memtest86plus/system/usbhcd.c
2022-01-23 17:38:50 +00:00

722 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2021-2022 Martin Whitaker.
#include "keyboard.h"
#include "memrw32.h"
#include "pci.h"
#include "screen.h"
#include "usb.h"
#include "vmem.h"
#include "ehci.h"
#include "ohci.h"
#include "xhci.h"
#include "print.h"
#include "unistd.h"
#include "usbhcd.h"
//------------------------------------------------------------------------------
// Constants
//------------------------------------------------------------------------------
#define MAX_USB_CONTROLLERS 8 // an arbitrary limit - must match the initialisation of usb_controllers
#define MILLISEC 1000 // in microseconds
//------------------------------------------------------------------------------
// Types
//------------------------------------------------------------------------------
typedef enum {
UHCI = 0,
OHCI = 1,
EHCI = 2,
XHCI = 3,
MAX_HCI_TYPE = 4
} hci_type_t;
//------------------------------------------------------------------------------
// Private Variables
//------------------------------------------------------------------------------
static const char *hci_name[MAX_HCI_TYPE] = { "UHCI", "OHCI", "EHCI", "XHCI" };
static const hcd_methods_t methods = {
.reset_root_hub_port = NULL,
.allocate_slot = NULL,
.release_slot = NULL,
.assign_address = NULL,
.configure_hub_ep = NULL,
.configure_kbd_ep = NULL,
.setup_request = NULL,
.get_data_request = NULL,
.get_keycode = NULL
};
// All entries in this array must be initialised in order to generate the necessary relocation records.
static usb_hcd_t usb_controllers[MAX_USB_CONTROLLERS] = {
{ &methods, NULL },
{ &methods, NULL },
{ &methods, NULL },
{ &methods, NULL },
{ &methods, NULL },
{ &methods, NULL },
{ &methods, NULL },
{ &methods, NULL }
};
static int num_usb_controllers = 0;
static int print_row = 0;
static int print_col = 0;
//------------------------------------------------------------------------------
// Public Variables
//------------------------------------------------------------------------------
usb_init_options_t usb_init_options = USB_DEFAULT_INIT;
//------------------------------------------------------------------------------
// Macro Functions
//------------------------------------------------------------------------------
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
//------------------------------------------------------------------------------
// Private Functions
//------------------------------------------------------------------------------
static usb_endpoint_desc_t *find_hub_endpoint_descriptor(const uint8_t *desc_buffer, int desc_length)
{
const uint8_t *curr_ptr = desc_buffer + sizeof(usb_config_desc_t);
const uint8_t *tail_ptr = desc_buffer + desc_length;
while (curr_ptr < tail_ptr) {
const usb_desc_header_t *header = (const usb_desc_header_t *)curr_ptr;
const uint8_t *next_ptr = curr_ptr + header->length;
// Basic checks for validity.
if (next_ptr < (curr_ptr + 2) || next_ptr > tail_ptr) break;
if (header->type == USB_DESC_ENDPOINT && header->length == sizeof(usb_endpoint_desc_t)) {
usb_endpoint_desc_t *endpoint = (usb_endpoint_desc_t *)curr_ptr;
#if 0
print_usb_info("endpoint addr 0x%02x attr 0x%02x",
(uintptr_t)endpoint->address, (uintptr_t)endpoint->attributes);
#endif
if ((endpoint->address & 0x80) && (endpoint->attributes & 0x3) == 0x3) {
return endpoint;
}
}
curr_ptr = next_ptr;
}
return NULL;
}
static bool build_hub_info(const usb_hcd_t *hcd, const usb_hub_t *parent, int port_num, const usb_ep_t *ep0,
usb_hub_t *hub, usb_ep_t *ep1)
{
usb_setup_pkt_t setup_pkt;
usb_hub_desc_t hub_desc;
build_setup_packet(&setup_pkt, USB_REQ_FROM_DEVICE | USB_REQ_CLASS, HUB_GET_DESCRIPTOR,
HUB_DESC_DEVICE << 8, 0, sizeof(hub_desc));
if (!hcd->methods->get_data_request(hcd, ep0, &setup_pkt, &hub_desc, sizeof(hub_desc))) {
return false;
}
hub->ep0 = ep0;
hub->level = parent->level + 1;
hub->route = usb_route(parent, port_num);
hub->num_ports = hub_desc.num_ports;
