint8_t)(get_spd(slot_idx, 404) & 0x0F) * 32.0f;
spdi->tRAS = (uint16_t)(tns/tCK + ROUNDING_FACTOR);
// Row Cycle Time
tns = (uint8_t)get_spd(slot_idx, 406) * 0.125f +
(uint8_t)(get_spd(slot_idx, 404) >> 4) * 32.0f;
spdi->tRC = (uint16_t)(tns/tCK + ROUNDING_FACTOR);
} else {
// --------------------
// JEDEC Specifications
// --------------------
// CAS# Latency
tns = (uint8_t)get_spd(slot_idx, 24) * 0.125f +
(int8_t)get_spd(slot_idx, 123) * 0.001f;
spdi->tCL = (uint16_t)(tns/tCK + ROUNDING_FACTOR);
// RAS# to CAS# Latency
tns = (uint8_t)get_spd(slot_idx, 25) * 0.125f +
(int8_t)get_spd(slot_idx, 122) * 0.001f;
spdi->tRCD = (uint16_t)(tns/tCK + ROUNDING_FACTOR);
// RAS# Precharge
tns = (uint8_t)get_spd(slot_idx, 26) * 0.125f +
(int8_t)get_spd(slot_idx, 121) * 0.001f;
spdi->tRP = (uint16_t)(tns/tCK + ROUNDING_FACTOR);
// Row Active Time
tns = (uint8_t)get_spd(slot_idx, 28) * 0.125f +
(uint8_t)(get_spd(slot_idx, 27) & 0x0F) * 32.0f;
spdi->tRAS = (uint16_t)(tns/tCK + ROUNDING_FACTOR);
// Row Cycle Time
tns = (uint8_t)get_spd(slot_idx, 29) * 0.125f +
(uint8_t)(get_spd(slot_idx, 27) >> 4) * 32.0f;
spdi->tRC = (uint16_t)(tns/tCK + ROUNDING_FACTOR);
}
// Module manufacturer
spdi->jedec_code = ((uint16_t)(get_spd(slot_idx, 320) & 0x1F)) << 8;
spdi->jedec_code |= get_spd(slot_idx, 321) & 0x7F;
read_sku(spdi->sku, slot_idx, 329, 20);
spdi->fab_year = bcd_to_ui8(get_spd(slot_idx, 323));
spdi->fab_week = bcd_to_ui8(get_spd(slot_idx, 324));
spdi->isValid = true;
}
static void parse_spd_ddr3(spd_info *spdi, uint8_t slot_idx)
{
spdi->type = "DDR3";
// Compute module size in MB with shifts
spdi->module_size = 1U << (
((get_spd(slot_idx, 4) & 0xF) + 5) + // Total SDRAM capacity: (256 Mbits << byte4[3:0]) / 1 KB
((get_spd(slot_idx, 8) & 0x7) + 3) - // Primary Bus Width: 8 << byte8[2:0]
((get_spd(slot_idx, 7) & 0x7) + 2) // SDRAM Device Width: 4 << byte7[2:0]
);
spdi->module_size *= ((get_spd(slot_idx, 7) >> 3) & 0x7) + 1; // Number of Ranks: byte7[5:3]
spdi->hasECC = (((get_spd(slot_idx, 8) >> 3) & 1) == 1);
uint8_t tck = get_spd(slot_idx, 12);
uint8_t tck2 = get_spd(slot_idx, 221);
if (get_spd(slot_idx, 176) == 0x0C && get_spd(slot_idx, 177) == 0x4A) {
tck = get_spd(slot_idx, 186);
// Check if profile #2 is faster
if (tck2 > 5 && tck2 < tck) {
tck = tck2;
}
spdi->XMP = 1;
}
// Module jedec speed
switch (tck) {
default:
spdi->freq = 0;
break;
case 20:
spdi->freq = 800;
break;
case 15:
spdi->freq = 1066;
break;
case 12:
spdi->freq = 1333;
break;
case 10:
spdi->freq = 1600;
break;
case 9:
spdi->freq = 1866;
break;
case 8:
spdi->freq = 2133;
break;
case 7:
spdi->freq = 2400;
break;
case 6:
spdi->freq = 2666;
break;
}
// Module Timings
float tckns, tns, mtb;
if (spdi->XMP == 1) {
// ------------------
// XMP Specifications
// ------------------
float mtb_dividend = get_spd(slot_idx, 180);
float mtb_divisor = get_spd(slot_idx, 181);
mtb = (mtb_divisor == 0) ? 0.125f : mtb_dividend / mtb_divisor;
tckns = (float)get_spd(slot_idx, 186);
// XMP Draft with non-standard MTB divisors (!= 0.125)
if (mtb_divisor == 12.0f && tckns == 10.0f) {
spdi->freq = 2400;
} else if (mtb_divisor == 14.0f && tckns == 15.0f) {
spdi->freq = 1866;
}
if (spdi->freq >= 1866 && mtb_divisor == 8.0f) {
tckns -= 0.4f;
}
tckns *= mtb;
// CAS# Latency
tns = get_spd(slot_idx, 187);
spdi->tCL = (uint16_t)((tns*mtb)/tckns + ROUNDING_FACTOR);
// RAS# to CAS# Latency
tns = get_spd(slot_idx, 192);
spdi->tRCD = (uint16_t)((tns*mtb)/tckns + ROUNDING_FACTOR);
// RAS# Precharge
