Unify ASMs2D(mx)::assembleL2matrices and ASMu2D(mx)::assembleL2matrices

This commit is contained in:
Arne Morten Kvarving 2018-11-27 13:15:09 +01:00 committed by Knut Morten Okstad
parent 99796c2279
commit 1f3be6906f
7 changed files with 102 additions and 400 deletions

View File

@ -532,7 +532,7 @@ protected:
//! \brief Returns the area in the parameter space for an element.
//! \param[in] iel Element index
double getParametricArea(int iel) const;
virtual double getParametricArea(int iel) const;
//! \brief Returns boundary edge length in the parameter space for an element.
//! \param[in] iel Element index
//! \param[in] dir Local index of the boundary edge

View File

@ -87,7 +87,7 @@ public:
virtual char getNodeType(size_t inod) const;
//! \brief Returns the area in the parameter space for an element.
//! \param[in] iel Element index
double getParametricArea(int iel) const;
virtual double getParametricArea(int iel) const;
//! \brief Returns boundary edge length in the parameter space for an element.
//! \param[in] iel Element index
//! \param[in] dir Local index of the boundary edge
@ -239,15 +239,6 @@ public:
int thick = 1, int = 0, bool local = false) const;
protected:
//! \brief Assembles L2-projection matrices for the secondary solution.
//! \param[out] A Left-hand-side matrix
//! \param[out] B Right-hand-side vectors
//! \param[in] integrand Object with problem-specific data and methods
//! \param[in] continuous If \e false, a discrete L2-projection is used
virtual bool assembleL2matrices(SparseMatrix& A, StdVector& B,
const IntegrandBase& integrand,
bool continuous) const;
std::vector<std::shared_ptr<Go::SplineSurface>> m_basis; //!< Vector of bases
};