hub->tt_think_time = hub_desc.characteristics & 0x0060 >> 5;
hub->power_up_delay = hub_desc.power_up_delay;
usb_endpoint_desc_t *ep1_desc = find_hub_endpoint_descriptor(hcd->ws->data_buffer, hcd->ws->data_length);
if (ep1_desc == NULL) {
return false;
}
ep1->driver_data = ep0->driver_data;
ep1->device_speed = ep0->device_speed;
ep1->device_id = ep0->device_id;
ep1->interface_num = 0;
ep1->endpoint_num = ep1_desc->address & 0xf;
ep1->max_packet_size = ep1_desc->max_packet_size;
ep1->interval = ep1_desc->interval;
return true;
}
static bool get_hub_port_status(const usb_hcd_t *hcd, const usb_hub_t *hub, int port_num, uint32_t *port_status)
{
usb_setup_pkt_t setup_pkt;
build_setup_packet(&setup_pkt, USB_REQ_FROM_HUB_PORT | USB_REQ_CLASS, HUB_GET_STATUS,
0, port_num, sizeof(uint32_t));
return hcd->methods->get_data_request(hcd, hub->ep0, &setup_pkt, port_status, sizeof(uint32_t));
}
static int get_configuration_descriptors(const usb_hcd_t *hcd, const usb_ep_t *ep0, int config_idx)
{
// Fetch the descriptors for the specified configuration. Start by requesting just the configuration descriptor.
// Then read the descriptor to determine how much more data we need to fetch.
usb_setup_pkt_t setup_pkt;
uint8_t *data_buffer = hcd->ws->data_buffer;
size_t fetch_length = sizeof(usb_config_desc_t);
get_descriptor:
build_setup_packet(&setup_pkt, USB_REQ_FROM_DEVICE, USB_GET_DESCRIPTOR,
USB_DESC_CONFIGURATION << 8 | config_idx, 0, fetch_length);
if (!hcd->methods->get_data_request(hcd, ep0, &setup_pkt, data_buffer, fetch_length)
|| !valid_usb_config_descriptor(data_buffer)) {
return 0;
}
usb_config_desc_t *config = (usb_config_desc_t *)data_buffer;
size_t total_length = MIN(config->total_length, HCD_DATA_BUFFER_SIZE);
if (total_length > fetch_length) {
fetch_length = total_length;
goto get_descriptor;
}
hcd->ws->data_length = fetch_length;
return config->config_num;
}
static void get_keyboard_info_from_descriptors(const uint8_t *desc_buffer, int desc_length, usb_ep_t keyboards[],
int max_keyboards, int *num_keyboards)
{
usb_ep_t *kbd = NULL;
const uint8_t *curr_ptr = desc_buffer + sizeof(usb_config_desc_t);
const uint8_t *tail_ptr = desc_buffer + desc_length;
while (curr_ptr < tail_ptr) {
// If we've filled the keyboard info table, abort now.
if (*num_keyboards >= max_keyboards) break;
const usb_desc_header_t *header = (const usb_desc_header_t *)curr_ptr;
const uint8_t *next_ptr = curr_ptr + header->length;
// Basic checks for validity.
if (next_ptr < (curr_ptr + 2) || next_ptr > tail_ptr) break;
if (header->type == USB_DESC_INTERFACE && header->length == sizeof(usb_interface_desc_t)) {
const usb_interface_desc_t *ifc = (const usb_interface_desc_t *)curr_ptr;
#if 0
print_usb_info("interface %i class %i subclass %i protocol %i",
ifc->interface_num, ifc->class, ifc->subclass, ifc->protocol);
#endif
if (ifc->class == 3 && ifc->subclass == 1 && ifc->protocol == 1) {
kbd = &keyboards[*num_keyboards];
kbd->interface_num = ifc->interface_num;
} else {
kbd = NULL;
}
} else if (header->type == USB_DESC_ENDPOINT && header->length == sizeof(usb_endpoint_desc_t)) {
usb_endpoint_desc_t *endpoint = (usb_endpoint_desc_t *)curr_ptr;
#if 0
print_usb_info("endpoint addr 0x%02x attr 0x%02x",
(uintptr_t)endpoint->address, (uintptr_t)endpoint->attributes);
#endif
if (kbd && (endpoint->address & 0x80) && (endpoint->attributes & 0x3) == 0x3) {
kbd->endpoint_num = endpoint->address & 0xf;
kbd->max_packet_size = endpoint->max_packet_size;
kbd->interval = endpoint->interval;
kbd = NULL;
*num_keyboards += 1;
}
}
curr_ptr = next_ptr;
}
}
static bool configure_device(const usb_hcd_t *hcd, const usb_ep_t *ep0, int config_num)
{
usb_setup_pkt_t setup_pkt;
build_setup_packet(&setup_pkt, USB_REQ_TO_DEVICE, USB_SET_CONFIGURATION, config_num, 0, 0);
return hcd->methods->setup_request(hcd, ep0, &setup_pkt);
}
static bool configure_keyboard(const usb_hcd_t *hcd, const usb_ep_t *ep0, int interface_num)
{
usb_setup_pkt_t setup_pkt;
// Set the idle duration to infinite.
