diff --git a/Apps/LinearElasticity/Test/NavierPart_p2.reg b/Apps/LinearElasticity/Test/NavierPart_p2.reg new file mode 100644 index 00000000..c490b3bb --- /dev/null +++ b/Apps/LinearElasticity/Test/NavierPart_p2.reg @@ -0,0 +1,52 @@ +NavierPart_p2.inp -KL -nGauss 2 + +Input file: NavierPart_p2.inp +Equation solver: 2 +Number of Gauss points: 2 +Reading input file NavierPart_p2.inp +Reading data file plate_10x8.g2 +Reading patch 1 +Number of patch refinements: 1 + Refining P1 4 4 +Number of constraints: 4 + Constraining P1 E1 in direction(s) 1 + Constraining P1 E2 in direction(s) 1 + Constraining P1 E3 in direction(s) 1 + Constraining P1 E4 in direction(s) 1 +Number of isotropic materials: 1 + Material code 0: 2.1e+11 0.3 1000 0.1 +Number of pressures: 1 + Pressure code 0: (1000\*StepXY(\[4,6]x\[3.2,4.8])) +Analytic solution: NavierPlate a=10 b=8 t=0.1 E=2.1e+11 nu=0.3 pz=1000 xi=0.5 eta=0.5 c=2 d=1.6 +NavierPlate: w_centre = 0.0001386811746 +Number of result points: 1 + Point 1: P1 xi = 0.5 0.5 +Reading input file succeeded. +Problem definition: +KirchhoffLovePlate: thickness = 0.1, gravity = 0 +LinIsotropic: plane stress, E = 2.1e+11, nu = 0.3, rho = 1000 +Resolving Dirichlet boundary conditions +Result point #1: patch #1 (u,v)=(0.5,0.5), node #25, X = 5 4 0 + >>> SAM model summary <<< +Number of elements 25 +Number of nodes 49 +Number of dofs 49 +Number of unknowns 25 +Assembling interior matrix terms for P1 +Solving the equation system ... + >>> Solution summary <<< +L2-norm : 4.89273e-05 +Max displacement : 0.0001558 node 25 +Projecting secondary solution ... +Energy norm |u^h| = a(u^h,u^h)^0.5 : 0.640802 +External energy ((f,u^h)+(t,u^h)^0.5 : 0.640802 +Exact norm |u| = a(u,u)^0.5 : 0.648876 +Exact error a(e,e)^0.5, e=u-u^h : 0.101001 +Exact relative error (%) : 15.5656 +Energy norm |u^r| = a(u^r,u^r)^0.5 : 0.630481 +Error norm a(e,e)^0.5, e=u^r-u^h : 0.104126 + relative error (% of |u^r|) : 16.5154 +Exact error a(e,e)^0.5, e=u-u^r : 0.0544198 + relative error (% of |u|) : 8.38678 + Node #25: sol1 = 1.348059e-04 + sol2 = 5.775019e+02 6.698790e+02 0.000000e+00 diff --git a/Apps/LinearElasticity/Test/NavierPart_p3.reg b/Apps/LinearElasticity/Test/NavierPart_p3.reg new file mode 100644 index 00000000..1c2bb3ce --- /dev/null +++ b/Apps/LinearElasticity/Test/NavierPart_p3.reg @@ -0,0 +1,54 @@ +NavierPart_p3.inp -KL -nGauss 3 + +Input file: NavierPart_p3.inp +Equation solver: 2 +Number of Gauss points: 3 +Reading input file NavierPart_p3.inp +Reading data file plate_10x8.g2 +Reading patch 1 +Number of order raise: 1 + Raising order of P1 1 1 +Number of patch refinements: 1 + Refining P1 4 4 +Number of constraints: 4 + Constraining P1 E1 in direction(s) 1 + Constraining P1 E2 in direction(s) 1 + Constraining P1 E3 in direction(s) 1 + Constraining P1 E4 in direction(s) 1 +Number of isotropic materials: 1 + Material code 0: 2.1e+11 0.3 1000 0.1 +Number of pressures: 1 + Pressure code 0: (1000\*StepXY(\[4,6]x\[3.2,4.8])) +Analytic solution: NavierPlate a=10 b=8 t=0.1 E=2.1e+11 nu=0.3 pz=1000 xi=0.5 eta=0.5 c=2 d=1.6 +NavierPlate: w_centre = 0.0001386811746 +Number of result points: 1 + Point 1: P1 xi = 0.5 0.5 +Reading input file succeeded. +Problem definition: +KirchhoffLovePlate: thickness = 0.1, gravity = 0 +LinIsotropic: plane stress, E = 2.1e+11, nu = 0.3, rho = 1000 +Resolving Dirichlet boundary conditions +Result point #1: patch #1 (u,v)=(0.5,0.5), X = 5 4 0 + >>> SAM model summary <<< +Number of elements 25 +Number of nodes 64 +Number of dofs 64 +Number