diff --git a/Apps/FiniteDefElasticity/Test/Necking-AxS-Fbar2.inp b/Apps/FiniteDefElasticity/Test/Necking-AxS-Fbar2.inp new file mode 100644 index 00000000..4bd8b371 --- /dev/null +++ b/Apps/FiniteDefElasticity/Test/Necking-AxS-Fbar2.inp @@ -0,0 +1,40 @@ +# $Id$ +# Necking of an elasto-plastic tension rod. +# Single-patch axisymmetric model, 10x20 biquadratic Spline elements. + +PATCHFILE strip2D1rett.g2 + +REFINE 1 +# patch dir xi + 1 2 0.2404845 + +RAISEORDER 1 +# patch ru rv + 1 1 1 + +REFINE 1 +# patch ru rv + 1 9 9 + +CONSTRAINTS 3 +# patch edge code + 1 1 1 + 1 3 2 + 1 4 2 1.0 1.0 + +PLASTIC 1 2 3 4 5 6 7 8 9 10 11 +# code Emod nu chterm rho Hiso Hkin yield Y0 Yinf beta istrt + 0 206.9 0.29 0.0 0.0 0.12924 0.0 1.0 0.45 0.715 16.93 1 + +TIME_STEPPING +# start stop dt + 0.0 5.0 0.05 + +NONLINEAR_SOLVER +# maxit convTol + 15 1.0e-16 + +RESULTPOINTS 2 +# patch u v + 1 1.0 0.0 + 1 0.0 1.0 diff --git a/Apps/FiniteDefElasticity/Test/Necking-AxS-Fbar2.reg b/Apps/FiniteDefElasticity/Test/Necking-AxS-Fbar2.reg new file mode 100644 index 00000000..3481a384 --- /dev/null +++ b/Apps/FiniteDefElasticity/Test/Necking-AxS-Fbar2.reg @@ -0,0 +1,1839 @@ +Necking-AxS-Fbar2.inp -2Daxis -Fbar -nGauss 3 -outPrec 6 + +Input file: Necking-AxS-Fbar2.inp +Equation solver: 2 +Number of Gauss points: 3 +Reading input file Necking-AxS-Fbar2.inp +Reading data file strip2D1rett.g2 +Reading patch 1 +Number of patch refinements: 1 + Refining P1 dir=2 0.240484 +Number of order raise: 1 + Raising order of P1 1 1 +Number of patch refinements: 1 + Refining P1 9 9 +Number of constraints: 3 + Constraining P1 E1 in direction(s) 1 + Constraining P1 E3 in direction(s) 2 + Constraining P1 E4 in direction(s) 2 code = 1002 1 \* 1\*t +Number of plastic materials: 1 + Material code 0: 206.9 0.29 0 0 0.12924 0 1 0.45 0.715 16.93 1 +Number of result points: 2 + Point 1: P1 xi = 1 0 + Point 2: P1 xi = 0 1 +Reading input file succeeded. +Problem definition: +NonlinearElasticityFbar: F-bar formulation, 0 volumetric points in each direction. +NonlinearElasticityUL: Updated Lagrangian formulation +Axial-symmetric Elasticity problem +Elasticity: 2D, gravity = 0 0 +PlasticMaterial: pMAT = 206.9 0.29 0 0 164.206 80.1938 0.12924 0 1 0.45 0.715 16.93 1 +Resolving Dirichlet boundary conditions +Result point #1: patch #1 (u,v)=(1,0), node #12, X = 6.29757 0 0 +Result point #2: patch #1 (u,v)=(0,1), node #265, X = 0 26.667 0 + >>> SAM model summary <<< +Number of elements 200 +Number of nodes 276 +Number of dofs 552 +Number of constraints 12 +Number of unknowns 505 + step=1 time=0.05 + Primary solution summary: L2-norm : 0.0175307 + Max X-displacement : 0.00346868 node 96 + Max Y-displacement : 0.05 node 265 + Total reaction forces: Sum(R) = 5.14419e-07 0 + displacement\*reactions: (R,u) = -2.45405 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 1.10719 a(u^h,u^h) = 1.225878683 + External energy: ((f,u^h)+(t,u^h))^0.5 : -1.10771 (f,u)+(t,u) = 1.227026518 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 22.5349 + Pressure norm, L2: (p^h,p^h)^0.5 : 7.51171 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 18.3996 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 22.5348 + Node #12: sol1 = -3.458320e-03 0.000000e+00 + sol2 = 7.891871e-04 4.014378e-01 3.088640e-03 -4.863510e-05 3.995039e-01 0.000000e+00 + reac = 0.000000e+00 3.233154e+00 + Node #265: sol1 = 0.000000e+00 5.000000e-02 + sol2 = 5.874985e-02 4.417579e-01 1.451473e-01 0.000000e+00 3.479494e-01 0.000000e+00 + reac = 1.113732e-06 -8.223343e-02 + step=2 time=0.1 + Primary solution summary: L2-norm : 0.0393003 + Max X-displacement : 0.0138889 node 12 + Max Y-displacement : 0.1 node 265 + Total reaction forces: Sum(R) = -1.01531e-05 0 + displacement\*reactions: (R,u) = -5.7757 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 1.97409 a(u^h,u^h) = 3.897016208 + External energy: ((f,u^h)+(t,u^h))^0.5 : -1.97433 (f,u)+(t,u) = 3.897977071 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 26.5675 + Pressure norm, L2: (p^h,p^h)^0.5 : 8.85627 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 21.6918 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 26.5669 + Node #12: sol1 = -1.388895e-02 0.000000e+00 + sol2 = 1.604642e-03 4.655990e-01 2.283862e-03 4.089829e-04 4.636557e-01 3.133799e-03 + reac = 0.000000e+00 3.750721e+00 + Node #265: sol1 = 0.000000e+00 1.000000e-01 + sol2 = 6.492953e-02 5.112543e-01 1.670933e-01 0.000000e+00 4.050247e-01 0.000000e+00 + reac = -6.587438e-06 -9.501958e-02 + step=3 time=0.15 + Primary solution summary: L2-norm : 0.0570862 + Max X-displacement : 0.0200241 node 12 + Max Y-displacement : 0.15 node 265 + Total reaction forces: Sum(R) = -1.09178e-05 1.19628e-07 + displacement\*reactions: (R,u) = -8.80087 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 2.60932 a(u^h,u^h) = 6.808549483 + External energy: ((f,u^h)+(t,u^h))^0.5 : -2.60935 (f,u)+(t,u) = 6.808712941 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 27.0383 + Pressure norm, L2: (p^h,p^h)^0.5 : 9.01304 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 22.0763 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 27.0379 + Node #12: sol1 = -2.002406e-02 0.000000e+00 + sol2 = 1.839384e-03 4.753251e-01 4.596578e-03 4.676437e-04 4.721139e-01 5.099108e-03 + reac = 0.000000e+00 3.818992e+00 + Node #265: sol1 = 0.000000e+00 1.500000e-01 + sol2 = 1.741364e-01 6.829516e-01 3.156107e-01 0.000000e+00 4.548886e-01 1.308551e-03 + reac = -2.016594e-05 -9.707972e-02 + step=4 time=0.2 + Primary solution summary: L2-norm : 0.0748865 + Max X-displacement : 0.0261393 node 12 + Max Y-displacement : 0.2 node 265 + Total reaction forces: Sum(R) = -1.08192e-05 0 + displacement\*reactions: (R,u) = -11.9103 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 3.12486 a(u^h,u^h) = 9.764753089 + External energy: ((f,u^h)+(t,u^h))^0.5 : -3.12479 (f,u)+(t,u) = 9.764318181 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 27.4942 + Pressure norm, L2: (p^h,p^h)^0.5 : 9.16495 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 22.4487 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 27.4939 + Node #12: sol1 = -2.613930e-02 0.000000e+00 + sol2 = 2.049760e-03 4.843115e-01 6.021261e-03 5.029619e-04 4.802891e-01 7.060683e-03 + reac = 0.000000e+00 3.881615e+00 + Node #265: sol1 = 0.000000e+00 2.000000e-01 + sol2 = 3.117693e-01 8.309608e-01 4.684711e-01 0.000000e+00 4.612559e-01 2.832032e-03 + reac = -1.953455e-05 -9.879993e-02 + step=5 time=0.25 + Primary solution summary: L2-norm : 0.0927033 + Max X-displacement : 0.0322455 node 12 + Max Y-displacement : 0.25 node 265 + Total reaction forces: Sum(R) = -1.07442e-05 0 + displacement\*reactions: (R,u) = -15.0993 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 3.57267 a(u^h,u^h) = 12.76396162 + External energy: ((f,u^h)+(t,u^h))^0.5 : -3.57254 (f,u)+(t,u) = 12.76304301 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 27.9362 + Pressure norm, L2: (p^h,p^h)^0.5 : 9.31224 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 22.8096 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 27.9359 + Node #12: sol1 = -3.224547e-02 0.000000e+00 + sol2 = 2.242900e-03 4.927697e-01 6.925012e-03 5.250012e-04 4.882035e-01 9.021652e-03 + reac = 0.000000e+00 3.940095e+00 + Node #265: sol1 = 