tns = get_spd(slot_idx, 191);
spdi->tRP = (uint16_t)((tns*mtb)/tckns + ROUNDING_FACTOR);
// Row Active Time
tns = (uint16_t)((get_spd(slot_idx, 194) & 0x0F) << 8 |
get_spd(slot_idx, 195));
spdi->tRAS = (uint16_t)((tns*mtb)/tckns + ROUNDING_FACTOR);
// Row Cycle Time
tns = (uint16_t)((get_spd(slot_idx, 194) & 0xF0) << 4 |
get_spd(slot_idx, 196));
spdi->tRC = (uint16_t)((tns*mtb)/tckns + ROUNDING_FACTOR);
} else {
// --------------------
// JEDEC Specifications
// --------------------
mtb = 0.125f;
tckns = (uint8_t)get_spd(slot_idx, 12) * mtb +
(int8_t)get_spd(slot_idx, 34) * 0.001f;
// CAS# Latency
tns = (uint8_t)get_spd(slot_idx, 16) * mtb +
(int8_t)get_spd(slot_idx, 35) * 0.001f;
spdi->tCL = (uint16_t)(tns/tckns + ROUNDING_FACTOR);
// RAS# to CAS# Latency
tns = (uint8_t)get_spd(slot_idx, 18) * mtb +
(int8_t)get_spd(slot_idx, 36) * 0.001f;
spdi->tRCD = (uint16_t)(tns/tckns + ROUNDING_FACTOR);
// RAS# Precharge
tns = (uint8_t)get_spd(slot_idx, 20) * mtb +
(int8_t)get_spd(slot_idx, 37) * 0.001f;
spdi->tRP = (uint16_t)(tns/tckns + ROUNDING_FACTOR);
// Row Active Time
tns = (uint8_t)get_spd(slot_idx, 22) * mtb +
(uint8_t)(get_spd(slot_idx, 21) & 0x0F) * 32.0f;
spdi->tRAS = (uint16_t)(tns/tckns + ROUNDING_FACTOR);
// Row Cycle Time
tns = (uint8_t)get_spd(slot_idx, 23) * mtb +
(uint8_t)(get_spd(slot_idx, 21) >> 4) * 32.0f + 1;
spdi->tRC = (uint16_t)(tns/tckns + ROUNDING_FACTOR);
}
// Module manufacturer
spdi->jedec_code = ((uint16_t)(get_spd(slot_idx, 117) & 0x1F)) << 8;
spdi->jedec_code |= get_spd(slot_idx, 118) & 0x7F;
read_sku(spdi->sku, slot_idx, 128, 18);
spdi->fab_year = bcd_to_ui8(get_spd(slot_idx, 120));
spdi->fab_week = bcd_to_ui8(get_spd(slot_idx, 121));
spdi->isValid = true;
}
static void parse_spd_ddr2(spd_info *spdi, uint8_t slot_idx)
{
spdi->type = "DDR2";
// Compute module size in MB
switch (get_spd(slot_idx, 31)) {
case 1:
spdi->module_size = 1024;
break;
case 2:
spdi->module_size = 2048;
break;
case 4:
spdi->module_size = 4096;
break;
case 8:
spdi->module_size = 8192;
break;
case 16:
spdi->module_size = 16384;
break;
case 32:
spdi->module_size = 128;
break;
case 64:
spdi->module_size = 256;
break;
default:
case 128:
spdi->module_size = 512;
break;
}
spdi->module_size *= (get_spd(slot_idx, 5) & 7) + 1;
spdi->hasECC = ((get_spd(slot_idx, 11) >> 1) == 1);
float tckns, tns;
uint8_t tbyte;
// Module EPP Detection (we only support Full profiles)
uint8_t epp_offset = 0;
if (get_spd(slot_idx, 99) == 0x6D && get_spd(slot_idx, 102) == 0xB1) {
epp_offset = (get_spd(slot_idx, 103) & 0x3) * 12;
tbyte = get_spd(slot_idx, 109 + epp_offset);
spdi->XMP = 20;
} else {
tbyte = get_spd(slot_idx, 9);
}
// Module speed
tckns = (tbyte & 0xF0) >> 4;
tbyte &= 0xF;
if (tbyte < 10) {
tckns += (tbyte & 0xF) * 0.1f;
} else if (tbyte == 10) {
tckns += 0.25f;
} else if (tbyte == 11) {
tckns += 0.33f;
} else if (tbyte == 12) {
tckns += 0.66f;
} else if (tbyte == 13) {
tckns += 0.75f;
} else if (tbyte == 14) { // EPP Specific
tckns += 0.875f;
}
spdi->freq = (float)(1.0f / tckns * 1000.0f * 2.0f);
if (spdi->XMP == 20) {
// Module Timings (EPP)
// CAS# Latency
tbyte = get_spd(slot_idx, 110 + epp_offset);
for (int shft = 0; shft < 7; shft++) {
if ((tbyte >> shft) & 1) {
spdi->tCL = shft;
}
}
// RAS# to CAS# Latency
tbyte = get_spd(slot_idx, 111 + epp_offset);
tns = ((tbyte & 0xFC) >> 2) + (tbyte & 0x3) * 0.25f;
spdi->tRCD = (uint16_t)(tns/tckns + ROUNDING_FACTOR);
// RAS# Precharge
tbyte = get_spd(slot_idx, 112 + epp_offset);