build_setup_packet(&setup_pkt, USB_REQ_TO_INTERFACE | USB_REQ_CLASS, HID_SET_IDLE, 0, interface_num, 0);
if (!hcd->methods->setup_request(hcd, ep0, &setup_pkt)) {
return false;
}
// Select the boot protocol.
build_setup_packet(&setup_pkt, USB_REQ_TO_INTERFACE | USB_REQ_CLASS, HID_SET_PROTOCOL, 0, interface_num, 0);
if (!hcd->methods->setup_request(hcd, ep0, &setup_pkt)) {
return false;
}
return true;
}
static bool scan_hub_ports(const usb_hcd_t *hcd, const usb_hub_t *hub, int *num_devices,
usb_ep_t keyboards[], int max_keyboards, int *num_keyboards)
{
bool keyboard_found = false;
usb_setup_pkt_t setup_pkt;
// Power up all the ports.
build_setup_packet(&setup_pkt, USB_REQ_TO_HUB_PORT | USB_REQ_CLASS, HUB_SET_FEATURE, HUB_PORT_POWER, 0, 0);
for (int port_num = 1; port_num <= hub->num_ports; port_num++) {
setup_pkt.index = port_num;
if (!hcd->methods->setup_request(hcd, hub->ep0, &setup_pkt)) {
return false;
}
}
usleep(hub->power_up_delay * 2 * MILLISEC);
usleep(100*MILLISEC); // USB maximum device attach time.
// Scan the ports, looking for hubs and keyboards.
for (int port_num = 1; port_num <= hub->num_ports; port_num++) {
// If we've filled the keyboard info table, abort now.
if (*num_keyboards >= max_keyboards) break;
uint32_t port_status;
get_hub_port_status(hcd, hub, port_num, &port_status);
// Check the port is powered up.
if (~port_status & HUB_PORT_POWERED) continue;
// Check if anything is connected to this port.
if (~port_status & HUB_PORT_CONNECTED) continue;
if (!reset_usb_hub_port(hcd, hub, port_num)) continue;
get_hub_port_status(hcd, hub, port_num, &port_status);
// Check the port is active.
if (~port_status & HUB_PORT_CONNECTED) continue;
if (~port_status & HUB_PORT_ENABLED) continue;
// Now the port has been enabled, we can determine the device speed.
usb_speed_t device_speed;
if (port_status & HUB_PORT_LOW_SPEED) {
device_speed = USB_SPEED_LOW;
} else if (port_status & HUB_PORT_HIGH_SPEED) {
device_speed = USB_SPEED_HIGH;
} else {
device_speed = USB_SPEED_FULL;
}
*num_devices += 1;
// By default, using the incrementing count of devices as the device ID.
int device_id = *num_devices;
// Allocate a controller slot for this device (only needed for some controllers).
if (hcd->methods->allocate_slot) {
device_id = hcd->methods->allocate_slot(hcd);
if (device_id == 0) break;
}
// Look for keyboards attached directly or indirectly to this port.
if (find_attached_usb_keyboards(hcd, hub, port_num, device_speed, device_id, num_devices,
keyboards, max_keyboards, num_keyboards)) {
keyboard_found = true;
continue;
}
// If we didn't find any keyboards, we can disable the port and release the slot.