View File

@ -1,154 +0,0 @@
// $Id$
//==============================================================================
//!
//! \file ASMs2Dmxrecovery.C
//!
//! \date Dec 13 2017
//!
//! \author Arne Morten Kvarving / SINTEF
//!
//! \brief Recovery of secondary solutions for structured 2D mixed spline FE models.
//!
//==============================================================================
#include "GoTools/geometry/SplineSurface.h"
#include "ASMs2Dmx.h"
#include "IntegrandBase.h"
#include "CoordinateMapping.h"
#include "GaussQuadrature.h"
#include "SparseMatrix.h"
#include "SplineUtils.h"
#include "Utilities.h"
#include <array>
bool ASMs2Dmx::assembleL2matrices (SparseMatrix& A, StdVector& B,
const IntegrandBase& integrand,
bool continuous) const
{
const size_t nnod = this->getNoProjectionNodes();
const int p1 = surf->order_u();
const int p2 = surf->order_v();
const int p11 = proj->order_u();
const int p21 = proj->order_v();
const int n1 = surf->numCoefs_u();
const int n2 = surf->numCoefs_v();
const int nel1 = n1 - p1 + 1;
const int nel2 = n2 - p2 + 1;
// Get Gaussian quadrature point coordinates (and weights if continuous)
const int ng1 = continuous ? nGauss : p1 - 1;
const int ng2 = continuous ? nGauss : p2 - 1;
const double* xg = GaussQuadrature::getCoord(ng1);
const double* yg = GaussQuadrature::getCoord(ng2);
const double* wg = continuous ? GaussQuadrature::getWeight(nGauss) : nullptr;
if (!xg || !yg) return false;
if (continuous && !wg) return false;
// Compute parameter values of the Gauss points over the whole patch
Matrix gp;
std::array<RealArray,2> gpar;
gpar[0] = this->getGaussPointParameters(gp,0,ng1,xg);
gpar[1] = this->getGaussPointParameters(gp,1,ng2,yg);
// Evaluate basis functions at all integration points
std::vector<Go::BasisPtsSf> spl0;
std::array<std::vector<Go::BasisDerivsSf>,2> spl1;
if (continuous) {
proj->computeBasisGrid(gpar[0],gpar[1],spl1[0]);
surf->computeBasisGrid(gpar[0],gpar[1],spl1[1]);
} else
proj->computeBasisGrid(gpar[0],gpar[1],spl0);
// Evaluate the secondary solution at all integration points
Matrix sField;
if (!this->evalSolution(sField,integrand,gpar.data()))
{
std::cerr <<" *** ASMs2Dmx::assembleL2matrices: Failed for patch "<< idx+1
<<" nPoints="<< gpar[0].size()*gpar[1].size() << std::endl;
return false;
}
double dA = 1.0;
std::array<Vector, 2> phi;
phi[0].resize(p11*p21);
phi[1].resize(p1*p2);
std::array<Matrix,2> dNdu;
Matrix Xnod, J;
// === Assembly loop over all elements in the patch ==========================
int iel = 0;
for (int i2 = 0; i2 < nel2; i2++)
for (int i1 = 0; i1 < nel1; i1++, iel++)
{
if (MLGE[iel] < 1) continue; // zero-area element
if (continuous)
{
// Set up control point (nodal) coordinates for current element
if (!this->getElementCoordinates(Xnod,1+iel))
return false;
else if ((dA = 0.25*this->getParametricArea(1+iel)) < 0.0)
return false; // topology error (probably logic error)
}
int ip = (i2*ng1*nel1 + i1)*ng2;
IntVec lmnpc;
if (proj != m_basis.front().get()) {
lmnpc.reserve(phi[0].size());
int vidx = (spl1[0][ip].left_idx[1]-p21+1)*proj->numCoefs_u();
for (int j = 0; j < p21; ++j, vidx += proj->numCoefs_u())
for (int i = 0; i < p11; ++i)
if (continuous)
lmnpc.push_back(spl1[0][ip].left_idx[0]-p11+1+i+vidx);
else
lmnpc.push_back(spl0[ip].left_idx[0]-p11+1+i+vidx);
}
const IntVec& mnpc = proj == m_basis.front().get() ? MNPC[iel] : lmnpc;
// --- Integration loop over all Gauss points in each direction ----------
Matrix eA(p11*p21, p11*p21);
Vectors eB(sField.rows(), Vector(p11*p21));
for (int j = 0; j < ng2; j++, ip += ng1*(nel1-1))
for (int i = 0; i < ng1; i++, ip++)
{
if (continuous) {
SplineUtils::extractBasis(spl1[0][ip],phi[0],dNdu[0]);
SplineUtils::extractBasis(spl1[1][ip],phi[1],dNdu[1]);
}
else
phi[0] = spl0[ip].basisValues;
// Compute the Jacobian inverse and derivatives
double dJw = 1.0;
if (continuous)
{
dJw = dA*wg[i]*wg[j]*utl::Jacobian(J,dNdu[1],Xnod,dNdu[1],false);
if (dJw == 0.0) continue; // skip singular points
}
// Integrate the mass matrix
eA.outer_product(phi[0], phi[0], true, dJw);
// Integrate the rhs vector B
for (size_t r = 1; r <= sField.rows(); r++)
eB[r-1].add(phi[0],sField(r,ip+1)*dJw);
}
for (int i = 0; i < p11*p21; ++i) {
for (int j = 0; j < p11*p21; ++j)
A(mnpc[i]+1, mnpc[j]+1) += eA(i+1, j+1);
int jp = mnpc[i]+1;
for (size_t r = 0; r < sField.rows(); r++, jp += nnod)
B(jp) += eB[r](1+i);
}
}
return true;
}