tns = ((tbyte & 0xFC) >> 2) + (tbyte & 0x3) * 0.25f;
spdi->tRP = (uint16_t)(tns/tckns + ROUNDING_FACTOR);
// Row Active Time
tns = get_spd(slot_idx, 113 + epp_offset);
spdi->tRAS = (uint16_t)(tns/tckns + ROUNDING_FACTOR);
} else {
// Module Timings (JEDEC)
// CAS# Latency
tbyte = get_spd(slot_idx, 18);
for (int shft = 0; shft < 7; shft++) {
if ((tbyte >> shft) & 1) {
spdi->tCL = shft;
}
}
// RAS# to CAS# Latency
tbyte = get_spd(slot_idx, 29);
tns = ((tbyte & 0xFC) >> 2) + (tbyte & 0x3) * 0.25f;
spdi->tRCD = (uint16_t)(tns/tckns + ROUNDING_FACTOR);
// RAS# Precharge
tbyte = get_spd(slot_idx, 27);
tns = ((tbyte & 0xFC) >> 2) + (tbyte & 0x3) * 0.25f;
spdi->tRP = (uint16_t)(tns/tckns + ROUNDING_FACTOR);
// Row Active Time
tns = get_spd(slot_idx, 30);
spdi->tRAS = (uint16_t)(tns/tckns + ROUNDING_FACTOR);
}
// Module manufacturer
uint8_t contcode;
for (contcode = 64; contcode < 72; contcode++) {
if (get_spd(slot_idx, contcode) != 0x7F) {
break;
}
}
spdi->jedec_code = ((uint16_t)(contcode - 64)) << 8;
spdi->jedec_code |= get_spd(slot_idx, contcode) & 0x7F;
read_sku(spdi->sku, slot_idx, 73, 18);
spdi->fab_year = bcd_to_ui8(get_spd(slot_idx, 93));
spdi->fab_week = bcd_to_ui8(get_spd(slot_idx, 94));
spdi->isValid = true;
}
static void parse_spd_ddr(spd_info *spdi, uint8_t slot_idx)
{
spdi->type = "DDR";
// Compute module size in MB
switch (get_spd(slot_idx, 31)) {
case 1:
spdi->module_size = 1024;
break;
case 2:
spdi->module_size = 2048;
break;
case 4:
spdi->module_size = 4096;
break;
case 8:
spdi->module_size = 32;
break;
case 16:
spdi->module_size = 64;
break;
case 32:
spdi->module_size = 128;
break;
case 64:
spdi->module_size = 256;
break;
case 128:
spdi->module_size = 512;
break;
default: // we don't support asymmetric banking
spdi->module_size = 0;
break;
}
spdi->module_size *= get_spd(slot_idx, 5);
spdi->hasECC = ((get_spd(slot_idx, 11) >> 1) == 1);
// Module speed
float tns, tckns;
uint8_t spd_byte9 = get_spd(slot_idx, 9);
tckns = (spd_byte9 >> 4) + (spd_byte9 & 0xF) * 0.1f;
spdi->freq = (uint16_t)(1.0f / tckns * 1000.0f * 2.0f);
// Module Timings
uint8_t spd_byte18 = get_spd(slot_idx, 18);
for (int shft = 0; shft < 7; shft++) {
if ((spd_byte18 >> shft) & 1) {
spdi->tCL = 1.0f + shft * 0.5f;
// Check tCL decimal (x.5 CAS)
if (shft == 1 || shft == 3 || shft == 5) {
spdi->tCL_dec = 5;
} else {
spdi->tCL_dec = 0;
}
}
}
tns = (get_spd(slot_idx, 29) >> 2) +
(get_spd(slot_idx, 29) & 0x3) * 0.25f;
spdi->tRCD = (uint16_t)(tns/tckns + ROUNDING_FACTOR);
tns = (get_spd(slot_idx, 27) >> 2) +
(get_spd(slot_idx, 27) & 0x3) * 0.25f;
spdi->tRP = (uint16_t)(tns/tckns + ROUNDING_FACTOR);
spdi->tRAS = (uint16_t)((float)get_spd(slot_idx, 30)/tckns + ROUNDING_FACTOR);
// Module manufacturer
uint8_t contcode;
for (contcode = 64; contcode < 72; contcode++) {
if (get_spd(slot_idx, contcode) != 0x7F) {
break;
}
}
spdi->jedec_code = (contcode - 64) << 8;
spdi->jedec_code |= get_spd(slot_idx, contcode) & 0x7F;
read_sku(spdi->sku, slot_idx, 73, 18);
spdi->fab_year = bcd_to_ui8(get_spd(slot_idx, 93));
spdi->fab_week = bcd_to_ui8(get_spd(slot_idx, 94));
spdi->isValid = true;
}
static void parse_spd_rdram(spd_info *spdi, uint8_t slot_idx)
{
spdi->type = "RDRAM";
// Compute module size in MB
uint8_t tbyte = get_spd(slot_idx, 5);
switch(tbyte) {
case 0x84:
spdi->module_size = 8;
break;
case 0xC5:
spdi->module_size = 16;
break;
default:
return;
}
spdi->module_size *= get_spd(slot_idx, 99);
tbyte = get_spd(slot_idx, 4);
if (tbyte > 0x96) {