build_setup_packet(&setup_pkt, USB_REQ_TO_HUB_PORT | USB_REQ_CLASS, HUB_CLR_FEATURE, HUB_PORT_ENABLE, port_num, 0);
(void)hcd->methods->setup_request(hcd, hub->ep0, &setup_pkt);
if (hcd->methods->release_slot) {
(void)hcd->methods->release_slot(hcd, device_id);
}
}
return keyboard_found;
}
//------------------------------------------------------------------------------
// Shared Functions (used by all drivers)
//------------------------------------------------------------------------------
uint32_t usb_route(const usb_hub_t *hub, int port_num)
{
if (hub->level == 0) {
return port_num << 24;
}
if (hub->level > 5) {
port_num = 0;
} else if (port_num > 15) {
port_num = 15;
}
return hub->route | (port_num << (4 * (hub->level - 1)));
}
bool wait_until_clr(const volatile uint32_t *reg, uint32_t bit_mask, int max_time)
{
int timer = max_time >> 3;
while (read32(reg) & bit_mask) {
if (timer == 0) return false;
usleep(8);
timer--;
}
return true;
}
bool wait_until_set(const volatile uint32_t *reg, uint32_t bit_mask, int max_time)
{
int timer = max_time >> 3;
while (~read32(reg) & bit_mask) {
if (timer == 0) return false;
usleep(8);
timer--;
}
return true;
}
void print_usb_info(const char *fmt, ...)
{
if (print_row == SCREEN_HEIGHT) {
scroll_screen_region(0, 0, SCREEN_HEIGHT - 1, SCREEN_WIDTH - 1);
print_row--;
}
va_list args;
va_start(args, fmt);
(void)vprintf(print_row++, print_col, fmt, args);
va_end(args);
}
bool reset_usb_hub_port(const usb_hcd_t *hcd, const usb_hub_t *hub, int port_num)
{
usb_setup_pkt_t setup_pkt;
if (hub->level > 0) {
build_setup_packet(&setup_pkt, USB_REQ_TO_HUB_PORT | USB_REQ_CLASS, HUB_SET_FEATURE,
HUB_PORT_RESET, port_num, 0);
if (!hcd->methods->setup_request(hcd, hub->ep0, &setup_pkt)) {
return false;
}
int timer = 200;
uint32_t port_status;
do {
usleep(1000);
if (--timer == 0) return false;
if (!get_hub_port_status(hcd, hub, port_num, &port_status)) {
return false;
}
} while (port_status & HUB_PORT_RESETTING);
} else {
if (!hcd->methods->reset_root_hub_port(hcd, port_num)) {
return false;
}
}
usleep(10*MILLISEC); // USB reset recovery time
return true;
}
bool assign_usb_address(const usb_hcd_t *hcd, const usb_hub_t *hub, int port_num,
usb_speed_t device_speed, int device_id, usb_ep_t *ep0)
{
usb_setup_pkt_t setup_pkt;
uint8_t *data_buffer = hcd->ws->data_buffer;
// If we've run out of USB addresses, abort now.
if (device_id > USB_MAX_ADDRESS) {
return false;
}
// Initialise the control endpoint descriptor.
ep0->device_speed = device_speed;
ep0->device_id = 0;
ep0->interface_num = 0;
ep0->endpoint_num = 0;
ep0->max_packet_size = default_max_packet_size(device_speed);
ep0->interval = 0;
// The device should currently be in Default state. For loww and full speed devices, We first fetch the first
// 8 bytes of the device descriptor to discover the maximum packet size for the control endpoint. We then set
// the device address, which moves the device into Address state, and fetch the full device descriptor.
size_t fetch_length = sizeof(usb_device_desc_t);
if (device_speed < USB_SPEED_HIGH) {
fetch_length = 8;
goto fetch_descriptor;
}
set_address:
build_setup_packet(&setup_pkt, USB_REQ_TO_DEVICE, USB_SET_ADDRESS, device_id, 0, 0);
if (!hcd->methods->setup_request(hcd, ep0, &setup_pkt)) {
return false;
}
ep0->device_id = device_id;
usleep(2*MILLISEC + 1*MILLISEC); // USB set address recovery time (plus a bit).
