Regression test update: Use plate strain option
git-svn-id: http://svn.sintef.no/trondheim/IFEM/trunk@1102 e10b68d5-8a6e-419e-a041-bce267b0401d
This commit is contained in:
parent
4a937d5af1
commit
127422e533
@ -1,14 +1,43 @@
|
||||
Hole2D-Lagrange.inp -2D -lagrange
|
||||
Hole2D-Lagrange.inp -2Dpstrain -lagrange
|
||||
|
||||
>>> Spline FEM Linear Elasticity solver <<<
|
||||
===========================================
|
||||
Input file: Hole2D-Lagrange.inp
|
||||
Equation solver: 2
|
||||
Number of Gauss points: 4
|
||||
Lagrangian basis functions are used
|
||||
Reading input file Hole2D-Lagrange.inp
|
||||
Number of patches: 1
|
||||
Reading patch file hole2D.g2
|
||||
Number of patch refinements: 1
|
||||
Refining P1 3 3
|
||||
Number of constraints: 2
|
||||
Constraining P1 E1 in direction(s) 1
|
||||
Constraining P1 E2 in direction(s) 2
|
||||
Analytical solution: Hole a=1 F0=10 nu=0.3
|
||||
Number of pressures: 1
|
||||
Traction on P1 E4
|
||||
Number of isotropic materials: 1
|
||||
Material code 0: 1000 0.3 0
|
||||
Reading input file succeeded.
|
||||
Problem definition:
|
||||
Elasticity: 2D, gravity = 0 0
|
||||
LinIsotropic: E = 1000, nu = 0.3, rho = 0
|
||||
Resolving Dirichlet boundary conditions
|
||||
>>> SAM model summary <<<
|
||||
Number of elements 32
|
||||
Number of nodes 325
|
||||
Number of dofs 650
|
||||
Number of unknowns 624
|
||||
L2-norm : 0.019797
|
||||
Max X-displacement : 0.0465164
|
||||
Max Y-displacement : 0.0152664
|
||||
Energy norm |u^h| = a(u^h,u^h)^0.5 : 1.29956
|
||||
External energy ((f,u^h)+(t,u^h)^0.5 : 1.29956
|
||||
Exact norm |u| = a(u,u)^0.5 : 1.29959
|
||||
Exact error a(e,e)^0.5, e=u-u^h : 0.0112431
|
||||
Exact relative error (%) : 0.865124
|
||||
Assembling interior matrix terms for P1
|
||||
Assembling Neumann matrix terms for boundary 4 on P1
|
||||
Solving the equation system ...
|
||||
>>> Solution summary <<<
|
||||
L2-norm : 0.0185062
|
||||
Max X-displacement : 0.042463 node 325
|
||||
Max Y-displacement : 0.0184138 node 301
|
||||
Energy norm |u^h| = a(u^h,u^h)^0.5 : 1.2404
|
||||
External energy ((f,u^h)+(t,u^h)^0.5 : 1.2404
|
||||
Exact norm |u| = a(u,u)^0.5 : 1.24044
|
||||
Exact error a(e,e)^0.5, e=u-u^h : 0.0120831
|
||||
Exact relative error (%) : 0.974095
|
||||
|
@ -1,14 +1,42 @@
|
||||
Hole2D-NURBS.inp -2D -nviz 4
|
||||
Hole2D-NURBS.inp -2Dpstrain
|
||||
|
||||
>>> Spline FEM Linear Elasticity solver <<<
|
||||
===========================================
|
||||
Input file: Hole2D-NURBS.inp
|
||||
Equation solver: 2
|
||||
Number of Gauss points: 4
|
||||
Reading input file Hole2D-NURBS.inp
|
||||
Number of patches: 1
|
||||
Reading patch file hole2D.g2
|
||||
Number of patch refinements: 1
|
||||
Refining P1 3 3
|
||||
Number of constraints: 2
|
||||
Constraining P1 E1 in direction(s) 1
|
||||
Constraining P1 E2 in direction(s) 2
|
||||
Analytical solution: Hole a=1 F0=10 nu=0.3
|
||||
Number of pressures: 1
|
||||
Traction on P1 E4
|
||||
Number of isotropic materials: 1
|
||||
Material code 0: 1000 0.3 0
|
||||
Reading input file succeeded.