spdi->module_size *= 1 + (((tbyte & 0xF0) >> 4) - 9) + ((tbyte & 0xF) - 6);
}
spdi->hasECC = (get_spd(slot_idx, 100) == 0x12) ? true : false;
// Module speed
tbyte = get_spd(slot_idx, 15);
switch(tbyte) {
case 0x1A:
spdi->freq = 600;
break;
case 0x15:
spdi->freq = 711;
break;
case 0x13:
spdi->freq = 800;
break;
case 0xe:
spdi->freq = 1066;
break;
case 0xc:
spdi->freq = 1200;
break;
default:
return;
}
// Module Timings
spdi->tCL = get_spd(slot_idx, 14);
spdi->tRCD = get_spd(slot_idx, 12);
spdi->tRP = get_spd(slot_idx, 10);
spdi->tRAS = get_spd(slot_idx, 11);
// Module manufacturer
uint8_t contcode;
for (contcode = 64; contcode < 72; contcode++) {
if (get_spd(slot_idx, contcode) != 0x7F) {
break;
}
}
spdi->jedec_code = ((uint16_t)(contcode - 64)) << 8;
spdi->jedec_code |= get_spd(slot_idx, contcode) & 0x7F;
read_sku(spdi->sku, slot_idx, 73, 18);
spdi->fab_year = bcd_to_ui8(get_spd(slot_idx, 93));
spdi->fab_week = bcd_to_ui8(get_spd(slot_idx, 94));
spdi->isValid = true;
}
static void parse_spd_sdram(spd_info *spdi, uint8_t slot_idx)
{
spdi->type = "SDRAM";
uint8_t spd_byte3 = get_spd(slot_idx, 3) & 0x0F; // Number of Row Addresses (2 x 4 bits, upper part used if asymmetrical banking used)
uint8_t spd_byte4 = get_spd(slot_idx, 4) & 0x0F; // Number of Column Addresses (2 x 4 bits, upper part used if asymmetrical banking used)
uint8_t spd_byte5 = get_spd(slot_idx, 5); // Number of Banks on module (8 bits)
uint8_t spd_byte17 = get_spd(slot_idx, 17); // SDRAM Device Attributes, Number of Banks on the discrete SDRAM Device (8 bits)
// Size in MB
if ( (spd_byte3 != 0)
&& (spd_byte4 != 0)
&& (spd_byte3 + spd_byte4 > 17)
&& (spd_byte3 + spd_byte4 <= 29)
&& (spd_byte5 <= 8)
&& (spd_byte17 <= 8)
) {
spdi->module_size = (1U << (spd_byte3 + spd_byte4 - 17)) * ((uint16_t)spd_byte5 * spd_byte17);
} else {
spdi->module_size = 0;
}
spdi->hasECC = ((get_spd(slot_idx, 11) >> 1) == 1);
// Module speed
float tns, tckns;
uint8_t spd_byte9 = get_spd(slot_idx, 9);
tckns = (spd_byte9 >> 4) + (spd_byte9 & 0xF) * 0.1f;
spdi->freq = (uint16_t)(1000.0f / tckns);
// Module Timings
uint8_t spd_byte18 = get_spd(slot_idx, 18);
for (int shft = 0; shft < 7; shft++) {
if ((spd_byte18 >> shft) & 1) {
spdi->tCL = shft + 1;
}
}
tns = get_spd(slot_idx, 29);
spdi->tRCD = (uint16_t)(tns/tckns + ROUNDING_FACTOR);
tns = get_spd(slot_idx, 27);
spdi->tRP = (uint16_t)(tns/tckns + ROUNDING_FACTOR);
spdi->tRAS = (uint16_t)(get_spd(slot_idx, 30)/tckns + ROUNDING_FACTOR);
// Module manufacturer
uint8_t contcode;
for (contcode = 64; contcode < 72; contcode++) {
if (get_spd(slot_idx, contcode) != 0x7F) {
break;
}
}
spdi->jedec_code = ((uint16_t)(contcode - 64)) << 8;
spdi->jedec_code |= get_spd(slot_idx, contcode) & 0x7F;
read_sku(spdi->sku, slot_idx, 73, 18);
spdi->fab_year = bcd_to_ui8(get_spd(slot_idx, 93));
spdi->fab_week = bcd_to_ui8(get_spd(slot_idx, 94));
spdi->isValid = true;
}
// --------------------------
// SMBUS Controller Functions
// --------------------------
static bool setup_smb_controller(void)
{
uint16_t vid, did;
for (smbdev = 0; smbdev < 32; smbdev++) {
for (smbfun = 0; smbfun < 8; smbfun++) {
vid = pci_config_read16(0, smbdev, smbfun, 0);
if (vid != 0xFFFF) {
did = pci_config_read16(0, smbdev, smbfun, 2);
if (did != 0xFFFF) {
if (find_smb_controller(vid, did)) {
return true;
}
}
}
}
}
smbus_id = 0;
return false;
}
// ----------------------------------------------------------
// WARNING: Be careful when adding a controller ID!