fetch_descriptor:
build_setup_packet(&setup_pkt, USB_REQ_FROM_DEVICE, USB_GET_DESCRIPTOR, USB_DESC_DEVICE << 8, 0, fetch_length);
if (!hcd->methods->get_data_request(hcd, ep0, &setup_pkt, data_buffer, fetch_length)
|| !valid_usb_device_descriptor(data_buffer)) {
return false;
}
#if 0
print_usb_info("%02x %02x %02x %02x %02x %02x %02x %02x",
(uintptr_t)data_buffer[0],
(uintptr_t)data_buffer[1],
(uintptr_t)data_buffer[2],
(uintptr_t)data_buffer[3],
(uintptr_t)data_buffer[4],
(uintptr_t)data_buffer[5],
(uintptr_t)data_buffer[6],
(uintptr_t)data_buffer[7]);
#endif
if (fetch_length == 8) {
usb_device_desc_t *device = (usb_device_desc_t *)data_buffer;
ep0->max_packet_size = device->max_packet_size;
if (!valid_usb_max_packet_size(device->max_packet_size, device_speed)) {
return false;
}
if (usb_init_options & USB_EXTRA_RESET) {
if (!reset_usb_hub_port(hcd, hub, port_num)) {
return false;
}
}
fetch_length = sizeof(usb_device_desc_t);
goto set_address;
}
hcd->ws->data_length = fetch_length;
return true;
}
bool find_attached_usb_keyboards(const usb_hcd_t *hcd, const usb_hub_t *hub, int port_num,
usb_speed_t device_speed, int device_id, int *num_devices,
usb_ep_t keyboards[], int max_keyboards, int *num_keyboards)
{
bool keyboard_found = false;
// Set the USB device address. If successful, this also fills in the descriptor for the default control endpoint
// (ep0) and leaves the device descriptor in the data transfer buffer.
usb_ep_t ep0;
if (!hcd->methods->assign_address(hcd, hub, port_num, device_speed, device_id, &ep0)) {
return false;
}
usb_device_desc_t *device = (usb_device_desc_t *)hcd->ws->data_buffer;
bool is_hub = (device->class == USB_CLASS_HUB);
// Fetch the descriptors for the first configuration into the data transfer buffer. In theory a keyboard device
// may have more than one configuration and may only support the boot protocol in another configuration, but
// this seems unlikely in practice. A hub should only ever have one configuration.
int config_num = get_configuration_descriptors(hcd, &ep0, 0);
if (config_num == 0) {
return false;
}
if (is_hub) {
usb_hub_t new_hub;
usb_ep_t ep1;
if (!build_hub_info(hcd, hub, port_num, &ep0, &new_hub, &ep1)) {
return false;
}
if (!configure_device(hcd, &ep0, config_num)) {
return false;
}
if (hcd->methods->configure_hub_ep) {
if (!hcd->methods->configure_hub_ep(hcd, &ep1, &new_hub)) {
return false;
}
}
print_usb_info(" %i port hub found on port %i", new_hub.num_ports, port_num);
print_col += 1;
keyboard_found = scan_hub_ports(hcd, &new_hub, num_devices, keyboards, max_keyboards, num_keyboards);
print_col -= 1;
} else {
// Scan the configuration to see if this device has one or more interfaces that implement the keyboard
// boot protocol and if so, record that information in the keyboard info table and configure the device.
int old_num_keyboards = *num_keyboards;
int new_num_keyboards = *num_keyboards;
get_keyboard_info_from_descriptors(hcd->ws->data_buffer, hcd->ws->data_length,
keyboards, max_keyboards, &new_num_keyboards);
if (new_num_keyboards == old_num_keyboards) {
return false;
}
if (!configure_device(hcd, &ep0, config_num)) {
return false;
}
// Complete the new entries in the keyboard info table and configure the keyboard interfaces.
for (int kbd_idx = old_num_keyboards; kbd_idx < new_num_keyboards; kbd_idx++) {
usb_ep_t *kbd = &keyboards[kbd_idx];
kbd->driver_data = ep0.driver_data;
kbd->device_speed = device_speed;
kbd->device_id = device_id;
if (hcd->methods->configure_kbd_ep) {
if (!hcd->methods->configure_kbd_ep(hcd, kbd, kbd_idx)) {
return false;
}
}
if (!configure_keyboard(hcd, &ep0, kbd->interface_num)) break;
print_usb_info(" Keyboard found on port %i interface %i endpoint %i",
port_num, kbd->interface_num, kbd->endpoint_num);
keyboard_found = true;
*num_keyboards += 1;
}
}
return keyboard_found;
}
//------------------------------------------------------------------------------
// Public Functions
//------------------------------------------------------------------------------
void find_usb_keyboards(bool pause_at_end)
{
clear_screen();
print_usb_info("Scanning for USB keyboards...");
num_usb_controllers = 0;
for (int bus = 0; bus < PCI_MAX_BUS; bus++) {
for (int dev = 0; dev < PCI_MAX_DEV; dev++) {
for (int func = 0; func < PCI_MAX_FUNC; func++) {
uint16_t vendor_id = pci_config_read16(bus, dev, func, 0x00);
// Test for device/function present.