0.000000e+00 2.500000e-01 + sol2 = 4.511239e-01 9.789501e-01 6.172954e-01 0.000000e+00 4.674439e-01 4.355092e-03 + reac = -1.880004e-05 -1.003742e-01 + step=6 time=0.3 + Primary solution summary: L2-norm : 0.110533 + Max X-displacement : 0.0383452 node 12 + Max Y-displacement : 0.3 node 265 + Total reaction forces: Sum(R) = -1.0695e-05 3.03105e-07 + displacement\*reactions: (R,u) = -18.3631 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 3.9755 a(u^h,u^h) = 15.80457557 + External energy: ((f,u^h)+(t,u^h))^0.5 : -3.97533 (f,u)+(t,u) = 15.80323145 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 28.3646 + Pressure norm, L2: (p^h,p^h)^0.5 : 9.45503 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 23.1594 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 28.3644 + Node #12: sol1 = -3.834516e-02 0.000000e+00 + sol2 = 2.423156e-03 5.008168e-01 7.515788e-03 5.393978e-04 4.958678e-01 1.098262e-02 + reac = 0.000000e+00 3.995268e+00 + Node #265: sol1 = 0.000000e+00 3.000000e-01 + sol2 = 5.910421e-01 1.126544e+00 7.634944e-01 0.000000e+00 4.734483e-01 5.875527e-03 + reac = -1.801887e-05 -1.018370e-01 + step=7 time=0.35 + Primary solution summary: L2-norm : 0.128375 + Max X-displacement : 0.0444402 node 12 + Max Y-displacement : 0.35 node 265 + Total reaction forces: Sum(R) = -1.06753e-05 3.36785e-08 + displacement\*reactions: (R,u) = -21.6972 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 4.34569 a(u^h,u^h) = 18.88503387 + External energy: ((f,u^h)+(t,u^h))^0.5 : -4.34549 (f,u)+(t,u) = 18.88328754 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 28.7799 + Pressure norm, L2: (p^h,p^h)^0.5 : 9.59346 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 23.4985 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 28.7797 + Node #12: sol1 = -4.444023e-02 0.000000e+00 + sol2 = 2.593326e-03 5.085246e-01 7.915881e-03 5.493699e-04 5.032920e-01 1.294407e-02 + reac = 0.000000e+00 4.047654e+00 + Node #265: sol1 = 0.000000e+00 3.500000e-01 + sol2 = 7.309102e-01 1.273492e+00 9.078454e-01 0.000000e+00 4.792697e-01 7.392107e-03 + reac = -1.722768e-05 -1.032109e-01 + step=8 time=0.4 + Primary solution summary: L2-norm : 0.146229 + Max X-displacement : 0.0505321 node 12 + Max Y-displacement : 0.4 node 265 + Total reaction forces: Sum(R) = -1.06887e-05 -8.15411e-08 + displacement\*reactions: (R,u) = -25.0974 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 4.69082 a(u^h,u^h) = 22.00381817 + External energy: ((f,u^h)+(t,u^h))^0.5 : -4.69059 (f,u)+(t,u) = 22.0016715 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 29.1825 + Pressure norm, L2: (p^h,p^h)^0.5 : 9.72765 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 23.8272 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 29.1822 + Node #12: sol1 = -5.053212e-02 0.000000e+00 + sol2 = 2.755244e-03 5.159388e-01 8.197875e-03 5.567786e-04 5.104849e-01 1.490636e-02 + reac = 0.000000e+00 4.097590e+00 + Node #265: sol1 = 0.000000e+00 4.000000e-01 + sol2 = 8.703905e-01 1.419641e+00 1.050773e+00 0.000000e+00 4.849107e-01 8.904045e-03 + reac = -1.645158e-05 -1.045104e-01 + step=9 time=0.45 + Primary solution summary: L2-norm : 0.164096 + Max X-displacement : 0.056622 node 12 + Max Y-displacement : 0.45 node 265 + Total reaction forces: Sum(R) = -1.07373e-05 -1.33854e-07 + displacement\*reactions: (R,u) = -28.5595 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 5.01592 a(u^h,u^h) = 25.1594553 + External energy: ((f,u^h)+(t,u^h))^0.5 : -5.01567 (f,u)+(t,u) = 25.1568972 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 29.5727 + Pressure norm, L2: (p^h,p^h)^0.5 : 9.85774 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 24.1458 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 29.5725 + Node #12: sol1 = -5.662202e-02 0.000000e+00 + sol2 = 2.910146e-03 5.230899e-01 8.405188e-03 5.627130e-04 5.174551e-01 1.686985e-02 + reac = 0.000000e+00 4.145304e+00 + Node #265: sol1 = 0.000000e+00 4.500000e-01 + sol2 = 1.009290e+00 1.564893e+00 1.192507e+00 0.000000e+00 4.903751e-01 1.041078e-02 + reac = -1.570747e-05 -1.057453e-01 + step=10 time=0.5 + Primary solution summary: L2-norm : 0.181975 + Max X-displacement : 0.062711 node 12 + Max Y-displacement : 0.5 node 265 + Total reaction forces: Sum(R) = -1.08238e-05 -1.60631e-07 + displacement\*reactions: (R,u) = -32.0798 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 5.32452 a(u^h,u^h) = 28.35051838 + External energy: ((f,u^h)+(t,u^h))^0.5 : -5.32424 (f,u)+(t,u) = 28.34753004 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 29.9511 + Pressure norm, L2: (p^h,p^h)^0.5 : 9.98386 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 24.4548 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 29.9509 + Node #12: sol1 = -6.271100e-02 0.000000e+00 + sol2 = 3.058886e-03 5.299994e-01 8.563957e-03 5.678173e-04 5.242106e-01 1.883485e-02 + reac = 0.000000e+00 4.190960e+00 + Node #265: sol1 = 0.000000e+00 5.000000e-01 + sol2 = 1.147493e+00 1.709190e+00 1.333167e+00 0.000000e+00 4.956670e-01 1.191186e-02 + reac = -1.500718e-05 -1.069226e-01 + step=11 time=0.55 + Primary solution summary: L2-norm : 0.199867 + Max X-displacement : 0.0688001 node 12 + Max Y-displacement : 0.55 node 265 + Total reaction forces: Sum(R) = -1.0951e-05 -1.77514e-07 + displacement\*reactions: (R,u) = -35.6546 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 5.61922 a(u^h,u^h) = 31.57562685 + External energy: ((f,u^h)+(t,u^h))^0.5 : -5.61891 (f,u)+(t,u) = 31.57218508 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 30.3179 + Pressure norm, L2: (p^h,p^h)^0.5 : 10.1061 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 24.7543 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 30.3177 + Node #12: sol1 = -6.880006e-02 0.000000e+00 + sol2 = 3.202075e-03 5.366831e-01 8.689998e-03 5.724761e-04 5.307592e-01 2.080166e-02 + reac = 0.000000e+00 4.234684e+00 + Node #265: sol1 = 0.000000e+00 5.500000e-01 + sol2 = 1.284928e+00 1.852492e+00 1.472817e+00 0.000000e+00 5.007907e-01 1.340693e-02 + reac = -1.435923e-05 -1.080472e-01 + step=12 time=0.6 + Primary solution summary: L2-norm : 0.217773 + Max X-displacement : 0.0748902 node 12 + Max Y-displacement : 0.6 node 265 + Total reaction forces: Sum(R) = -1.11215e-05 -1.9117e-07 + displacement\*reactions: (R,u) = -39.2803 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 5.90199 a(u^h,u^h) = 34.83344597 + External energy: ((f,u^h)+(t,u^h))^0.5 : -5.90165 (f,u)+(t,u) = 34.82952526 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 30.6736 + Pressure norm, L2: (p^h,p^h)^0.5 : 10.2247 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 25.0447 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 30.6733 + Node #12: sol1 = -7.489021e-02 0.000000e+00 + sol2 = 3.340168e-03 5.431531e-01 8.792901e-03 5.769205e-04 5.371083e-01 2.277061e-02 + reac = 0.000000e+00 4.276573e+00 + Node #265: sol1 = 0.000000e+00 6.000000e-01 + sol2 = 1.421546e+00 1.994768e+00 1.611483e+00 0.000000e+00 5.057508e-01 1.489566e-02 + reac = -1.376991e-05 -1.091227e-01 + step=13 time=0.65 + Primary solution summary: L2-norm : 0.235694 + Max X-displacement : 0.0809824 node 12 + Max Y-displacement : 0.65 node 265 + Total reaction forces: Sum(R) = -1.13382e-05 -2.04526e-07 + displacement\*reactions: (R,u) = -42.9535 