// Incorrect SMB accesses (ie: on bank switch) can brick your
// motherboard or your memory module.
// ----
// No Pull Request including a new SMBUS Controller will be
// accepted without a proof (screenshot) that it has been
// tested successfully on a real motherboard.
// ----------------------------------------------------------
// PCI device IDs for Intel i801 SMBus controller.
static const uint16_t intel_ich5_dids[] =
{
0x2413, // 82801AA (ICH)
0x2423, // 82801AB (ICH)
0x2443, // 82801BA (ICH2)
0x2483, // 82801CA (ICH3)
0x24C3, // 82801DB (ICH4)
0x24D3, // 82801E (ICH5)
0x25A4, // 6300ESB
0x266A, // 82801F (ICH6)
0x269B, // 6310ESB/6320ESB
0x27DA, // 82801G (ICH7)
0x283E, // 82801H (ICH8)
0x2930, // 82801I (ICH9)
0x5032, // EP80579 (Tolapai)
0x3A30, // ICH10
0x3A60, // ICH10
0x3B30, // 5/3400 Series (PCH)
0x1C22, // 6 Series (PCH)
0x1D22, // Patsburg (PCH)
0x1D70, // Patsburg (PCH) IDF
0x1D71, // Patsburg (PCH) IDF
0x1D72, // Patsburg (PCH) IDF
0x2330, // DH89xxCC (PCH)
0x1E22, // Panther Point (PCH)
0x8C22, // Lynx Point (PCH)
0x9C22, // Lynx Point-LP (PCH)
0x1F3C, // Avoton (SOC)
0x8D22, // Wellsburg (PCH)
0x8D7D, // Wellsburg (PCH) MS
0x8D7E, // Wellsburg (PCH) MS
0x8D7F, // Wellsburg (PCH) MS
0x23B0, // Coleto Creek (PCH)
0x8CA2, // Wildcat Point (PCH)
0x9CA2, // Wildcat Point-LP (PCH)
0x0F12, // BayTrail (SOC)
0x2292, // Braswell (SOC)
0xA123, // Sunrise Point-H (PCH)
0x9D23, // Sunrise Point-LP (PCH)
0x19DF, // Denverton (SOC)
0x1BC9, // Emmitsburg (PCH)
0xA1A3, // Lewisburg (PCH)
0xA223, // Lewisburg Super (PCH)
0xA2A3, // Kaby Lake (PCH-H)
0x31D4, // Gemini Lake (SOC)
0xA323, // Cannon Lake-H (PCH)
0x9DA3, // Cannon Lake-LP (PCH)
0x18DF, // Cedar Fork (PCH)
0x34A3, // Ice Lake-LP (PCH)
0x38A3, // Ice Lake-N (PCH)
0x02A3, // Comet Lake (PCH)
0x06A3, // Comet Lake-H (PCH)
0x4B23, // Elkhart Lake (PCH)
0xA0A3, // Tiger Lake-LP (PCH)
0x43A3, // Tiger Lake-H (PCH)
0x4DA3, // Jasper Lake (SOC)
0xA3A3, // Comet Lake-V (PCH)
0x7AA3, // Alder Lake-S (PCH)
0x51A3, // Alder Lake-P (PCH)
0x54A3, // Alder Lake-M (PCH)
0x7A23, // Raptor Lake-S (PCH)
};
static bool find_in_did_array(uint16_t did, const uint16_t * ids, unsigned int size)
{
for (unsigned int i = 0; i < size; i++) {
if (*ids++ == did) {
return true;
}
}
return false;
}
static bool find_smb_controller(uint16_t vid, uint16_t did)
{
smbus_id = (((uint32_t)vid) << 16) | did;
switch(vid)
{
case PCI_VID_INTEL:
{
if (find_in_did_array(did, intel_ich5_dids, sizeof(intel_ich5_dids) / sizeof(intel_ich5_dids[0]))) {
return ich5_get_smb();
}
if (did == 0x7113) { // 82371AB/EB/MB PIIX4
return piix4_get_smb(PIIX4_SMB_BASE_ADR_DEFAULT);
}
// 0x719B 82440/82443MX PMC - PIIX4
// 0x0F13 ValleyView SMBus Controller ?
// 0x8119 US15W ?
return false;
}
case PCI_VID_HYGON:
case PCI_VID_AMD:
switch(did)
{
// case 0x740B: // AMD756
// case 0x7413: // AMD766
// case 0x7443: // AMD768
// case 0x746B: // AMD8111_SMBUS
// case 0x746A: // AMD8111_SMBUS2
case 0x780B: // AMD FCH (Pre-Zen)
return amd_sb_get_smb();
case 0x790B: // AMD FCH (Zen 2/3)
return fch_zen_get_smb();
default:
return false;
}
break;
case PCI_VID_ATI:
switch(did)
{
// case 0x4353: // SB200
// case 0x4363: // SB300
case 0x4372: // SB400
return piix4_get_smb(PIIX4_SMB_BASE_ADR_DEFAULT);
case 0x4385: // SB600+
return amd_sb_get_smb();
default:
return false;
}
break;
case PCI_VID_NVIDIA:
switch(did)
{
// case 0x01B4: // nForce
case 0x0064: // nForce 2
// case 0x0084: // nForce 2 Mobile
case 0x00E4: // nForce 3
// case 0x0034: // MCP04
// case 0x0052: // nForce 4
case 0x0264: // nForce 410/430 MCP
case 0x03EB: // nForce 630a
// case 0x0446: // nForce 520
// case 0x0542: // nForce 560
case 0x0752: // nForce 720a
// case 0x07D8: // nForce 630i
// case 0x0AA2: // nForce 730i
// case 0x0D79: // MCP89
case 0x0368: // nForce 680a/680i/780i/790i
return nv_mcp_get_smb();
default:
return false;
}
break;
case PCI_VID_SIS:
switch(did)
{
// case 0x0008:
// SiS5595, SiS630 or other SMBus controllers - it's complicated.
