Regression test update: Use plate strain option

git-svn-id: http://svn.sintef.no/trondheim/IFEM/trunk@1102 e10b68d5-8a6e-419e-a041-bce267b0401d
This commit is contained in:
kmo 2011-08-16 11:30:05 +00:00 committed by Knut Morten Okstad
parent 4a937d5af1
commit 127422e533
3 changed files with 113 additions and 27 deletions

View File

@ -1,14 +1,43 @@
Hole2D-Lagrange.inp -2D -lagrange
Hole2D-Lagrange.inp -2Dpstrain -lagrange
>>> Spline FEM Linear Elasticity solver <<<
===========================================
Input file: Hole2D-Lagrange.inp
Equation solver: 2
Number of Gauss points: 4
Lagrangian basis functions are used
Reading input file Hole2D-Lagrange.inp
Number of patches: 1
Reading patch file hole2D.g2
Number of patch refinements: 1
Refining P1 3 3
Number of constraints: 2
Constraining P1 E1 in direction(s) 1
Constraining P1 E2 in direction(s) 2
Analytical solution: Hole a=1 F0=10 nu=0.3
Number of pressures: 1
Traction on P1 E4
Number of isotropic materials: 1
Material code 0: 1000 0.3 0
Reading input file succeeded.
Problem definition:
Elasticity: 2D, gravity = 0 0
LinIsotropic: E = 1000, nu = 0.3, rho = 0
Resolving Dirichlet boundary conditions
>>> SAM model summary <<<
Number of elements 32
Number of nodes 325
Number of dofs 650
Number of unknowns 624
L2-norm : 0.019797
Max X-displacement : 0.0465164
Max Y-displacement : 0.0152664
Energy norm |u^h| = a(u^h,u^h)^0.5 : 1.29956
External energy ((f,u^h)+(t,u^h)^0.5 : 1.29956
Exact norm |u| = a(u,u)^0.5 : 1.29959
Exact error a(e,e)^0.5, e=u-u^h : 0.0112431
Exact relative error (%) : 0.865124
Assembling interior matrix terms for P1
Assembling Neumann matrix terms for boundary 4 on P1
Solving the equation system ...
>>> Solution summary <<<
L2-norm : 0.0185062
Max X-displacement : 0.042463 node 325
Max Y-displacement : 0.0184138 node 301
Energy norm |u^h| = a(u^h,u^h)^0.5 : 1.2404
External energy ((f,u^h)+(t,u^h)^0.5 : 1.2404
Exact norm |u| = a(u,u)^0.5 : 1.24044
Exact error a(e,e)^0.5, e=u-u^h : 0.0120831
Exact relative error (%) : 0.974095

View File

@ -1,14 +1,42 @@
Hole2D-NURBS.inp -2D -nviz 4
Hole2D-NURBS.inp -2Dpstrain
>>> Spline FEM Linear Elasticity solver <<<
===========================================
Input file: Hole2D-NURBS.inp
Equation solver: 2
Number of Gauss points: 4
Reading input file Hole2D-NURBS.inp
Number of patches: 1
Reading patch file hole2D.g2
Number of patch refinements: 1
Refining P1 3 3
Number of constraints: 2
Constraining P1 E1 in direction(s) 1
Constraining P1 E2 in direction(s) 2
Analytical solution: Hole a=1 F0=10 nu=0.3
Number of pressures: 1
Traction on P1 E4
Number of isotropic materials: 1
Material code 0: 1000 0.3 0
Reading input file succeeded.
Problem definition:
Elasticity: 2D, gravity = 0 0
LinIsotropic: E = 1000, nu = 0.3, rho = 0
Resolving Dirichlet boundary conditions
>>> SAM model summary <<<
Number of elements 32
Number of nodes 77
Number of dofs 154
Number of unknowns 140
L2-norm : 0.0204072
Max X-displacement : 0.0465281
Max Y-displacement : 0.0152723
Energy norm |u^h| = a(u^h,u^h)^0.5 : 1.29947
External energy ((f,u^h)+(t,u^h)^0.5 : 1.29947
Exact norm |u| = a(u,u)^0.5 : 1.29959
Exact error a(e,e)^0.5, e=u-u^h : 0.0185057
Exact relative error (%) : 1.42396
Assembling interior matrix terms for P1
Assembling Neumann matrix terms for boundary 4 on P1
Solving the equation system ...
>>> Solution summary <<<
L2-norm : 0.0190934
Max X-displacement : 0.0424722 node 77
Max Y-displacement : 0.0184177 node 67
Energy norm |u^h| = a(u^h,u^h)^0.5 : 1.2403
External energy ((f,u^h)+(t,u^h)^0.5 : 1.2403
Exact norm |u| = a(u,u)^0.5 : 1.24044
Exact error a(e,e)^0.5, e=u-u^h : 0.0197653
Exact relative error (%) : 1.59341

View File

@ -1,14 +1,43 @@
Hole2D-Spectral.inp -2D -spectral
Hole2D-Spectral.inp -2Dpstrain -spectral
>>> Spline FEM Linear Elasticity solver <<<
===========================================
Input file: Hole2D-Spectral.inp
Equation solver: 2
Number of Gauss points: 4
Spectral basis functions are used
Reading input file Hole2D-Spectral.inp
Number of patches: 1
Reading patch file hole2D.g2
Number of patch refinements: 1
Refining P1 3 3
Number of constraints: 2
Constraining P1 E1 in direction(s) 1
Constraining P1 E2 in direction(s) 2
Analytical solution: Hole a=1 F0=10 nu=0.3
Number of pressures: 1
Traction on P1 E4
Number of isotropic materials: 1
Material code 0: 1000 0.3 0
Reading input file succeeded.
Problem definition:
Elasticity: 2D, gravity = 0 0
LinIsotropic: E = 1000, nu = 0.3, rho = 0
Resolving Dirichlet boundary conditions
>>> SAM model summary <<<
Number of elements 32
Number of nodes 325
Number of dofs 650
Number of unknowns 624
L2-norm : 0.0198122
Max X-displacement : 0.0465176
Max Y-displacement : 0.0152633
Energy norm |u^h| = a(u^h,u^h)^0.5 : 1.29954
External energy ((f,u^h)+(t,u^h)^0.5 : 1.29954
Exact norm |u| = a(u,u)^0.5 : 1.29989
Exact error a(e,e)^0.5, e=u-u^h : 0.0264407
Exact relative error (%) : 2.03407
Assembling interior matrix terms for P1
Assembling Neumann matrix terms for boundary 4 on P1
Solving the equation system ...
>>> Solution summary <<<
L2-norm : 0.0185193
Max X-displacement : 0.0424634 node 325
Max Y-displacement : 0.0184098 node 301
Energy norm |u^h| = a(u^h,u^h)^0.5 : 1.24036
External energy ((f,u^h)+(t,u^h)^0.5 : 1.24036
Exact norm |u| = a(u,u)^0.5 : 1.24075
Exact error a(e,e)^0.5, e=u-u^h : 0.0270459
Exact relative error (%) : 2.1798