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 6.17436 a(u^h,u^h) = 38.12268593 + External energy: ((f,u^h)+(t,u^h))^0.5 : -6.174 (f,u)+(t,u) = 38.11825973 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 31.0185 + Pressure norm, L2: (p^h,p^h)^0.5 : 10.3397 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 25.3263 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 31.0182 + Node #12: sol1 = -8.098245e-02 0.000000e+00 + sol2 = 3.473512e-03 5.494197e-01 8.878479e-03 5.812899e-04 5.432649e-01 2.474199e-02 + reac = 0.000000e+00 4.316711e+00 + Node #265: sol1 = 0.000000e+00 6.500000e-01 + sol2 = 1.557309e+00 2.135998e+00 1.749175e+00 0.000000e+00 5.105516e-01 1.637776e-02 + reac = -1.324409e-05 -1.101522e-01 + step=14 time=0.7 + Primary solution summary: L2-norm : 0.253631 + Max X-displacement : 0.0870778 node 12 + Max Y-displacement : 0.7 node 265 + Total reaction forces: Sum(R) = -1.16041e-05 -2.18927e-07 + displacement\*reactions: (R,u) = -46.6711 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 6.43755 a(u^h,u^h) = 41.44210068 + External energy: ((f,u^h)+(t,u^h))^0.5 : -6.43717 (f,u)+(t,u) = 41.43714222 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 31.3529 + Pressure norm, L2: (p^h,p^h)^0.5 : 10.4511 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 25.5993 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 31.3526 + Node #12: sol1 = -8.707781e-02 0.000000e+00 + sol2 = 3.602383e-03 5.554916e-01 8.950227e-03 5.856684e-04 5.492358e-01 2.671613e-02 + reac = 0.000000e+00 4.355171e+00 + Node #265: sol1 = 0.000000e+00 7.000000e-01 + sol2 = 1.692189e+00 2.276162e+00 1.885888e+00 0.000000e+00 5.151976e-01 1.785292e-02 + reac = -1.278572e-05 -1.111380e-01 + step=15 time=0.75 + Primary solution summary: L2-norm : 0.271583 + Max X-displacement : 0.0931774 node 12 + Max Y-displacement : 0.75 node 265 + Total reaction forces: Sum(R) = -1.19227e-05 -2.3506e-07 + displacement\*reactions: (R,u) = -50.4301 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 6.69257 a(u^h,u^h) = 44.79048668 + External energy: ((f,u^h)+(t,u^h))^0.5 : -6.69216 (f,u)+(t,u) = 44.78496949 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 31.6772 + Pressure norm, L2: (p^h,p^h)^0.5 : 10.5593 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 25.8641 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 31.6769 + Node #12: sol1 = -9.317740e-02 0.000000e+00 + sol2 = 3.727009e-03 5.613764e-01 9.010208e-03 5.901067e-04 5.550276e-01 2.869338e-02 + reac = 0.000000e+00 4.392019e+00 + Node #265: sol1 = 0.000000e+00 7.500000e-01 + sol2 = 1.826161e+00 2.415243e+00 2.021616e+00 0.000000e+00 5.196932e-01 1.932087e-02 + reac = -1.239812e-05 -1.120822e-01 + step=16 time=0.8 + Primary solution summary: L2-norm : 0.289553 + Max X-displacement : 0.0992823 node 12 + Max Y-displacement : 0.8 node 265 + Total reaction forces: Sum(R) = -1.22975e-05 -2.53378e-07 + displacement\*reactions: (R,u) = -54.2275 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 6.94022 a(u^h,u^h) = 48.16668164 + External energy: ((f,u^h)+(t,u^h))^0.5 : -6.93978 (f,u)+(t,u) = 48.16057978 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 31.9917 + Pressure norm, L2: (p^h,p^h)^0.5 : 10.6641 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 26.1209 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 31.9914 + Node #12: sol1 = -9.928235e-02 0.000000e+00 + sol2 = 3.847584e-03 5.670812e-01 9.059588e-03 5.946345e-04 5.606468e-01 3.067409e-02 + reac = 0.000000e+00 4.427314e+00 + Node #265: sol1 = 0.000000e+00 8.000000e-01 + sol2 = 1.959201e+00 2.553223e+00 2.156342e+00 0.000000e+00 5.240427e-01 2.078132e-02 + reac = -1.208429e-05 -1.129866e-01 + step=17 time=0.85 + Primary solution summary: L2-norm : 0.307541 + Max X-displacement : 0.105394 node 12 + Max Y-displacement : 0.85 node 265 + Total reaction forces: Sum(R) = -1.27323e-05 -2.7425e-07 + displacement\*reactions: (R,u) = -58.0606 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 7.1812 a(u^h,u^h) = 51.5695631 + External energy: ((f,u^h)+(t,u^h))^0.5 : -7.18073 (f,u)+(t,u) = 51.56285141 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 32.2967 + Pressure norm, L2: (p^h,p^h)^0.5 : 10.7658 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 26.3699 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 32.2964 + Node #12: sol1 = -1.053939e-01 0.000000e+00 + sol2 = 3.964274e-03 5.726125e-01 9.098966e-03 5.992695e-04 5.660993e-01 3.265865e-02 + reac = 0.000000e+00 4.461112e+00 + Node #265: sol1 = 0.000000e+00 8.500000e-01 + sol2 = 2.091285e+00 2.690085e+00 2.290052e+00 0.000000e+00 5.282500e-01 2.223396e-02 + reac = -1.184705e-05 -1.138527e-01 + step=18 time=0.9 + Primary solution summary: L2-norm : 0.325548 + Max X-displacement : 0.111513 node 12 + Max Y-displacement : 0.9 node 265 + Total reaction forces: Sum(R) = -1.32317e-05 -2.98073e-07 + displacement\*reactions: (R,u) = -61.9267 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 7.41607 a(u^h,u^h) = 54.99804719 + External energy: ((f,u^h)+(t,u^h))^0.5 : -7.41557 (f,u)+(t,u) = 54.9907013 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 32.5926 + Pressure norm, L2: (p^h,p^h)^0.5 : 10.8644 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 26.6115 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 32.5923 + Node #12: sol1 = -1.115133e-01 0.000000e+00 + sol2 = 4.077228e-03 5.779763e-01 9.128567e-03 6.040213e-04 5.713911e-01 3.464746e-02 + reac = 0.000000e+00 4.493466e+00 + Node #265: sol1 = 0.000000e+00 9.000000e-01 + sol2 = 2.222389e+00 2.825810e+00 2.422725e+00 0.000000e+00 5.323193e-01 2.367850e-02 + reac = -1.168913e-05 -1.146821e-01 + step=19 time=0.95 + Primary solution summary: L2-norm : 0.343575 + Max X-displacement : 0.117642 node 12 + Max Y-displacement : 0.95 node 265 + Total reaction forces: Sum(R) = -1.38002e-05 -3.25299e-07 + displacement\*reactions: (R,u) = -65.8234 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 7.64533 a(u^h,u^h) = 58.45108727 + External energy: ((f,u^h)+(t,u^h))^0.5 : -7.64481 (f,u)+(t,u) = 58.44308367 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 32.8795 + Pressure norm, L2: (p^h,p^h)^0.5 : 10.9601 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 26.8458 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 32.8792 + Node #12: sol1 = -1.176420e-01 0.000000e+00 + sol2 = 4.186584e-03 5.831785e-01 9.148372e-03 6.088953e-04 5.765280e-01 3.664095e-02 + reac = 0.000000e+00 4.524424e+00 + Node #265: sol1 = 0.000000e+00 9.500000e-01 + sol2 = 2.352490e+00 2.960378e+00 2.554341e+00 0.000000e+00 5.362545e-01 2.511461e-02 + reac = -1.161327e-05 -1.154761e-01 + step=20 time=1 + Primary solution summary: L2-norm : 0.361624 + Max X-displacement : 0.123781 node 12 + Max Y-displacement : 1 node 265 + Total reaction forces: Sum(R) = -1.44433e-05 -3.56481e-07 + displacement\*reactions: (R,u) = -69.7484 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 7.86941 a(u^h,u^h) = 61.92767263 + External energy: ((f,u^h)+(t,u^h))^0.5 : -7.86886 (f,u)+(t,u) = 61.91898866 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 33.1579 + Pressure norm, L2: (p^h,p^h)^0.5 : 11.0529 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 27.0731 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 33.1576 + Node #12: sol1 = -1.237814e-01 