|
||||
Problem definition:
|
||||
Elasticity: 2D, gravity = 0 0
|
||||
LinIsotropic: E = 1000, nu = 0.3, rho = 0
|
||||
Resolving Dirichlet boundary conditions
|
||||
>>> SAM model summary <<<
|
||||
Number of elements 32
|
||||
Number of nodes 77
|
||||
Number of dofs 154
|
||||
Number of unknowns 140
|
||||
L2-norm : 0.0204072
|
||||
Max X-displacement : 0.0465281
|
||||
Max Y-displacement : 0.0152723
|
||||
Energy norm |u^h| = a(u^h,u^h)^0.5 : 1.29947
|
||||
External energy ((f,u^h)+(t,u^h)^0.5 : 1.29947
|
||||
Exact norm |u| = a(u,u)^0.5 : 1.29959
|
||||
Exact error a(e,e)^0.5, e=u-u^h : 0.0185057
|
||||
Exact relative error (%) : 1.42396
|
||||
Assembling interior matrix terms for P1
|
||||
Assembling Neumann matrix terms for boundary 4 on P1
|
||||
Solving the equation system ...
|
||||
>>> Solution summary <<<
|
||||
L2-norm : 0.0190934
|
||||
Max X-displacement : 0.0424722 node 77
|
||||
Max Y-displacement : 0.0184177 node 67
|
||||
Energy norm |u^h| = a(u^h,u^h)^0.5 : 1.2403
|
||||
External energy ((f,u^h)+(t,u^h)^0.5 : 1.2403
|
||||
Exact norm |u| = a(u,u)^0.5 : 1.24044
|
||||
Exact error a(e,e)^0.5, e=u-u^h : 0.0197653
|
||||
Exact relative error (%) : 1.59341
|
||||
|
@ -1,14 +1,43 @@
|
||||
Hole2D-Spectral.inp -2D -spectral
|
||||
Hole2D-Spectral.inp -2Dpstrain -spectral
|
||||
|
||||
>>> Spline FEM Linear Elasticity solver <<<
|
||||
===========================================
|
||||
Input file: Hole2D-Spectral.inp
|
||||
Equation solver: 2
|
||||
Number of Gauss points: 4
|
||||
Spectral basis functions are used
|
||||
Reading input file Hole2D-Spectral.inp
|
||||
Number of patches: 1
|
||||
Reading patch file hole2D.g2
|
||||
Number of patch refinements: 1
|
||||
Refining P1 3 3
|
||||
Number of constraints: 2
|
||||
Constraining P1 E1 in direction(s) 1
|
||||
Constraining P1 E2 in direction(s) 2
|
||||
Analytical solution: Hole a=1 F0=10 nu=0.3
|
||||
Number of pressures: 1
|
||||
Traction on P1 E4
|
||||
Number of isotropic materials: 1
|
||||
Material code 0: 1000 0.3 0
|
||||
Reading input file succeeded.
|
||||
Problem definition:
|
||||
Elasticity: 2D, gravity = 0 0
|
||||
LinIsotropic: E = 1000, nu = 0.3, rho = 0
|
||||
Resolving Dirichlet boundary conditions
|
||||
>>> SAM model summary <<<
|
||||
Number of elements 32
|
||||
Number of nodes 325
|
||||
Number of dofs 650
|
||||
Number of unknowns 624
|
||||
L2-norm : 0.0198122
|
||||
Max X-displacement : 0.0465176
|
||||
Max Y-displacement : 0.0152633
|
||||
Energy norm |u^h| = a(u^h,u^h)^0.5 : 1.29954
|
||||
External energy ((f,u^h)+(t,u^h)^0.5 : 1.29954
|
||||
Exact norm |u| = a(u,u)^0.5 : 1.29989
|
||||
Exact error a(e,e)^0.5, e=u-u^h : 0.0264407
|
||||
Exact relative error (%) : 2.03407
|
||||
Assembling interior matrix terms for P1
|
||||
Assembling Neumann matrix terms for boundary 4 on P1
|
||||
Solving the equation system ...
|
||||
>>> Solution summary <<<
|
||||
L2-norm : 0.0185193
|
||||
Max X-displacement : 0.0424634 node 325
|
||||
Max Y-displacement : 0.0184098 node 301
|
||||
Energy norm |u^h| = a(u^h,u^h)^0.5 : 1.24036
|
||||
External energy ((f,u^h)+(t,u^h)^0.5 : 1.24036
|
||||
Exact norm |u| = a(u,u)^0.5 : 1.24075
|
||||
Exact error a(e,e)^0.5, e=u-u^h : 0.0270459
|
||||
Exact relative error (%) : 2.1798
|
||||
|
Loading…
Reference in New Issue
Block a user