View File

@ -164,14 +164,15 @@ bool ASMs2D::assembleL2matrices (SparseMatrix& A, StdVector& B,
const IntegrandBase& integrand,
bool continuous) const
{
const size_t nnod = this->getNoNodes(1);
const size_t nnod = this->getNoProjectionNodes();
const int p1 = surf->order_u();
const int p2 = surf->order_v();
const int n1 = surf->numCoefs_u();
const int n2 = surf->numCoefs_v();
const int nel1 = n1 - p1 + 1;
const int nel2 = n2 - p2 + 1;
const int g1 = surf->order_u();
const int g2 = surf->order_v();
const int p1 = proj->order_u();
const int p2 = proj->order_v();
const int n1 = proj->numCoefs_u();
const int nel1 = surf->numCoefs_u() - g1 + 1;
const int nel2 = surf->numCoefs_v() - g2 + 1;
const int pmax = p1 > p2 ? p1 : p2;
// Get Gaussian quadrature point coordinates (and weights if continuous)
@ -191,23 +192,26 @@ bool ASMs2D::assembleL2matrices (SparseMatrix& A, StdVector& B,
// Evaluate basis functions at all integration points
std::vector<Go::BasisPtsSf> spl0;
std::vector<Go::BasisDerivsSf> spl1;
std::vector<Go::BasisDerivsSf> spl1, spl2;
if (continuous)
surf->computeBasisGrid(gpar[0],gpar[1],spl1);
{
proj->computeBasisGrid(gpar[0],gpar[1],spl1);
surf->computeBasisGrid(gpar[0],gpar[1],spl2);
}
else
surf->computeBasisGrid(gpar[0],gpar[1],spl0);
proj->computeBasisGrid(gpar[0],gpar[1],spl0);
// Evaluate the secondary solution at all integration points
Matrix sField;
if (!this->evalSolution(sField,integrand,gpar.data()))
{
std::cerr <<" *** ASMs2D::assembleL2matrices: Failed for patch "<< idx+1
<<" nPoints="<< gpar[0].size()*gpar[1].size() << std::endl;
<<" nPoints="<< gpar[0].size()*gpar[1].size() << std::endl;
return false;
}
double dA = 1.0;
Vector phi(p1*p2);
Vector phi(p1*p2), phi2(g1*g2);
Matrix dNdu, Xnod, J;
@ -221,47 +225,66 @@ bool ASMs2D::assembleL2matrices (SparseMatrix& A, StdVector& B,
if (continuous)
{
// Set up control point (nodal) coordinates for current element
if (!this->getElementCoordinates(Xnod,1+iel))
return false;
else if ((dA = 0.25*this->getParametricArea(1+iel)) < 0.0)
return false; // topology error (probably logic error)
// Set up control point (nodal) coordinates for current element
if (!this->getElementCoordinates(Xnod,1+iel))
return false;
else if ((dA = 0.25*this->getParametricArea(1+iel)) < 0.0)
return false; // topology error (probably logic error)
}
int ip = (i2*ng1*nel1 + i1)*ng2;
IntVec lmnpc;
if (proj != surf)
{
// Establish nodal point correspondance for the projection element
int i, j, vidx;
lmnpc.reserve(phi.size());
if (continuous)
vidx = (spl1[ip].left_idx[1]-p1+1)*n1 + (spl1[ip].left_idx[0]-p1+1);
else
vidx = (spl0[ip].left_idx[1]-p1+1)*n1 + (spl0[ip].left_idx[0]-p1+1);
for (j = 0; j < p2; j++, vidx += n1)
for (i = 0; i < p1; i++)
lmnpc.push_back(vidx+i);
}
const IntVec& mnpc = proj == surf ? MNPC[iel] : lmnpc;
// --- Integration loop over all Gauss points in each direction ----------
Matrix eA(p1*p2, p1*p2);
Vectors eB(sField.rows(), Vector(p1*p1));
int ip = (i2*ng1*nel1 + i1)*ng2;
Vectors eB(sField.rows(), Vector(p1*p2));
for (int j = 0; j < ng2; j++, ip += ng1*(nel1-1))
for (int i = 0; i < ng1; i++, ip++)
{
if (continuous)
SplineUtils::extractBasis(spl1[ip],phi,dNdu);
else
phi = spl0[ip].basisValues;
for (int i = 0; i < ng1; i++, ip++)
{
if (continuous)
{
SplineUtils::extractBasis(spl1[ip],phi,dNdu);
SplineUtils::extractBasis(spl2[ip],phi2,dNdu);
}
else
phi = spl0[ip].basisValues;
// Compute the Jacobian inverse and derivatives
double dJw = 1.0;
if (continuous)
{
dJw = dA*wg[i]*wg[j]*utl::Jacobian(J,dNdu,Xnod,dNdu,false);
if (dJw == 0.0) continue; // skip singular points
}
// Compute the Jacobian inverse and derivatives
double dJw = 1.0;
if (continuous)
{
dJw = dA*wg[i]*wg[j]*utl::Jacobian(J,dNdu,Xnod,dNdu,false);
if (dJw == 0.0) continue; // skip singular points
}
// Integrate the mass matrix
eA.outer_product(phi, phi, true, dJw);
// Integrate the rhs vector B
// Integrate the rhs vector B
for (size_t r = 1; r <= sField.rows(); r++)
eB[r-1].add(phi,sField(r,ip+1)*dJw);
}
}
for (int i = 0; i < p1*p2; ++i) {
for (int j = 0; j < p1*p2; ++j)
A(MNPC[iel][i]+1, MNPC[iel][j]+1) += eA(i+1, j+1);
A(mnpc[i]+1, mnpc[j]+1) += eA(i+1, j+1);
int jp = MNPC[iel][i]+1;
int jp = mnpc[i]+1;
for (size_t r = 0; r < sField.rows(); r++, jp += nnod)
B(jp) += eB[r](1+i);
}