0.000000e+00 + sol2 = 4.292465e-03 5.882246e-01 9.158187e-03 6.138943e-04 5.815156e-01 3.863960e-02 + reac = 0.000000e+00 4.554035e+00 + Node #265: sol1 = 0.000000e+00 1.000000e+00 + sol2 = 2.481562e+00 3.093769e+00 2.684877e+00 0.000000e+00 5.400594e-01 2.654196e-02 + reac = -1.162229e-05 -1.162360e-01 + step=21 time=1.05 + Primary solution summary: L2-norm : 0.379696 + Max X-displacement : 0.129933 node 12 + Max Y-displacement : 1.05 node 265 + Total reaction forces: Sum(R) = -1.51653e-05 0 + displacement\*reactions: (R,u) = -73.6992 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 8.08869 a(u^h,u^h) = 65.42682726 + External energy: ((f,u^h)+(t,u^h))^0.5 : -8.0881 (f,u)+(t,u) = 65.41744108 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 33.428 + Pressure norm, L2: (p^h,p^h)^0.5 : 11.1429 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 27.2935 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 33.4276 + Node #12: sol1 = -1.299332e-01 0.000000e+00 + sol2 = 4.394988e-03 5.931199e-01 9.157689e-03 6.190198e-04 5.863591e-01 4.064390e-02 + reac = 0.000000e+00 4.582342e+00 + Node #265: sol1 = 0.000000e+00 1.050000e+00 + sol2 = 2.609577e+00 3.225960e+00 2.814306e+00 0.000000e+00 5.437375e-01 2.796018e-02 + reac = -1.171907e-05 -1.169630e-01 + step=22 time=1.1 + Primary solution summary: L2-norm : 0.397792 + Max X-displacement : 0.136099 node 12 + Max Y-displacement : 1.1 node 265 + Total reaction forces: Sum(R) = -1.59754e-05 0 + displacement\*reactions: (R,u) = -77.6739 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 8.30347 a(u^h,u^h) = 68.94760862 + External energy: ((f,u^h)+(t,u^h))^0.5 : -8.30286 (f,u)+(t,u) = 68.93749917 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 33.6899 + Pressure norm, L2: (p^h,p^h)^0.5 : 11.2302 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 27.5074 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 33.6896 + Node #12: sol1 = -1.360991e-01 0.000000e+00 + sol2 = 4.494266e-03 5.978695e-01 9.146451e-03 6.242729e-04 5.910638e-01 4.265439e-02 + reac = 0.000000e+00 4.609389e+00 + Node #265: sol1 = 0.000000e+00 1.100000e+00 + sol2 = 2.736506e+00 3.356925e+00 2.942603e+00 0.000000e+00 5.472924e-01 2.936892e-02 + reac = -1.190672e-05 -1.176582e-01 + step=23 time=1.15 + Primary solution summary: L2-norm : 0.415914 + Max X-displacement : 0.142281 node 12 + Max Y-displacement : 1.15 node 265 + Total reaction forces: Sum(R) = -1.68795e-05 0 + displacement\*reactions: (R,u) = -81.6702 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 8.51405 a(u^h,u^h) = 72.48910646 + External energy: ((f,u^h)+(t,u^h))^0.5 : -8.51342 (f,u)+(t,u) = 72.47825336 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 33.9441 + Pressure norm, L2: (p^h,p^h)^0.5 : 11.3149 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 27.7149 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 33.9437 + Node #12: sol1 = -1.422811e-01 0.000000e+00 + sol2 = 4.590403e-03 6.024781e-01 9.123957e-03 6.296547e-04 5.956349e-01 4.467168e-02 + reac = 0.000000e+00 4.635216e+00 + Node #265: sol1 = 0.000000e+00 1.150000e+00 + sol2 = 2.862319e+00 3.486637e+00 3.069737e+00 0.000000e+00 5.507275e-01 3.076775e-02 + reac = -1.218840e-05 -1.183227e-01 + step=24 time=1.2 + Primary solution summary: L2-norm : 0.434063 + Max X-displacement : 0.148481 node 12 + Max Y-displacement : 1.2 node 265 + Total reaction forces: Sum(R) = -1.78857e-05 0 + displacement\*reactions: (R,u) = -85.6864 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 8.72069 a(u^h,u^h) = 76.05044164 + External energy: ((f,u^h)+(t,u^h))^0.5 : -8.72002 (f,u)+(t,u) = 76.03882516 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 34.1907 + Pressure norm, L2: (p^h,p^h)^0.5 : 11.3972 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 27.9163 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 34.1903 + Node #12: sol1 = -1.484810e-01 0.000000e+00 + sol2 = 4.683501e-03 6.069505e-01 9.089602e-03 6.351671e-04 6.000771e-01 4.669638e-02 + reac = 0.000000e+00 4.659861e+00 + Node #265: sol1 = 0.000000e+00 1.200000e+00 + sol2 = 2.986982e+00 3.615068e+00 3.195678e+00 0.000000e+00 5.540461e-01 3.215626e-02 + reac = -1.256748e-05 -1.189577e-01 + step=25 time=1.25 + Primary solution summary: L2-norm : 0.452241 + Max X-displacement : 0.154701 node 12 + Max Y-displacement : 1.25 node 265 + Total reaction forces: Sum(R) = -1.90029e-05 0 + displacement\*reactions: (R,u) = -89.7204 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 8.92361 a(u^h,u^h) = 79.63076502 + External energy: ((f,u^h)+(t,u^h))^0.5 : -8.92291 (f,u)+(t,u) = 79.618366 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 34.43 + Pressure norm, L2: (p^h,p^h)^0.5 : 11.4769 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 28.1116 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 34.4296 + Node #12: sol1 = -1.547012e-01 0.000000e+00 + sol2 = 4.773660e-03 6.112912e-01 9.042697e-03 6.408126e-04 6.043954e-01 4.872920e-02 + reac = 0.000000e+00 4.683361e+00 + Node #265: sol1 = 0.000000e+00 1.250000e+00 + sol2 = 3.110460e+00 3.742185e+00 3.320390e+00 0.000000e+00 5.572513e-01 3.353398e-02 + reac = -1.304749e-05 -1.195639e-01 + step=26 time=1.3 + Primary solution summary: L2-norm : 0.470451 + Max X-displacement : 0.160944 node 12 + Max Y-displacement : 1.3 node 265 + Total reaction forces: Sum(R) = -2.02411e-05 0 + displacement\*reactions: (R,u) = -93.7706 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 9.12301 a(u^h,u^h) = 83.22925638 + External energy: ((f,u^h)+(t,u^h))^0.5 : -9.12228 (f,u)+(t,u) = 83.21605614 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 34.6622 + Pressure norm, L2: (p^h,p^h)^0.5 : 11.5543 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 28.3012 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 34.6617 + Node #12: sol1 = -1.609440e-01 0.000000e+00 + sol2 = 4.860976e-03 6.155046e-01 8.982461e-03 6.465949e-04 6.085943e-01 5.077090e-02 + reac = 0.000000e+00 4.705752e+00 + Node #265: sol1 = 0.000000e+00 1.300000e+00 + sol2 = 3.232715e+00 3.867953e+00 3.443837e+00 0.000000e+00 5.603461e-01 3.490044e-02 + reac = -1.363213e-05 -1.201425e-01 + step=27 time=1.35 + Primary solution summary: L2-norm : 0.488694 + Max X-displacement : 0.167212 node 12 + Max Y-displacement : 1.35 node 265 + Total reaction forces: Sum(R) = -2.16116e-05 0 + displacement\*reactions: (R,u) = -97.8354 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 9.31907 a(u^h,u^h) = 86.84512332 + External energy: ((f,u^h)+(t,u^h))^0.5 : -9.31832 (f,u)+(t,u) = 86.83110361 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 34.8875 + Pressure norm, L2: (p^h,p^h)^0.5 : 11.6295 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 28.4851 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 34.887 + Node #12: sol1 = -1.672122e-01 0.000000e+00 + sol2 = 4.945545e-03 6.195947e-01 8.908014e-03 6.525187e-04 6.126785e-01 5.282229e-02 + reac = 0.000000e+00 4.727066e+00 + Node #265: sol1 = 0.000000e+00 1.350000e+00 + sol2 = 3.353704e+00 3.992335e+00 3.565979e+00 0.000000e+00 5.633335e-01 3.625509e-02 + reac = -1.432527e-05 -1.206943e-01 + step=28 time=1.4 + Primary solution summary: L2-norm : 0.506973 + Max X-displacement : 0.173509 node 12 + Max Y-displacement : 1.4 node 265 + Total reaction forces: Sum(R) = -2.3127e-05 0 + displacement\*reactions: (R,u) = -101.913 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 9.51197 a(u^h,u^h) = 90.47760028 + External energy: ((f,u^h)+(t,u^h))^0.5 : -9.51119 (f,u)+(t,u) = 90.46274315 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 35.1061 + Pressure norm, L2: (p^h,p^h)^0.5 : 11.7024 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 28.6636 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 35.1057 + Node #12: sol1 = -1.735085e-01 0.000000e+00 + sol2 = 5.027461e-03 6.235656e-01 8.818364e-03 6.585903e-04 6.166524e-01 5.488429e-02 + reac = 0.000000e+00 4.747335e+00 + Node #265: sol1 = 0.000000e+00 1.400000e+00 + sol2 = 3.473385e+00 4.115288e+00 3.686771e+00 0.000000e+00 5.662161e-01 3.759738e-02 + reac = -1.513097e-05 -1.212202e-01 + step=29 time=1.45 + Primary solution summary: L2-norm : 0.52529 + Max X-displacement : 0.179836 node 12 + Max Y-displacement : 1.45 node 265 + Total reaction forces: Sum(R) = -2.48015e-05 0 + displacement\*reactions: (R,u) = -106.002 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 9.70185 a(u^h,u^h) = 94.12594751 + External energy: ((f,u^h)+(t,u^h))^0.5 : -9.70104 (f,u)+(t,u) = 94.11023524 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 35.3183 + Pressure norm, L2: (p^h,p^h)^0.5 : 11.7731 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 28.8369 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 35.3178 + Node #12: sol1 = -1.798362e-01 0.000000e+00 + sol2 = 5.106817e-03 6.274211e-01 8.712395e-03 6.648178e-04 6.205204e-01 5.695789e-02 + reac = 0.000000e+00 4.766587e+00 + Node #265: sol1 = 0.000000e+00 1.450000e+00 + sol2 = 3.591707e+00 4.236768e+00 3.806166e+00 0.000000e+00 5.689967e-01 3.892670e-02 + reac = -1.605345e-05 -1.217210e-01 + step=30 time=1.5 + Primary solution summary: L2-norm : 0.543648 + Max X-displacement : 0.186199 node 12 + Max Y-displacement : 1.5 node 265 + Total reaction forces: Sum(R) = -2.66512e-05 0 + displacement\*reactions: (R,u) = -110.101 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 9.88885 a(u^h,u^h) = 97.78945008 + External energy: ((f,u^h)+(t,u^h))^0.5 : -9.88802 (f,u)+(t,u) = 97.77286509 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 35.5243 + Pressure norm, L2: (p^h,p^h)^0.5 : 11.8418 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 29.005 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 35.5237 + Node #12: sol1 = -1.861988e-01 0.000000e+00 + sol2 = 5.183709e-03 6.311649e-01 8.588847e-03 6.712107e-04 6.242867e-01 5.904419e-02 + reac = 0.000000e+00 4.784851e+00 + Node #265: sol1 = 0.000000e+00 1.500000e+00 + sol2 = 3.708619e+00 4.356724e+00 3.924114e+00 0.000000e+00 5.716777e-01 4.024239e-02 + reac = -1.709707e-05 -1.221975e-01 + step=31 time=1.55 + Primary solution summary: L2-norm : 0.56205 + Max X-displacement : 0.1926 node 12 + Max Y-displacement : 1.55 node 265 + Total reaction forces: Sum(R) = -2.86942e-05 0 + displacement\*reactions: (R,u) = -114.208 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 10.0731 a(u^h,u^h) = 101.4674169 + External energy: ((f,u^h)+(t,u^h))^0.5 : -10.0722 (f,u)+(t,u) = 101.4499417 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 35.7241 + Pressure norm, L2: (p^h,p^h)^0.5 : 11.9084 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 29.1682 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 35.7236 + Node #12: sol1 = -1.926002e-01 0.000000e+00 + sol2 = 5.258229e-03 6.348005e-01 8.446297e-03 6.777810e-04 6.279554e-01 6.114440e-02 + reac = 0.000000e+00 4.802151e+00 + Node #265: sol1 = 0.000000e+00 1.550000e+00 + sol2 = 3.824063e+00 4.475103e+00 4.040558e+00 0.000000e+00 5.742616e-01 4.154373e-02 + reac = -1.826634e-05 -1.226505e-01 + step=32 time=1.6 + Primary solution summary: L2-norm : 0.5805 + Max X-displacement : 0.199045 node 12 + Max Y-displacement : 1.6 node 265 + Total reaction forces: Sum(R) = -3.09513e-05 0 + displacement\*reactions: (R,u) = -118.323 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 10.2547 a(u^h,u^h) = 105.15918 + External energy: ((f,u^h)+(t,u^h))^0.5 : -10.2538 (f,u)+(t,u) = 105.1407968 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 35.9181 + Pressure norm, L2: (p^h,p^h)^0.5 : 11.9731 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 29.3266 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 35.9176 + Node #12: sol1 = -1.990445e-01 0.000000e+00 + sol2 = 5.330474e-03 6.383314e-01 8.283132e-03 6.845428e-04 6.315309e-01 6.325985e-02 + reac = 0.000000e+00 4.818511e+00 + Node #265: sol1 = 0.000000e+00 1.600000e+00 + sol2 = 3.937979e+00 4.591845e+00 4.155437e+00 0.000000e+00 5.767506e-01 4.282996e-02 + reac = -1.956591e-05 -1.230806e-01 + step=33 time=1.65 + Primary solution summary: L2-norm : 0.599001 + Max X-displacement : 0.205537 node 12 + Max Y-displacement : 1.65 node 265 + Total reaction forces: Sum(R) = -3.3446e-05 0 + displacement\*reactions: (R,u) = -122.443 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 10.4338 a(u^h,u^h) = 108.8640931 + External energy: ((f,u^h)+(t,u^h))^0.5 : -10.4329 (f,u)+(t,u) = 108.8447842 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 36.1064 + Pressure norm, L2: (p^h,p^h)^0.5 : 12.0359 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 29.4803 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 36.1058 + Node #12: sol1 = -2.055367e-01 0.000000e+00 + sol2 = 5.400541e-03 6.417607e-01 8.097521e-03 6.915127e-04 6.350170e-01 6.539205e-02 + reac = 0.000000e+00 4.833953e+00 + Node #265: sol1 = 0.000000e+00 1.650000e+00 + sol2 = 4.050297e+00 4.706885e+00 4.268683e+00 0.000000e+00 5.791468e-01 4.410024e-02 + reac = -2.100051e-05 -1.234886e-01 + step=34 time=1.7 + Primary solution summary: L2-norm : 0.617558 + Max X-displacement : 0.212082 node 12 + Max Y-displacement : 1.7 node 265 + Total reaction forces: Sum(R) = -3.62051e-05 0 + displacement\*reactions: (R,u) = -126.568 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 10.6104 a(u^h,u^h) = 112.5815312 + External energy: ((f,u^h)+(t,u^h))^0.5 : -10.6095 (f,u)+(t,u) = 112.5612785 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 36.2892 + Pressure norm, L2: (p^h,p^h)^0.5 : 12.0968 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 29.6295 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 36.2885 + Node #12: sol1 = -2.120819e-01 0.000000e+00 + sol2 = 5.468530e-03 6.450914e-01 7.887378e-03 6.987108e-04 6.384180e-01 6.754265e-02 + reac = 0.000000e+00 4.848495e+00 + Node #265: sol1 = 0.000000e+00 1.700000e+00 + sol2 = 4.160945e+00 4.820152e+00 4.380225e+00 0.000000e+00 5.814523e-01 4.535364e-02 + reac = -2.257492e-05 -1.238752e-01 + step=35 time=1.75 + Primary solution summary: L2-norm : 0.636174 + Max X-displacement : 0.218686 node 12 + Max Y-displacement : 1.75 node 265 + Total reaction forces: Sum(R) = -3.92598e-05 0 + displacement\*reactions: (R,u) = -130.697 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 10.7848 a(u^h,u^h) = 116.3108896 + External energy: ((f,u^h)+(t,u^h))^0.5 : -10.7838 (f,u)+(t,u) = 116.2896745 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 36.4665 + Pressure norm, L2: (p^h,p^h)^0.5 : 12.156 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 29.7742 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 36.4659 + Node #12: sol1 = -2.186862e-01 