// case 0x0016:
// SiS961/2/3, known as "SiS96x" SMBus controllers.
// case 0x0018:
// case 0x0964:
// SiS630 SMBus controllers.
default:
return false;
}
break;
case PCI_VID_VIA:
switch(did)
{
// case 0x3040: // 82C586_3
// via SMBus controller.
// case 0x3050: // 82C596_3
// Try SMB base address = 0x90, then SMB base address = 0x80
// viapro SMBus controller, i.e. PIIX4 with a small quirk.
// case 0x3051: // 82C596B_3
case 0x3057: // 82C686_4
// case 0x8235: // 8231_4
// SMB base address = 0x90
// viapro SMBus controller, i.e. PIIX4.
return piix4_get_smb(PIIX4_SMB_BASE_ADR_DEFAULT);
case 0x3074: // 8233
case 0x3147: // 8233A
case 0x3177: // 8235
case 0x3227: // 8237
// case 0x3337: // 8237A
// case 0x3372: // 8237S
// case 0x3287: // 8251
// case 0x8324: // CX700
// case 0x8353: // VX800
// case 0x8409: // VX855
// case 0x8410: // VX900
// SMB base address = 0xD0
// viapro I2C controller, i.e. PIIX4 with a small quirk.
return piix4_get_smb(PIIX4_SMB_BASE_ADR_VIAPRO);
default:
return false;
}
break;
case PCI_VID_EFAR:
switch(did)
{
// case 0x9463: // SLC90E66_3: PIIX4
default:
return false;
}
break;
case PCI_VID_ALI:
switch(did)
{
case 0x7101: // ALi M1533/1535/1543C
return ali_get_smb(PIIX4_SMB_BASE_ADR_ALI1543);
case 0x1563: // ALi M1563
return piix4_get_smb(PIIX4_SMB_BASE_ADR_ALI1563);
default:
return false;
}
break;
case PCI_VID_SERVERWORKS:
switch(did)
{
case 0x0201: // CSB5
// From Linux i2c-piix4 driver: unlike its siblings, this model needs a quirk.
extra_initial_sleep_for_smb_transaction = 2100 - 500;
// Fall through.
// case 0x0200: // OSB4
// case 0x0203: // CSB6
// case 0x0205: // HT1000SB
// case 0x0408: // HT1100LD
return piix4_get_smb(PIIX4_SMB_BASE_ADR_DEFAULT);
default:
return false;
}
break;
default:
return false;
}
return false;
}
// ----------------------
// PIIX4 SMBUS Controller
// ----------------------
static bool piix4_get_smb(uint8_t address)
{
uint16_t x = pci_config_read16(0, smbdev, smbfun, address) & 0xFFF0;
if (x != 0) {
smbusbase = x;
return true;
}
return false;
}
// ----------------------------
// i801 / ICH5 SMBUS Controller
// ----------------------------
static bool ich5_get_smb(void)
{
uint16_t x;
// Enable SMBus IO Space if disabled
x = pci_config_read16(0, smbdev, smbfun, 0x4);
if (!(x & 1)) {
pci_config_write16(0, smbdev, smbfun, 0x4, x | 1);
}
// Read Base Address
x = pci_config_read16(0, smbdev, smbfun, 0x20);
smbusbase = x & 0xFFF0;
// Enable I2C Host Controller Interface if disabled
uint8_t temp = pci_config_read8(0, smbdev, smbfun, 0x40);
if ((temp & 4) == 0) {
pci_config_write8(0, smbdev, smbfun, 0x40, temp | 0x04);
}
// Reset SMBUS Controller
__outb(__inb(SMBHSTSTS) & 0x1F, SMBHSTSTS);
usleep(1000);
return (smbusbase != 0);
}
// --------------------
// AMD SMBUS Controller
// --------------------
static bool amd_sb_get_smb(void)
{
uint8_t rev_id;
uint16_t pm_reg;
rev_id = pci_config_read8(0, smbdev, smbfun, 0x08);
if ((smbus_id & 0xFFFF) == 0x4385 && rev_id <= 0x3D) {
// Older AMD SouthBridge (SB700 & older) use PIIX4 registers
return piix4_get_smb(PIIX4_SMB_BASE_ADR_DEFAULT);
} else if ((smbus_id & 0xFFFF) == 0x780B && rev_id == 0x42) {
// Latest Pre-Zen APUs use the newer Zen PM registers
return fch_zen_get_smb();
} else {
// AMD SB (SB800 up to pre-FT3/FP4/AM4) uses specific registers
__outb(AMD_SMBUS_BASE_REG + 1, AMD_INDEX_IO_PORT);
pm_reg = __inb(AMD_DATA_IO_PORT) << 8;
__outb(AMD_SMBUS_BASE_REG, AMD_INDEX_IO_PORT);
pm_reg |= __inb(AMD_DATA_IO_PORT) & 0xE0;
if (pm_reg != 0xFFE0 && pm_reg != 0) {
smbusbase = pm_reg;
return true;
}
}
return false;
}
static bool fch_zen_get_smb(void)
{
uint16_t pm_reg;
__outb(AMD_PM_INDEX + 1, AMD_INDEX_IO_PORT);
pm_reg = __inb(AMD_DATA_IO_PORT) << 8;
__outb(AMD_PM_INDEX, AMD_INDEX_IO_PORT);
pm_reg |= __inb(AMD_DATA_IO_PORT);
// Special case for AMD Family 19h & Extended Model > 4 (get smb address in memory)
if ((imc.family == IMC_K19_CZN || imc.family == IMC_K19_RPL) && pm_reg == 0xFFFF) {
smbusbase = ((*(const uint32_t *)(0xFED80000 + 0x300) >> 8) & 0xFF) << 8;
return true;
}
// Check if IO Smbus is enabled.