View File

@ -215,15 +215,6 @@ public:
const RealArray& origErr, bool elemErrors) const;
protected:
//! \brief Assembles L2-projection matrices for the secondary solution.
//! \param[out] A Left-hand-side matrix
//! \param[out] B Right-hand-side vectors
//! \param[in] integrand Object with problem-specific data and methods
//! \param[in] continuous If \e false, a discrete L2-projection is used
virtual bool assembleL2matrices(SparseMatrix& A, StdVector& B,
const IntegrandBase& integrand,
bool continuous) const;
using ASMu2D::generateThreadGroups;
//! \brief Generates element groups for multi-threading of interior integrals.
//! \param[in] integrand Object with problem-specific data and methods

View File

@ -1,161 +0,0 @@
// $Id$
//==============================================================================
//!
//! \file ASMu2Dmxrecovery.C
//!
//! \date May 11 2015
//!
//! \author Arne Morten Kvarving / SINTEF
//!
//! \brief Recovery techniques for unstructured mixed LR B-splines.
//!
//==============================================================================
#include "LRSpline/LRSplineSurface.h"
#include "LRSpline/Element.h"
#include "ASMu2Dmx.h"
#include "IntegrandBase.h"
#include "CoordinateMapping.h"
#include "GaussQuadrature.h"
#include "SparseMatrix.h"
#include "SplineUtils.h"
#include "Profiler.h"
#include <numeric>
/*!
\brief Expands a tensor parametrization point to an unstructured one.
*/
static void expandTensorGrid (const RealArray* in, RealArray* out)
{
out[0].resize(in[0].size()*in[1].size());
out[1].resize(in[0].size()*in[1].size());
size_t i, j, ip = 0;
for (j = 0; j < in[1].size(); j++)
for (i = 0; i < in[0].size(); i++, ip++) {
out[0][ip] = in[0][i];
out[1][ip] = in[1][j];
}
}
bool ASMu2Dmx::assembleL2matrices (SparseMatrix& A, StdVector& B,
const IntegrandBase& integrand,
bool continuous) const
{
const int p1 = projBasis->order(0);
const int p2 = projBasis->order(1);
// Get Gaussian quadrature points
const int ng1 = continuous ? nGauss : p1 - 1;
const int ng2 = continuous ? nGauss : p2 - 1;
const double* xg = GaussQuadrature::getCoord(ng1);
const double* yg = GaussQuadrature::getCoord(ng2);
const double* wg = continuous ? GaussQuadrature::getWeight(nGauss) : nullptr;
if (!xg || !yg) return false;
if (continuous && !wg) return false;
size_t nnod = this->getNoProjectionNodes();
double dA = 0.0;
std::array<Vector, 2> phi;
std::array<Matrix, 2> dNdu;
Matrix sField, Xnod, Jac;
std::array<Go::BasisDerivsSf, 2> spl1;
std::array<Go::BasisPtsSf, 2> spl0;
// === Assembly loop over all elements in the patch ==========================
for (const LR::Element* el1 : m_basis[geoBasis-1]->getAllElements())
{
double uh = (el1->umin()+el1->umax())/2.0;
double vh = (el1->vmin()+el1->vmax())/2.0;
std::array<size_t, 2> els;
els[0] = projBasis->getElementContaining(uh,vh)+1;
els[1] = m_basis[geoBasis-1]->getElementContaining(uh,vh)+1;
if (continuous)
{
// Set up control point (nodal) coordinates for current element
if (!this->getElementCoordinates(Xnod,els[1]))
return false;
else if ((dA = 0.25*this->getParametricArea(els[1])) < 0.0)
return false; // topology error (probably logic error)
}
// Compute parameter values of the Gauss points over this element
RealArray gpar[2], unstrGpar[2];
this->getGaussPointParameters(gpar[0],0,ng1,els[1],xg);
this->getGaussPointParameters(gpar[1],1,ng2,els[1],yg);
// convert to unstructred mesh representation
expandTensorGrid(gpar, unstrGpar);
// Evaluate the secondary solution at all integration points
if (!this->evalSolution(sField,integrand,unstrGpar))
return false;
// set up basis function size (for extractBasis subroutine)
const LR::Element* elm = projBasis->getElement(els[0]-1);
phi[0].resize(elm->nBasisFunctions());
phi[1].resize(el1->nBasisFunctions());
IntVec lmnpc;
if (projBasis != m_basis[0]) {
lmnpc.reserve(phi[0].size());
for (const LR::Basisfunction* f : elm->support())
lmnpc.push_back(f->getId());
}
const IntVec& mnpc = projBasis == m_basis[0] ? MNPC[els[1]-1] : lmnpc;
// --- Integration loop over all Gauss points in each direction ----------
Matrix eA(phi[0].size(), phi[0].size());
Vectors eB(sField.rows(), Vector(phi[0].size()));
int ip = 0;
for (int j = 0; j < ng2; j++)
for (int i = 0; i < ng1; i++, ip++)
{
if (continuous)
{
projBasis->computeBasis(gpar[0][i], gpar[1][j], spl1[0], els[0]-1);
SplineUtils::extractBasis(spl1[0],phi[0],dNdu[0]);
m_basis[geoBasis-1]->computeBasis(gpar[0][i], gpar[1][j],
spl1[1], els[1]-1);
SplineUtils::extractBasis(spl1[1], phi[1], dNdu[1]);
}
else
{
projBasis->computeBasis(gpar[0][i], gpar[1][j], spl0[0], els[0]-1);
phi[0] = spl0[0].basisValues;
}
// Compute the Jacobian inverse and derivatives
double dJw = 1.0;
if (continuous)
{
dJw = dA*wg[i]*wg[j]*utl::Jacobian(Jac,dNdu[1],Xnod,dNdu[1],false);
if (dJw == 0.0) continue; // skip singular points
}
// Integrate the mass matrix
eA.outer_product(phi[0], phi[0], true, dJw);
// Integrate the rhs vector B
for (size_t r = 1; r <= sField.rows(); r++)
eB[r-1].add(phi[0],sField(r,ip+1)*dJw);
}
for (size_t i = 0; i < eA.cols(); ++i) {
for (size_t j = 0; j < eA.cols(); ++j)
A(mnpc[i]+1, mnpc[j]+1) += eA(i+1,j+1);
int jp = mnpc[i]+1;
for (size_t r = 0; r < sField.rows(); r++, jp += nnod)
B(jp) += eB[r](1+i);
}
}
return true;
}