of unknowns 36 +Assembling interior matrix terms for P1 +Solving the equation system ... + >>> Solution summary <<< +L2-norm : 4.62009e-05 +Max displacement : 0.000141437 node 28 +Projecting secondary solution ... +Energy norm |u^h| = a(u^h,u^h)^0.5 : 0.645651 +External energy ((f,u^h)+(t,u^h)^0.5 : 0.645651 +Exact norm |u| = a(u,u)^0.5 : 0.649635 +Exact error a(e,e)^0.5, e=u-u^h : 0.0718695 +Exact relative error (%) : 11.063 +Energy norm |u^r| = a(u^r,u^r)^0.5 : 0.667282 +Error norm a(e,e)^0.5, e=u^r-u^h : 0.0492384 + relative error (% of |u^r|) : 7.37895 +Exact error a(e,e)^0.5, e=u-u^r : 0.0621404 + relative error (% of |u|) : 9.56543 + Point #1: sol1 = 1.357858e-04 + sol2 = 4.832184e+02 5.758909e+02 0.000000e+00 diff --git a/Apps/LinearElasticity/Test/NavierPoint_p3.reg b/Apps/LinearElasticity/Test/NavierPoint_p3.reg new file mode 100644 index 00000000..cf32824c --- /dev/null +++ b/Apps/LinearElasticity/Test/NavierPoint_p3.reg @@ -0,0 +1,55 @@ +NavierPoint_p3.inp -KL -nGauss 3 + +Input file: NavierPoint_p3.inp +Equation solver: 2 +Number of Gauss points: 3 +Reading input file NavierPoint_p3.inp +Reading data file plate_10x8.g2 +Reading patch 1 +Number of order raise: 1 + Raising order of P1 1 1 +Number of patch refinements: 1 + Refining P1 9 9 +Number of constraints: 4 + Constraining P1 E1 in direction(s) 1 + Constraining P1 E2 in direction(s) 1 + Constraining P1 E3 in direction(s) 1 + Constraining P1 E4 in direction(s) 1 +Number of isotropic materials: 1 + Material code 0: 2.1e+11 0.3 1000 0.1 +Number of point loads: 1 + Point 1: P1 xi = 0.5 0.5 load = 1000 +Analytic solution: NavierPlate a=10 b=8 t=0.1 E=2.1e+11 nu=0.3 pz=1000 xi=0.5 eta=0.5 +NavierPlate: w_centre = 4.638247666e-05 +Number of result points: 1 + Point 1: P1 xi = 0.5 0.5 +Reading input file succeeded. +Problem definition: +KirchhoffLovePlate: thickness = 0.1, gravity = 0 +LinIsotropic: plane stress, E = 2.1e+11, nu = 0.3, rho = 1000 +Resolving Dirichlet boundary conditions +Result point #1: patch #1 (u,v)=(0.5,0.5), node #85, X = 5 4 0 + >>> SAM model summary <<< +Number of elements 100 +Number of nodes 169 +Number of dofs 169 +Number of unknowns 121 +Load point #1: patch #1 (u,v)=(0.5,0.5), node #85, X = 5 4 0 +Assembling interior matrix terms for P1 +Solving the equation system ... + >>> Solution summary <<< +L2-norm : 1.68431e-05 +Max displacement : 5.92196e-05 node 85 +Projecting secondary solution ... +Energy norm |u^h| = a(u^h,u^h)^0.5 : 0.243351 +External energy ((f,u^h)+(t,u^h)^0.5 : 0.243351 +Exact norm |u| = a(u,u)^0.5 : 0.215493 +Exact error a(e,e)^0.5, e=u-u^h : 0.0690236 +Exact relative error (%) : 32.0305 +Energy norm |u^r| = a(u^r,u^r)^0.5 : 0.252337 +Error norm a(e,e)^0.5, e=u^r-u^h : 0.0426949 + relative error (% of |u^r|) : 16.9198 +Exact error a(e,e)^0.5, e=u-u^r : 0.0860584 + relative error (% of |u|) : 39.9356 + Node #85: sol1 = 5.039916e-05 + sol2 = 6.413154e+02 6.945948e+02 0.000000e+00 diff --git a/Apps/LinearElasticity/Test/NavierPress_p2.reg b/Apps/LinearElasticity/Test/NavierPress_p2.reg new file mode 100644 index 00000000..2cf4def2 --- /dev/null +++ b/Apps/LinearElasticity/Test/NavierPress_p2.reg @@ -0,0 +1,52 @@ +NavierPress_p2.inp -KL -nGauss 2 + +Input file: NavierPress_p2.inp +Equation solver: 2 +Number of Gauss points: 2 +Reading input file NavierPress_p2.inp +Reading data file plate_10x8.g2 +Reading patch 1 +Number of patch refinements: 1 + Refining P1 4 3 +Number of constraints: 4 + Constraining P1 E1 in direction(s) 1 + Constraining P1 E2 in