0.000000e+00 + sol2 = 5.534544e-03 6.483264e-01 7.650318e-03 7.061601e-04 6.417377e-01 6.971350e-02 + reac = 0.000000e+00 4.862154e+00 + Node #265: sol1 = 0.000000e+00 1.750000e+00 + sol2 = 4.269841e+00 4.931566e+00 4.489983e+00 0.000000e+00 5.836689e-01 4.658919e-02 + reac = -2.429398e-05 -1.242409e-01 + step=36 time=1.8 + Primary solution summary: L2-norm : 0.654855 + Max X-displacement : 0.225356 node 12 + Max Y-displacement : 1.8 node 265 + Total reaction forces: Sum(R) = -4.26455e-05 0 + displacement\*reactions: (R,u) = -134.828 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 10.9568 a(u^h,u^h) = 120.0515828 + External energy: ((f,u^h)+(t,u^h))^0.5 : -10.9558 (f,u)+(t,u) = 120.0293861 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 36.6387 + Pressure norm, L2: (p^h,p^h)^0.5 : 12.2134 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 29.9148 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 36.638 + Node #12: sol1 = -2.253562e-01 0.000000e+00 + sol2 = 5.598690e-03 6.514684e-01 7.383610e-03 7.138881e-04 6.449803e-01 7.190670e-02 + reac = 0.000000e+00 4.874943e+00 + Node #265: sol1 = 0.000000e+00 1.800000e+00 + sol2 = 4.376897e+00 5.041041e+00 4.597867e+00 0.000000e+00 5.857983e-01 4.780578e-02 + reac = -2.616245e-05 -1.245863e-01 + step=37 time=1.85 + Primary solution summary: L2-norm : 0.673607 + Max X-displacement : 0.232099 node 12 + Max Y-displacement : 1.85 node 265 + Total reaction forces: Sum(R) = -4.64035e-05 0 + displacement\*reactions: (R,u) = -138.961 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 11.1267 a(u^h,u^h) = 123.8030436 + External energy: ((f,u^h)+(t,u^h))^0.5 : -11.1256 (f,u)+(t,u) = 123.7798456 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 36.8058 + Pressure norm, L2: (p^h,p^h)^0.5 : 12.2691 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 30.0512 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 36.805 + Node #12: sol1 = -2.320993e-01 0.000000e+00 + sol2 = 5.661082e-03 6.545199e-01 7.084111e-03 7.219268e-04 6.481497e-01 7.412458e-02 + reac = 0.000000e+00 4.886876e+00 + Node #265: sol1 = 0.000000e+00 1.850000e+00 + sol2 = 4.482015e+00 5.148481e+00 4.703781e+00 0.000000e+00 5.878420e-01 4.900222e-02 + reac = -2.818504e-05 -1.249120e-01 + step=38 time=1.9 + Primary solution summary: L2-norm : 0.692436 + Max X-displacement : 0.238924 node 12 + Max Y-displacement : 1.9 node 265 + Total reaction forces: Sum(R) = -5.0582e-05 0 + displacement\*reactions: (R,u) = -143.094 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 11.2945 a(u^h,u^h) = 127.5647224 + External energy: ((f,u^h)+(t,u^h))^0.5 : -11.2934 (f,u)+(t,u) = 127.5405024 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 36.9679 + Pressure norm, L2: (p^h,p^h)^0.5 : 12.3232 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 30.1835 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 36.9671 + Node #12: sol1 = -2.389242e-01 0.000000e+00 + sol2 = 5.721839e-03 6.574832e-01 6.748194e-03 7.303139e-04 6.512500e-01 7.636982e-02 + reac = 0.000000e+00 4.897958e+00 + Node #265: sol1 = 0.000000e+00 1.900000e+00 + sol2 = 4.585087e+00 5.253780e+00 4.807618e+00 0.000000e+00 5.898014e-01 5.017719e-02 + reac = -3.036624e-05 -1.252185e-01 + step=39 time=1.95 + Primary solution summary: L2-norm : 0.711349 + Max X-displacement : 0.24584 node 12 + Max Y-displacement : 1.95 node 265 + Total reaction forces: Sum(R) = -5.5237e-05 0 + displacement\*reactions: (R,u) = -147.226 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 11.4602 a(u^h,u^h) = 131.3360861 + External energy: ((f,u^h)+(t,u^h))^0.5 : -11.4591 (f,u)+(t,u) = 131.3108226 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 37.1253 + Pressure norm, L2: (p^h,p^h)^0.5 : 12.3757 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 30.3119 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 37.1244 + Node #12: sol1 = -2.458405e-01 0.000000e+00 + sol2 = 5.781087e-03 6.603603e-01 6.371655e-03 7.390937e-04 6.542853e-01 7.864542e-02 + reac = 0.000000e+00 4.908195e+00 + Node #265: sol1 = 0.000000e+00 1.950000e+00 + sol2 = 4.685995e+00 5.356820e+00 4.909259e+00 0.000000e+00 5.916777e-01 5.132924e-02 + reac = -3.271026e-05 -1.255063e-01 + step=40 time=2 + Primary solution summary: L2-norm : 0.730354 + Max X-displacement : 0.252859 node 12 + Max Y-displacement : 2 node 265 + Total reaction forces: Sum(R) = -6.04346e-05 0 + displacement\*reactions: (R,u) = -151.356 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 11.624 a(u^h,u^h) = 135.1166173 + External energy: ((f,u^h)+(t,u^h))^0.5 : -11.6228 (f,u)+(t,u) = 135.0902874 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 37.2779 + Pressure norm, L2: (p^h,p^h)^0.5 : 12.4266 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 30.4365 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 37.277 + Node #12: sol1 = -2.528592e-01 0.000000e+00 + sol2 = 5.838965e-03 6.631529e-01 5.949604e-03 7.483184e-04 6.572599e-01 8.095483e-02 + reac = 0.000000e+00 4.917587e+00 + Node #265: sol1 = 0.000000e+00 2.000000e+00 + sol2 = 4.784605e+00 5.457470e+00 5.008572e+00 0.000000e+00 5.934719e-01 5.245676e-02 + reac = -3.522091e-05 -1.257758e-01 + step=41 time=2.05 + Primary solution summary: L2-norm : 0.749461 + Max X-displacement : 0.259993 node 12 + Max Y-displacement : 2.05 node 265 + Total reaction forces: Sum(R) = -6.62528e-05 0 + displacement\*reactions: (R,u) = -155.484 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 11.7858 a(u^h,u^h) = 138.9058129 + External energy: ((f,u^h)+(t,u^h))^0.5 : -11.7847 (f,u)+(t,u) = 138.8783926 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 37.426 + Pressure norm, L2: (p^h,p^h)^0.5 : 12.476 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 30.5574 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 37.425 + Node #12: sol1 = -2.599930e-01 0.000000e+00 + sol2 = 5.895621e-03 6.658627e-01 5.476329e-03 7.580498e-04 6.601781e-01 8.330200e-02 + reac = 0.000000e+00 4.926130e+00 + Node #265: sol1 = 0.000000e+00 2.050000e+00 + sol2 = 4.880769e+00 5.555582e+00 5.105409e+00 0.000000e+00 5.951848e-01 5.355795e-02 + reac = -3.790139e-05 -1.260275e-01 + step=42 time=2.1 + Primary solution summary: L2-norm : 0.768679 + Max X-displacement : 0.267257 node 12 + Max Y-displacement : 2.1 node 265 + Total reaction forces: Sum(R) = -7.27847e-05 0 + displacement\*reactions: (R,u) = -159.609 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 11.9458 a(u^h,u^h) = 142.7031836 + External energy: ((f,u^h)+(t,u^h))^0.5 : -11.9446 (f,u)+(t,u) = 142.6746475 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 37.5697 + Pressure norm, L2: (p^h,p^h)^0.5 : 12.524 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 30.6746 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 37.5686 + Node #12: sol1 = -2.672567e-01 0.000000e+00 + sol2 = 5.951220e-03 6.684906e-01 4.945124e-03 7.683615e-04 6.630444e-01 8.569149e-02 + reac = 0.000000e+00 4.933813e+00 + Node #265: sol1 = 0.000000e+00 2.100000e+00 + sol2 = 4.974323e+00 5.650991e+00 5.199606e+00 0.000000e+00 5.968168e-01 5.463081e-02 + reac = -4.075414e-05 -1.262617e-01 + step=43 time=2.15 + Primary solution summary: L2-norm : 0.788022 + Max X-displacement : 0.274667 node 12 + Max Y-displacement : 2.15 node 265 + Total reaction forces: Sum(R) = -8.01418e-05 