View File

@ -31,10 +31,11 @@ bool ASMu2D::getGrevilleParameters (RealArray& prm, int dir, int basisNum) const
if (!this->getBasis(basisNum) || dir < 0 || dir > 1) return false;
const LR::LRSpline* lrspline = this->getBasis(basisNum);
prm.clear();
prm.reserve(lrspline->nBasisFunctions());
for (const LR::Basisfunction *b : lrspline->getAllBasisfunctions())
for (const LR::Basisfunction* b : lrspline->getAllBasisfunctions())
prm.push_back(b->getGrevilleParameter()[dir]);
return true;
@ -101,10 +102,10 @@ bool ASMu2D::assembleL2matrices (SparseMatrix& A, StdVector& B,
const IntegrandBase& integrand,
bool continuous) const
{
const size_t nnod = this->getNoNodes();
size_t nnod = this->getNoProjectionNodes();
const int p1 = lrspline->order(0);
const int p2 = lrspline->order(1);
const int p1 = projBasis->order(0);
const int p2 = projBasis->order(1);
// Get Gaussian quadrature points
const int ng1 = continuous ? nGauss : p1 - 1;
@ -116,17 +117,21 @@ bool ASMu2D::assembleL2matrices (SparseMatrix& A, StdVector& B,
if (continuous && !wg) return false;
double dA = 0.0;
Vector phi;
Vector phi, phi2;
Matrix dNdu, Xnod, Jac;
Go::BasisDerivsSf spl1;
Go::BasisPtsSf spl0;
Go::BasisDerivsSf spl1, spl2;
// === Assembly loop over all elements in the patch ==========================
size_t iel = 1;
for (const LR::Element* el : lrspline->getAllElements())
for (const LR::Element* el1 : lrspline->getAllElements())
{
double uh = (el1->umin()+el1->umax())/2.0;
double vh = (el1->vmin()+el1->vmax())/2.0;
int ielp = projBasis->getElementContaining(uh,vh);
int iel = lrspline->getElementContaining(uh,vh)+1;
if (continuous)
{
// Set up control point (nodal) coordinates for current element
@ -140,8 +145,6 @@ bool ASMu2D::assembleL2matrices (SparseMatrix& A, StdVector& B,
std::array<RealArray,2> gpar, unstrGpar;
this->getGaussPointParameters(gpar[0],0,ng1,iel,xg);
this->getGaussPointParameters(gpar[1],1,ng2,iel,yg);
// convert to unstructured mesh representation
expandTensorGrid(gpar.data(),unstrGpar.data());
// Evaluate the secondary solution at all integration points
@ -149,24 +152,37 @@ bool ASMu2D::assembleL2matrices (SparseMatrix& A, StdVector& B,
if (!this->evalSolution(sField,integrand,unstrGpar.data()))
return false;
// set up basis function size (for extractBasis subroutine)
phi.resize(el->nBasisFunctions());
// Set up basis function size (for extractBasis subroutine)
const LR::Element* elm = projBasis->getElement(ielp);
size_t nbf = elm->nBasisFunctions();
IntVec lmnpc;
if (projBasis != lrspline)
{
lmnpc.reserve(nbf);
for (const LR::Basisfunction* f : elm->support())