direction(s) 1 + Constraining P1 E3 in direction(s) 1 + Constraining P1 E4 in direction(s) 1 +Number of isotropic materials: 1 + Material code 0: 2.1e+11 0.3 1000 0.1 +Number of pressures: 1 + Pressure code 0: 1000 +Analytic solution: NavierPlate a=10 b=8 t=0.1 E=2.1e+11 nu=0.3 pz=1000 +NavierPlate: w_max = 0.001283712087 +Number of result points: 1 + Point 1: P1 xi = 0.5 0.5 +Reading input file succeeded. +Problem definition: +KirchhoffLovePlate: thickness = 0.1, gravity = 0 +LinIsotropic: plane stress, E = 2.1e+11, nu = 0.3, rho = 1000 +Resolving Dirichlet boundary conditions +Result point #1: patch #1 (u,v)=(0.5,0.5), X = 5 4 0 + >>> SAM model summary <<< +Number of elements 20 +Number of nodes 42 +Number of dofs 42 +Number of unknowns 20 +Assembling interior matrix terms for P1 +Solving the equation system ... + >>> Solution summary <<< +L2-norm : 0.000504337 +Max displacement : 0.00131415 node 25 +Projecting secondary solution ... +Energy norm |u^h| = a(u^h,u^h)^0.5 : 6.4908 +External energy ((f,u^h)+(t,u^h)^0.5 : 6.4908 +Exact norm |u| = a(u,u)^0.5 : 6.56837 +Exact error a(e,e)^0.5, e=u-u^h : 0.99864 +Exact relative error (%) : 15.203 +Energy norm |u^r| = a(u^r,u^r)^0.5 : 6.45206 +Error norm a(e,e)^0.5, e=u^r-u^h : 0.51988 + relative error (% of |u^r|) : 8.0576 +Exact error a(e,e)^0.5, e=u-u^r : 0.77931 + relative error (% of |u|) : 11.864 + Point #1: sol1 = 1.258638e-03 + sol2 = 3.172751e+03 4.099352e+03 0.000000e+00 diff --git a/Apps/LinearElasticity/Test/NavierPress_p3.reg b/Apps/LinearElasticity/Test/NavierPress_p3.reg new file mode 100644 index 00000000..ebbd7c4c --- /dev/null +++ b/Apps/LinearElasticity/Test/NavierPress_p3.reg @@ -0,0 +1,54 @@ +NavierPress_p3.inp -KL -nGauss 3 + +Input file: NavierPress_p3.inp +Equation solver: 2 +Number of Gauss points: 3 +Reading input file NavierPress_p3.inp +Reading data file plate_10x8.g2 +Reading patch 1 +Number of order raise: 1 + Raising order of P1 1 1 +Number of patch refinements: 1 + Refining P1 3 2 +Number of constraints: 4 + Constraining P1 E1 in direction(s) 1 + Constraining P1 E2 in direction(s) 1 + Constraining P1 E3 in direction(s) 1 + Constraining P1 E4 in direction(s) 1 +Number of isotropic materials: 1 + Material code 0: 2.1e+11 0.3 1000 0.1 +Number of pressures: 1 + Pressure code 0: 1000 +Analytic solution: NavierPlate a=10 b=8 t=0.1 E=2.1e+11 nu=0.3 pz=1000 +NavierPlate: w_max = 0.001283712087 +Number of result points: 1 + Point 1: P1 xi = 0.5 0.5 +Reading input file succeeded. +Problem definition: +KirchhoffLovePlate: thickness = 0.1, gravity = 0 +LinIsotropic: plane stress, E = 2.1e+11, nu = 0.3, rho = 1000 +Resolving Dirichlet boundary conditions +Result point #1: patch #1 (u,v)=(0.5,0.5), X = 5 4 0 + >>> SAM model summary <<< +Number of elements 12 +Number of nodes 42 +Number of dofs 42 +Number of unknowns 20 +Assembling interior matrix terms for P1 +Solving the equation system ... + >>> Solution summary <<< +L2-norm : 0.000508856 +Max displacement : 0.0014589 node 25 +Projecting secondary solution ... +Energy norm |u^h| = a(u^h,u^h)^0.5 : 6.56416 +External energy ((f,u^h)+(t,u^h)^0.5 : 6.56416 +Exact norm |u| = a(u,u)^0.5 : 6.57123 +Exact error a(e,e)^0.5, e=u-u^h : 0.30438 +Exact relative error (%) : 4.632 +Energy norm |u^r| = a(u^r,u^r)^0.5 : 6.81129 +Error norm a(e,e)^0.5, e=u^r-u^h : 0.37524 + relative error (% of |u^r|) : 5.509 +Exact error a(e,e)^0.5, e=u-u^r : 0.47238 + relative error (% of |u|) : 7.188 + Point #1: sol1 = 1.284960e-03 + sol2 = 3.174105e+03 4.176018e+03 0.000000e+00