if ((pm_reg & 0x10) == 0) {
return false;
}
if ((pm_reg & 0xFF00) != 0) {
smbusbase = pm_reg & 0xFF00;
return true;
}
return false;
}
// -----------------------
// nVidia SMBUS Controller
// -----------------------
static bool nv_mcp_get_smb(void)
{
int smbus_base_adr;
if ((smbus_id & 0xFFFF) >= 0x200) {
smbus_base_adr = NV_SMBUS_ADR_REG;
} else {
smbus_base_adr = NV_OLD_SMBUS_ADR_REG;
}
// nForce SB has 2 I2C Busses. SPD is located on first I2C Bus.
uint16_t x = pci_config_read16(0, smbdev, smbfun, smbus_base_adr) & 0xFFFC;
if (x != 0) {
smbusbase = x;
return true;
}
return false;
}
// ---------------------------------------
// ALi SMBUS Controller (M1533/1535/1543C)
// ---------------------------------------
static bool ali_get_smb(uint8_t address)
{
// Enable SMB I/O Base Address Register Control (Reg0x5B[2] = 0)
uint16_t temp = pci_config_read8(0, smbdev, smbfun, 0x5B);
pci_config_write8(0, smbdev, smbfun, 0x5B, temp & ~0x06);
// Enable Response to I/O Access. (Reg0x04[0] = 1)
temp = pci_config_read8(0, smbdev, smbfun, 0x04);
pci_config_write8(0, smbdev, smbfun, 0x04, temp | 0x01);
// SMB Host Controller Interface Enable (Reg0xE0[0] = 1)
temp = pci_config_read8(0, smbdev, smbfun, 0xE0);
pci_config_write8(0, smbdev, smbfun, 0xE0, temp | 0x01);
// Read SMBase Register (usually 0xE800)
uint16_t x = pci_config_read16(0, smbdev, smbfun, address) & 0xFFF0;
if (x != 0) {
smbusbase = x;
return true;
}
return false;
}
// ------------------
// get_spd() function
// ------------------
static uint8_t get_spd(uint8_t slot_idx, uint16_t spd_adr)
{
switch ((smbus_id >> 16) & 0xFFFF) {
case PCI_VID_ALI:
if ((smbus_id & 0xFFFF) == 0x7101)
return ali_m1543_read_spd_byte(slot_idx, (uint8_t)spd_adr);
else
return ali_m1563_read_spd_byte(slot_idx, (uint8_t)spd_adr);
case PCI_VID_NVIDIA:
return nf_read_spd_byte(slot_idx, (uint8_t)spd_adr);
default:
return ich5_read_spd_byte(slot_idx, spd_adr);
}
}
/*************************************************************************************
/ ***************************** WARNING *****************************
/ ************************************************************************************
/ Be absolutely sure to know what you're doing before changing the function below!