lmnpc.push_back(f->getId());
}
const IntVec& mnpc = projBasis == lrspline ? MNPC[iel-1] : lmnpc;
// --- Integration loop over all Gauss points in each direction ----------
Matrix eA(MNPC[iel-1].size(), MNPC[iel-1].size());
Vectors eB(sField.rows(), Vector(MNPC[iel-1].size()));
Matrix eA(nbf, nbf);
Vectors eB(sField.rows(), Vector(nbf));
int ip = 0;
for (int j = 0; j < ng2; j++)
for (int i = 0; i < ng1; i++, ip++)
{
if (continuous)
{
lrspline->computeBasis(gpar[0][i],gpar[1][j],spl1,iel-1);
projBasis->computeBasis(gpar[0][i],gpar[1][j],spl1,ielp);
SplineUtils::extractBasis(spl1,phi,dNdu);
lrspline->computeBasis(gpar[0][i],gpar[1][j],spl2,iel-1);
SplineUtils::extractBasis(spl2,phi2,dNdu);
}
else
{
lrspline->computeBasis(gpar[0][i],gpar[1][j],spl0,iel-1);
projBasis->computeBasis(gpar[0][i],gpar[1][j],spl0,ielp);
phi = spl0.basisValues;
}
@ -186,15 +202,14 @@ bool ASMu2D::assembleL2matrices (SparseMatrix& A, StdVector& B,
eB[r-1].add(phi,sField(r,ip+1)*dJw);
}
for (size_t i = 0; i < MNPC[iel-1].size(); ++i) {
for (size_t j = 0; j < MNPC[iel-1].size(); ++j)
A(MNPC[iel-1][i]+1, MNPC[iel-1][j]+1) += eA(i+1, j+1);
for (size_t i = 0; i < eA.rows(); ++i) {
for (size_t j = 0; j < eA.cols(); ++j)
A(mnpc[i]+1, mnpc[j]+1) += eA(i+1,j+1);
int jp = MNPC[iel-1][i]+1;
int jp = mnpc[i]+1;
for (size_t r = 0; r < sField.rows(); r++, jp += nnod)
B(jp) += eB[r](1+i);
}
++iel;
}
return true;
@ -254,7 +269,7 @@ LR::LRSplineSurface* ASMu2D::scRecovery (const IntegrandBase& integrand) const
size_t k, l, ip = 0;
std::vector<LR::Element*>::const_iterator elStart, elEnd, el;
std::vector<LR::Element*> supportElements;
for (LR::Basisfunction *b : lrspline->getAllBasisfunctions())
for (LR::Basisfunction* b : lrspline->getAllBasisfunctions())
{
#if SP_DEBUG > 2
std::cout <<"Basis: "<< *b <<"\n ng1 ="<< ng1 <<"\n ng2 ="<< ng2
@ -301,17 +316,14 @@ LR::LRSplineSurface* ASMu2D::scRecovery (const IntegrandBase& integrand) const
for (el = elStart; el != elEnd; ++el)
{
int iel = (**el).getId()+1;
#if SP_DEBUG > 2
std::cout <<"Element "<< **el << std::endl;
#endif
// evaluate all gauss points for this element
// Compute parameter values of the Gauss points over this element
std::array<RealArray,2> gaussPt, unstrGauss;
this->getGaussPointParameters(gaussPt[0],0,ng1,iel,xg);
this->getGaussPointParameters(gaussPt[1],1,ng2,iel,yg);
#if SP_DEBUG > 2
std::cout << "Element " << **el << std::endl;
#endif
// convert to unstructured mesh representation
expandTensorGrid(gaussPt.data(),unstrGauss.data());
// Evaluate the secondary solution at all Gauss points