Regression test update: Use plate strain option

git-svn-id: http://svn.sintef.no/trondheim/IFEM/trunk@1102 e10b68d5-8a6e-419e-a041-bce267b0401d
This commit is contained in:
kmo 2011-08-16 11:30:05 +00:00 committed by Knut Morten Okstad
parent 4a937d5af1
commit 127422e533
3 changed files with 113 additions and 27 deletions

View File

@ -1,14 +1,43 @@
Hole2D-Lagrange.inp -2D -lagrange Hole2D-Lagrange.inp -2Dpstrain -lagrange
>>> Spline FEM Linear Elasticity solver <<<
===========================================
Input file: Hole2D-Lagrange.inp
Equation solver: 2
Number of Gauss points: 4
Lagrangian basis functions are used
Reading input file Hole2D-Lagrange.inp
Number of patches: 1
Reading patch file hole2D.g2
Number of patch refinements: 1
Refining P1 3 3
Number of constraints: 2
Constraining P1 E1 in direction(s) 1
Constraining P1 E2 in direction(s) 2
Analytical solution: Hole a=1 F0=10 nu=0.3
Number of pressures: 1
Traction on P1 E4
Number of isotropic materials: 1
Material code 0: 1000 0.3 0
Reading input file succeeded.
Problem definition:
Elasticity: 2D, gravity = 0 0
LinIsotropic: E = 1000, nu = 0.3, rho = 0
Resolving Dirichlet boundary conditions
>>> SAM model summary <<<
Number of elements 32 Number of elements 32
Number of nodes 325 Number of nodes 325
Number of dofs 650 Number of dofs 650
Number of unknowns 624 Number of unknowns 624
L2-norm : 0.019797 Assembling interior matrix terms for P1
Max X-displacement : 0.0465164 Assembling Neumann matrix terms for boundary 4 on P1
Max Y-displacement : 0.0152664 Solving the equation system ...
Energy norm |u^h| = a(u^h,u^h)^0.5 : 1.29956 >>> Solution summary <<<
External energy ((f,u^h)+(t,u^h)^0.5 : 1.29956 L2-norm : 0.0185062
Exact norm |u| = a(u,u)^0.5 : 1.29959 Max X-displacement : 0.042463 node 325
Exact error a(e,e)^0.5, e=u-u^h : 0.0112431 Max Y-displacement : 0.0184138 node 301
Exact relative error (%) : 0.865124 Energy norm |u^h| = a(u^h,u^h)^0.5 : 1.2404
External energy ((f,u^h)+(t,u^h)^0.5 : 1.2404
Exact norm |u| = a(u,u)^0.5 : 1.24044
Exact error a(e,e)^0.5, e=u-u^h : 0.0120831
Exact relative error (%) : 0.974095

View File

@ -1,14 +1,42 @@
Hole2D-NURBS.inp -2D -nviz 4 Hole2D-NURBS.inp -2Dpstrain
>>> Spline FEM Linear Elasticity solver <<<
===========================================
Input file: Hole2D-NURBS.inp
Equation solver: 2
Number of Gauss points: 4
Reading input file Hole2D-NURBS.inp
Number of patches: 1
Reading patch file hole2D.g2
Number of patch refinements: 1
Refining P1 3 3
Number of constraints: 2
Constraining P1 E1 in direction(s) 1
Constraining P1 E2 in direction(s) 2
Analytical solution: Hole a=1 F0=10 nu=0.3
Number of pressures: 1
Traction on P1 E4
Number of isotropic materials: 1
Material code 0: 1000 0.3 0
Reading input file succeeded.
Problem definition:
Elasticity: 2D, gravity = 0 0
LinIsotropic: E = 1000, nu = 0.3, rho = 0
Resolving Dirichlet boundary conditions
>>> SAM model summary <<<
Number of elements 32 Number of elements 32
Number of nodes 77 Number of nodes 77
Number of dofs 154 Number of dofs 154
Number of unknowns 140 Number of unknowns 140
L2-norm : 0.0204072 Assembling interior matrix terms for P1
Max X-displacement : 0.0465281 Assembling Neumann matrix terms for boundary 4 on P1
Max Y-displacement : 0.0152723 Solving the equation system ...
Energy norm |u^h| = a(u^h,u^h)^0.5 : 1.29947 >>> Solution summary <<<
External energy ((f,u^h)+(t,u^h)^0.5 : 1.29947 L2-norm : 0.0190934
Exact norm |u| = a(u,u)^0.5 : 1.29959 Max X-displacement : 0.0424722 node 77
Exact error a(e,e)^0.5, e=u-u^h : 0.0185057 Max Y-displacement : 0.0184177 node 67
Exact relative error (%) : 1.42396 Energy norm |u^h| = a(u^h,u^h)^0.5 : 1.2403
External energy ((f,u^h)+(t,u^h)^0.5 : 1.2403
Exact norm |u| = a(u,u)^0.5 : 1.24044
Exact error a(e,e)^0.5, e=u-u^h : 0.0197653
Exact relative error (%) : 1.59341

View File

@ -1,14 +1,43 @@
Hole2D-Spectral.inp -2D -spectral Hole2D-Spectral.inp -2Dpstrain -spectral
>>> Spline FEM Linear Elasticity solver <<<
===========================================
Input file: Hole2D-Spectral.inp
Equation solver: 2
Number of Gauss points: 4
Spectral basis functions are used
Reading input file Hole2D-Spectral.inp
Number of patches: 1
Reading patch file hole2D.g2
Number of patch refinements: 1
Refining P1 3 3
Number of constraints: 2
Constraining P1 E1 in direction(s) 1
Constraining P1 E2 in direction(s) 2
Analytical solution: Hole a=1 F0=10 nu=0.3
Number of pressures: 1
Traction on P1 E4
Number of isotropic materials: 1
Material code 0: 1000 0.3 0
Reading input file succeeded.
Problem definition:
Elasticity: 2D, gravity = 0 0
LinIsotropic: E = 1000, nu = 0.3, rho = 0
Resolving Dirichlet boundary conditions
>>> SAM model summary <<<
Number of elements 32 Number of elements 32
Number of nodes 325 Number of nodes 325
Number of dofs 650 Number of dofs 650
Number of unknowns 624 Number of unknowns 624
L2-norm : 0.0198122 Assembling interior matrix terms for P1
Max X-displacement : 0.0465176 Assembling Neumann matrix terms for boundary 4 on P1
Max Y-displacement : 0.0152633 Solving the equation system ...
Energy norm |u^h| = a(u^h,u^h)^0.5 : 1.29954 >>> Solution summary <<<
External energy ((f,u^h)+(t,u^h)^0.5 : 1.29954 L2-norm : 0.0185193
Exact norm |u| = a(u,u)^0.5 : 1.29989 Max X-displacement : 0.0424634 node 325
Exact error a(e,e)^0.5, e=u-u^h : 0.0264407 Max Y-displacement : 0.0184098 node 301
Exact relative error (%) : 2.03407 Energy norm |u^h| = a(u^h,u^h)^0.5 : 1.24036
External energy ((f,u^h)+(t,u^h)^0.5 : 1.24036
Exact norm |u| = a(u,u)^0.5 : 1.24075
Exact error a(e,e)^0.5, e=u-u^h : 0.0270459
Exact relative error (%) : 2.1798