/ You can easily WRITE into the SPD (especially with DDR5) and corrupt it
/ /!\ Your RAM modules will not work anymore /!\
/ *************************************************************************************/
static uint8_t ich5_read_spd_byte(uint8_t smbus_adr, uint16_t spd_adr)
{
smbus_adr += 0x50;
if (dmi_memory_device->type == DMI_DDR4) {
// Switch page if needed (DDR4)
if (spd_adr > 0xFF && spd_page != 1) {
__outb((0x37 << 1) | I2C_WRITE, SMBHSTADD);
__outb(SMBHSTCNT_BYTE_DATA, SMBHSTCNT);
ich5_process(); // return should 0x42 or 0x44
spd_page = 1;
} else if (spd_adr <= 0xFF && spd_page != 0) {
__outb((0x36 << 1) | I2C_WRITE, SMBHSTADD);
__outb(SMBHSTCNT_BYTE_DATA, SMBHSTCNT);
ich5_process();
spd_page = 0;
}
if (spd_adr > 0xFF) {
spd_adr -= 0x100;
}
} else if (dmi_memory_device->type == DMI_DDR5) {
// Switch page if needed (DDR5)
uint8_t adr_page = spd_adr / 128;
if (adr_page != spd_page || last_adr != smbus_adr) {
__outb((smbus_adr << 1) | I2C_WRITE, SMBHSTADD);
__outb(SPD5_MR11 & 0x7F, SMBHSTCMD);
__outb(adr_page, SMBHSTDAT0);
__outb(SMBHSTCNT_BYTE_DATA, SMBHSTCNT);
ich5_process();
spd_page = adr_page;
last_adr = smbus_adr;
}
spd_adr -= adr_page * 128;
spd_adr |= 0x80;
}
__outb((smbus_adr << 1) | I2C_READ, SMBHSTADD);
__outb(spd_adr, SMBHSTCMD);
__outb(SMBHSTCNT_BYTE_DATA, SMBHSTCNT);
if (ich5_process() == 0) {
return __inb(SMBHSTDAT0);
} else {
return 0xFF;
}
}
static uint8_t ich5_process(void)
{
uint8_t status;
uint16_t timeout = 0;
status = __inb(SMBHSTSTS) & 0x1F;
if (status != 0x00) {
__outb(status, SMBHSTSTS);
usleep(500);
if ((status = (0x1F & __inb(SMBHSTSTS))) != 0x00) {
return 1;
}
}
__outb(__inb(SMBHSTCNT) | SMBHSTCNT_START, SMBHSTCNT);
// Some SMB controllers need this quirk.
if (extra_initial_sleep_for_smb_transaction) {
usleep(extra_initial_sleep_for_smb_transaction);
}
do {
usleep(500);
status = __inb(SMBHSTSTS);
} while ((status & 0x01) && (timeout++ < 100));
if (timeout >= 100) {
return 2;
}
if (status & 0x1C) {
return status;
}
if ((__inb(SMBHSTSTS) & 0x1F) != 0x00) {
__outb(inb(SMBHSTSTS), SMBHSTSTS);
}
return 0;
}
static uint8_t nf_read_spd_byte(uint8_t smbus_adr, uint8_t spd_adr)
{
int i;
smbus_adr += 0x50;
// Set Slave ADR
__outb(smbus_adr << 1, NVSMBADD);
// Set Command (SPD Byte to Read)
__outb(spd_adr, NVSMBCMD);
// Start transaction
__outb(NVSMBCNT_BYTE_DATA | NVSMBCNT_READ, NVSMBCNT);
// Wait until transaction complete
for (i = 500; i > 0; i--) {
usleep(50);
if (__inb(NVSMBCNT) == 0) {
break;
}
}
// If timeout or Error Status, quit
if (i == 0 || __inb(NVSMBSTS) & NVSMBSTS_STATUS) {
return 0xFF;
}
return __inb(NVSMBDAT(0));
}
static uint8_t ali_m1563_read_spd_byte(uint8_t smbus_adr, uint8_t spd_adr)
{
int i;
smbus_adr += 0x50;
// Reset Status Register
__outb(0xFF, SMBHSTSTS);
// Set Slave ADR
__outb((smbus_adr << 1 | I2C_READ), SMBHSTADD);
__outb((__inb(SMBHSTCNT) & ~ALI_SMBHSTCNT_SIZEMASK) | (ALI_SMBHSTCNT_BYTE_DATA << 3), SMBHSTCNT);
// Set Command (SPD Byte to Read)
__outb(spd_adr, SMBHSTCMD);
// Start transaction
__outb(__inb(SMBHSTCNT) | SMBHSTCNT_START, SMBHSTCNT);
// Wait until transaction complete
for (i = 500; i > 0; i--) {
usleep(50);
if (!(__inb(SMBHSTSTS) & SMBHSTSTS_HOST_BUSY)) {
break;
}
}
// If timeout or Error Status, exit
if (i == 0 || __inb(SMBHSTSTS) & ALI_SMBHSTSTS_BAD) {
return 0xFF;
}
return __inb(SMBHSTDAT0);
}
static uint8_t ali_m1543_read_spd_byte(uint8_t smbus_adr, uint8_t spd_adr)
{
int i;
smbus_adr += 0x50;
// Reset Status Register
__outb(0xFF, SMBHSTSTS);
// Set Slave ADR
__outb((smbus_adr << 1 | I2C_READ), ALI_OLD_SMBHSTADD);
// Set Command (SPD Byte to Read)
__outb(spd_adr, ALI_OLD_SMBHSTCMD);
// Start transaction
__outb(ALI_OLD_SMBHSTCNT_BYTE_DATA, ALI_OLD_SMBHSTCNT);
__outb(0xFF, ALI_OLD_SMBHSTSTART);
// Wait until transaction complete
for (i = 500; i > 0; i--) {
usleep(50);
if (!(__inb(SMBHSTSTS) & ALI_OLD_SMBHSTSTS_BUSY)) {
break;
}
}
// If timeout or Error Status, exit
if (i == 0 || __inb(SMBHSTSTS) & ALI_OLD_SMBHSTSTS_BAD) {
return 0xFF;
}
return __inb(ALI_OLD_SMBHSTDAT0);
}