if (vendor_id != 0xffff) {
uint16_t device_id = pci_config_read16(bus, dev, func, 0x02);
uint16_t pci_status = pci_config_read16(bus, dev, func, 0x06);
uint16_t class_code = pci_config_read16(bus, dev, func, 0x0a);
uint8_t hdr_type = pci_config_read8 (bus, dev, func, 0x0e);
// Test for a USB controller.
if (class_code == 0x0c03) {
// Disable the device while we probe it.
uint16_t control = pci_config_read16(bus, dev, func, 0x04);
pci_config_write16(bus, dev, func, 0x04, control & ~0x0007);
hci_type_t controller_type = pci_config_read8(bus, dev, func, 0x09) >> 4;
if (controller_type >= MAX_HCI_TYPE) break;
int bar = (controller_type == UHCI) ? 0x20 : 0x10;
uintptr_t base_addr = pci_config_read32(bus, dev, func, bar);
pci_config_write32(bus, dev, func, bar, 0xffffffff);
uintptr_t mmio_size = pci_config_read32(bus, dev, func, bar);
pci_config_write32(bus, dev, func, bar, base_addr);
#ifdef __x86_64__
if (base_addr & 0x4) {
base_addr += (uintptr_t)pci_config_read32(bus, dev, func, bar + 4) << 32;
pci_config_write32(bus, dev, func, bar + 4, 0xffffffff);
mmio_size += (uintptr_t)pci_config_read32(bus, dev, func, bar + 4) << 32;
pci_config_write32(bus, dev, func, bar + 4, base_addr >> 32);
} else {
mmio_size += (uintptr_t)0xffffffff << 32;
}
#endif
base_addr &= ~(uintptr_t)0xf;
mmio_size &= ~(uintptr_t)0xf;
mmio_size = ~mmio_size + 1;
print_usb_info("Found %s controller %04x:%04x at %08x size %08x", hci_name[controller_type],
(uintptr_t)vendor_id, (uintptr_t)device_id, base_addr, mmio_size);
base_addr = map_device(base_addr, mmio_size);
if (base_addr == 0) {
print_usb_info(" Failed to map device into virtual memory");
break;
}
// Search for power management capability.
//uint8_t pm_cap_ptr;
if (pci_status & 0x10) {
uint8_t cap_ptr = pci_config_read8(bus, dev, func, 0x34) & 0xfe;
while (cap_ptr != 0) {
uint8_t cap_id = pci_config_read8(bus, dev, func, cap_ptr);
if (cap_id == 1) {
uint16_t pm_status = pci_config_read16(bus, dev, func, cap_ptr+2);
// Power on if necessary.
if ((pm_status & 0x3) != 0) {
pci_config_write16(bus, dev, func, cap_ptr+2, 0x8000);
usleep(10000);
}
//pm_cap_ptr = cap_ptr;
break;
}
cap_ptr = pci_config_read8(bus, dev, func, cap_ptr+1) & 0xfe;
}
}
// Enable the device.
pci_config_write16(bus, dev, func, 0x04, control | 0x0007);
// Initialise the device according to its type.
bool keyboards_found = false;
if (controller_type == UHCI) {
print_usb_info(" This controller type is not supported yet");
}
if (controller_type == OHCI) {
keyboards_found = ohci_init(base_addr, &usb_controllers[num_usb_controllers]);
}
if (controller_type == EHCI) {
if (func == 0) {
keyboards_found = ehci_init(bus, dev, func, base_addr, &usb_controllers[num_usb_controllers]);
} else {
print_usb_info(" Skipping");
}
}
if (controller_type == XHCI) {
keyboards_found = xhci_init(base_addr, &usb_controllers[num_usb_controllers]);
}
if (keyboards_found) {
num_usb_controllers++;
// If we've filled the controller table, abort now.
if (num_usb_controllers == MAX_USB_CONTROLLERS) {
return;
}
}
}
// Break out if this is a single function device.
if (func == 0 && (hdr_type & 0x80) == 0) {
break;
}
} else {
// Break out if no device is present.
if (func == 0) {
break;
}
}
}
}
}
if (pause_at_end) {
print_usb_info("Press any key to continue...");
while (get_key() == 0) {}
}
}
uint8_t get_usb_keycode(void)
{
for (int i = 0; i < num_usb_controllers; i++) {
uint8_t keycode = usb_controllers[i].methods->get_keycode(&usb_controllers[i]);
if (keycode != 0) return keycode;
}
return 0;
}