0 + displacement\*reactions: (R,u) = -163.729 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 12.1041 a(u^h,u^h) = 146.5082523 + External energy: ((f,u^h)+(t,u^h))^0.5 : -12.1028 (f,u)+(t,u) = 146.4785731 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 37.709 + Pressure norm, L2: (p^h,p^h)^0.5 : 12.5705 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 30.7882 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 37.7077 + Node #12: sol1 = -2.746673e-01 0.000000e+00 + sol2 = 6.005945e-03 6.710375e-01 4.348082e-03 7.793414e-04 6.658634e-01 8.812861e-02 + reac = 0.000000e+00 4.940621e+00 + Node #265: sol1 = 0.000000e+00 2.150000e+00 + sol2 = 5.065080e+00 5.743513e+00 5.290976e+00 0.000000e+00 5.983682e-01 5.567308e-02 + reac = -4.378059e-05 -1.264786e-01 + step=44 time=2.2 + Primary solution summary: L2-norm : 0.807502 + Max X-displacement : 0.282245 node 12 + Max Y-displacement : 2.2 node 265 + Total reaction forces: Sum(R) = -8.8459e-05 0 + displacement\*reactions: (R,u) = -167.843 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 12.2605 a(u^h,u^h) = 150.3205527 + External energy: ((f,u^h)+(t,u^h))^0.5 : -12.2593 (f,u)+(t,u) = 150.2897018 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 37.844 + Pressure norm, L2: (p^h,p^h)^0.5 : 12.6155 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 30.8984 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 37.8426 + Node #12: sol1 = -2.822448e-01 0.000000e+00 + sol2 = 6.060001e-03 6.735036e-01 3.675826e-03 7.910953e-04 6.686403e-01 9.061953e-02 + reac = 0.000000e+00 4.946530e+00 + Node #265: sol1 = 0.000000e+00 2.200000e+00 + sol2 = 5.152828e+00 5.832934e+00 5.379307e+00 0.000000e+00 5.998388e-01 5.668223e-02 + reac = -4.698085e-05 -1.266787e-01 + step=45 time=2.25 + Primary solution summary: L2-norm : 0.827136 + Max X-displacement : 0.290013 node 12 + Max Y-displacement : 2.25 node 265 + Total reaction forces: Sum(R) = -9.79006e-05 0 + displacement\*reactions: (R,u) = -171.951 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 12.4153 a(u^h,u^h) = 154.1396282 + External energy: ((f,u^h)+(t,u^h))^0.5 : -12.414 (f,u)+(t,u) = 154.1075751 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 37.9748 + Pressure norm, L2: (p^h,p^h)^0.5 : 12.6592 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 31.0051 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 37.9733 + Node #12: sol1 = -2.900128e-01 0.000000e+00 + sol2 = 6.113622e-03 6.758885e-01 2.917178e-03 8.037514e-04 6.713803e-01 9.317154e-02 + reac = 0.000000e+00 4.951507e+00 + Node #265: sol1 = 0.000000e+00 2.250000e+00 + sol2 = 5.237328e+00 5.919014e+00 5.464360e+00 0.000000e+00 6.012282e-01 5.765537e-02 + reac = -5.035340e-05 -1.268620e-01 + step=46 time=2.3 + Primary solution summary: L2-norm : 0.846943 + Max X-displacement : 0.297999 node 12 + Max Y-displacement : 2.3 node 265 + Total reaction forces: Sum(R) = -0.000108669 0 + displacement\*reactions: (R,u) = -176.051 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 12.5684 a(u^h,u^h) = 157.96503 + External energy: ((f,u^h)+(t,u^h))^0.5 : -12.5671 (f,u)+(t,u) = 157.9317424 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 38.1014 + Pressure norm, L2: (p^h,p^h)^0.5 : 12.7015 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 31.1084 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 38.0998 + Node #12: sol1 = -2.979993e-01 0.000000e+00 + sol2 = 6.167076e-03 6.781912e-01 2.058732e-03 8.174665e-04 6.740892e-01 9.579328e-02 + reac = 0.000000e+00 4.955506e+00 + Node #265: sol1 = 0.000000e+00 2.300000e+00 + sol2 = 5.318302e+00 6.001477e+00 5.545858e+00 0.000000e+00 6.025353e-01 5.858919e-02 + reac = -5.389465e-05 -1.270287e-01 + step=47 time=2.35 + Primary solution summary: L2-norm : 0.866945 + Max X-displacement : 0.306238 node 12 + Max Y-displacement : 2.35 node 265 + Total reaction forces: Sum(R) = -0.000121017 0 + displacement\*reactions: (R,u) = -180.143 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 12.7199 a(u^h,u^h) = 161.7963146 + External energy: ((f,u^h)+(t,u^h))^0.5 : -12.7186 (f,u)+(t,u) = 161.7617589 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 38.224 + Pressure norm, L2: (p^h,p^h)^0.5 : 12.7425 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 31.2083 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 38.2222 + Node #12: sol1 = -3.062380e-01 0.000000e+00 + sol2 = 6.220675e-03 6.804098e-01 1.084304e-03 8.324337e-04 6.767735e-01 9.849509e-02 + reac = 0.000000e+00 4.958469e+00 + Node #265: sol1 = 0.000000e+00 2.350000e+00 + sol2 = 5.395432e+00 6.080000e+00 5.623481e+00 0.000000e+00 6.037587e-01 5.947987e-02 + reac = -5.759854e-05 -1.271789e-01 + step=48 time=2.4 + Primary solution summary: L2-norm : 0.887169 + Max X-displacement : 0.31477 node 12 + Max Y-displacement : 2.4 node 265 + Total reaction forces: Sum(R) = -0.000135261 0 + displacement\*reactions: (R,u) = -184.225 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 12.8699 a(u^h,u^h) = 165.6330417 + External energy: ((f,u^h)+(t,u^h))^0.5 : -12.8685 (f,u)+(t,u) = 165.597183 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 38.3425 + Pressure norm, L2: (p^h,p^h)^0.5 : 12.7822 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 31.3049 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 38.3405 + Node #12: sol1 = -3.147697e-01 0.000000e+00 + sol2 = 6.274783e-03 6.825412e-01 -2.577914e-05 8.488939e-04 6.794402e-01 1.012895e-01 + reac = 0.000000e+00 4.960320e+00 + Node #265: sol1 = 0.000000e+00 2.400000e+00 + sol2 = 5.468344e+00 6.154208e+00 5.696855e+00 0.000000e+00 6.048959e-01 6.032296e-02 + reac = -6.145597e-05 -1.273123e-01 + step=49 time=2.45 + Primary solution summary: L2-norm : 0.907647 + Max X-displacement : 0.323644 node 12 + Max Y-displacement : 2.45 node 265 + Total reaction forces: Sum(R) = -0.000151808 0 + displacement\*reactions: (R,u) = -188.295 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 13.0182 a(u^h,u^h) = 169.4747706 + External energy: ((f,u^h)+(t,u^h))^0.5 : -13.0168 (f,u)+(t,u) = 169.437574 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 38.4569 + Pressure norm, L2: (p^h,p^h)^0.5 : 12.8205 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 31.3981 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 38.4546 + Node #12: sol1 = -3.236444e-01 0.000000e+00 + sol2 = 6.329835e-03 6.845809e-01 -1.295607e-03 8.671508e-04 6.820974e-01 1.041917e-01 + reac = 0.000000e+00 4.960959e+00 + Node #265: sol1 = 0.000000e+00 2.450000e+00 + sol2 = 5.536595e+00 6.223654e+00 5.765536e+00 0.000000e+00 6.059439e-01 6.111321e-02 + reac = -6.545443e-05 -1.274288e-01 + step=50 time=2.5 + Primary solution summary: L2-norm : 0.928419 + Max X-displacement : 0.332924 node 12 + Max Y-displacement : 2.5 node 265 + Total reaction forces: Sum(R) = -0.000171182 0 + displacement\*reactions: (R,u) = -192.353 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 13.1651 a(u^h,u^h) = 173.3210555 + External energy: ((f,u^h)+(t,u^h))^0.5 : -13.1637 (f,u)+(t,u) = 173.2824875 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 38.5672 + Pressure norm, L2: (p^h,p^h)^0.5 : 12.8574 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 31.4879 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 38.5646 + Node #12: sol1 = -3.329240e-01 0.000000e+00 + sol2 = 6.386347e-03 6.865226e-01 -2.754915e-03 8.875923e-04 6.847544e-01 1.072207e-01 + reac = 0.000000e+00 4.960258e+00 + Node #265: sol1 = 0.000000e+00 2.500000e+00 + sol2 = 5.599655e+00 6.287804e+00 5.828995e+00 0.000000e+00 6.068981e-01 6.184434e-02 + reac = -6.957757e-05 -1.275276e-01 + step=51 time=2.55 + Primary solution summary: L2-norm : 0.949533 + Max X-displacement : 0.342687 node 12 + Max Y-displacement : 2.55 node 265 + Total reaction forces: Sum(R) = -0.000194076 0 + displacement\*reactions: (R,u) = -196.396 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 13.3106 a(u^h,u^h) = 177.1714395 + External energy: ((f,u^h)+(t,u^h))^0.5 : -13.3091 (f,u)+(t,u) = 177.1314711 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 38.6732 + Pressure norm, L2: (p^h,p^h)^0.5 : 12.8931 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 31.5741 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 38.6703 + Node #12: sol1 = -3.426867e-01 0.000000e+00 + sol2 = 6.444940e-03 6.883577e-01 -4.440708e-03 9.107212e-04 6.874220e-01 1.104000e-01 + reac = 0.000000e+00 4.958051e+00 + Node #265: sol1 = 0.000000e+00 2.550000e+00 + sol2 = 5.656880e+00 6.346006e+00 5.886584e+00 0.000000e+00 6.077528e-01 6.250874e-02 + reac = -7.380530e-05 -1.276078e-01 + step=52 time=2.6 + Primary solution summary: L2-norm : 0.97105 + Max X-displacement : 0.353032 node 12 + Max Y-displacement : 2.6 node 265 + Total reaction forces: Sum(R) = -0.00022142 0 + displacement\*reactions: (R,u) = -200.422 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 13.4546 a(u^h,u^h) = 181.0254457 + External energy: ((f,u^h)+(t,u^h))^0.5 : -13.453 (f,u)+(t,u) = 180.9840571 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 38.775 + Pressure norm, L2: (p^h,p^h)^0.5 : 12.9273 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 31.6568 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 38.7715 + Node #12: sol1 = -3.530320e-01 0.000000e+00 + sol2 = 6.506366e-03 6.900742e-01 -6.399421e-03 9.372004e-04 6.901132e-01 1.137598e-01 + reac = 0.000000e+00 4.954120e+00 + Node #265: sol1 = 0.000000e+00 2.600000e+00 + sol2 = 5.707467e+00 6.397450e+00 5.937503e+00 0.000000e+00 6.084997e-01 6.309702e-02 + reac = -7.811464e-05 -1.276677e-01 + step=53 time=2.65 + Primary solution summary: L2-norm : 0.993049 + Max X-displacement : 0.364089 node 12 + Max Y-displacement : 2.65 node 265 + Total reaction forces: Sum(R) = -0.000254488 -2.06136e-08 + displacement\*reactions: (R,u) = -204.428 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 13.5972 a(u^h,u^h) = 184.8825635 + External energy: ((f,u^h)+(t,u^h))^0.5 : -13.5956 (f,u)+(t,u) = 184.8397537 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 38.8722 + Pressure norm, L2: (p^h,p^h)^0.5 : 12.9602 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 31.7356 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 38.868 + Node #12: sol1 = -3.640892e-01 0.000000e+00 + sol2 = 6.571522e-03 6.916563e-01 -8.689784e-03 9.679196e-04 6.928436e-01 1.173390e-01 + reac = 0.000000e+00 4.948182e+00 + Node #265: sol1 = 0.000000e+00 2.650000e+00 + sol2 = 5.750405e+00 6.441112e+00 5.980738e+00 0.000000e+00 6.091279e-01 6.359735e-02 + reac = -8.248250e-05 -1.277042e-01 + step=54 time=2.7 + Primary solution summary: L2-norm : 1.01563 + Max X-displacement : 0.376029 node 12 + Max Y-displacement : 2.7 node 265 + Total reaction forces: Sum(R) = -0.000295067 -4.62806e-08 + displacement\*reactions: (R,u) = -208.409 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 13.7383 a(u^h,u^h) = 188.7422283 + External energy: ((f,u^h)+(t,u^h))^0.5 : -13.7367 (f,u)+(t,u) = 188.6980312 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 38.9646 + Pressure norm, L2: (p^h,p^h)^0.5 : 12.9916 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 31.8103 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 38.9595 + Node #12: sol1 = -3.760289e-01 0.000000e+00 + sol2 = 6.641467e-03 6.930824e-01 -1.138653e-02 1.004098e-03 6.956324e-01 1.211887e-01 + reac = 0.000000e+00 4.939861e+00 + Node #265: sol1 = 0.000000e+00 2.700000e+00 + sol2 = 5.784381e+00 6.475664e+00 6.014981e+00 0.000000e+00 6.096222e-01 6.399452e-02 + reac = -8.689227e-05 -1.277121e-01 + step=55 time=2.75 + Primary solution summary: L2-norm : 1.03893 + Max X-displacement : 0.38908 node 12 + Max Y-displacement : 2.75 node 265 + Total reaction forces: Sum(R) = -0.000345723 -1.09634e-07 + displacement\*reactions: (R,u) = -212.361 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 13.8782 a(u^h,u^h) = 192.6037879 + External energy: ((f,u^h)+(t,u^h))^0.5 : -13.8765 (f,u)+(t,u) = 192.5583021 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.0518 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.0215 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 31.8804 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 39.0454 + Node #12: sol1 = -3.890802e-01 0.000000e+00 + sol2 = 6.717382e-03 6.943237e-01 -1.458489e-02 1.047440e-03 6.985035e-01 1.253768e-01 + reac = 0.000000e+00 4.928656e+00 + Node #265: sol1 = 0.000000e+00 2.750000e+00 + sol2 = 5.807656e+00 6.499348e+00 6.038501e+00 0.000000e+00 6.099613e-01 6.426854e-02 + reac = -9.134814e-05 -1.276822e-01 + step=56 time=2.8 + Primary solution summary: L2-norm : 1.06313 + Max X-displacement : 0.403554 node 12 + Max Y-displacement : 2.8 node 265 + Total reaction forces: Sum(R) = -0.000410226 -2.73159e-07 + displacement\*reactions: (R,u) = -216.276 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 14.0166 a(u^h,u^h) = 196.4664457 + External energy: ((f,u^h)+(t,u^h))^0.5 : -14.015 (f,u)+(t,u) = 196.4198905 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.1331 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.0499 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 31.9452 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 39.1248 + Node #12: sol1 = -4.035541e-01 0.000000e+00 + sol2 = 6.800416e-03 6.953416e-01 -1.840511e-02 1.100378e-03 7.014863e-01 1.299955e-01 + reac = 0.000000e+00 4.913903e+00 + Node #265: sol1 = 0.000000e+00 2.800000e+00 + sol2 = 5.817884e+00 6.509788e+00 6.048980e+00 0.000000e+00 6.101154e-01 6.439276e-02 + reac = -9.590448e-05 -1.275967e-01 + step=57 time=2.85 + Primary solution summary: L2-norm : 1.0883 + Max X-displacement : 0.419713 node 12 + Max Y-displacement : 2.85 node 265 + Total reaction forces: Sum(R) = -0.000491927 0 + displacement\*reactions: (R,u) = -220.141 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 14.1538 a(u^h,u^h) = 200.3292674 + External energy: ((f,u^h)+(t,u^h))^0.5 : -14.1521 (f,u)+(t,u) = 200.2819878 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.2077 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.0766 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 32.0038 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 39.1965 + Node #12: sol1 = -4.197125e-01 0.000000e+00 + sol2 = 6.890296e-03 6.960803e-01 -2.294855e-02 1.165698e-03 7.045864e-01 1.351178e-01 + reac = 0.000000e+00 4.894923e+00 + Node #265: sol1 = 0.000000e+00 2.850000e+00 + sol2 = 5.817821e+00 6.508936e+00 6.048721e+00 0.000000e+00 6.094058e-01 6.439276e-02 + reac = -9.805286e-05 -1.274269e-01 + step=58 time=2.9 + Primary solution summary: L2-norm : 1.11401 + Max X-displacement : 0.437182 node 12 + Max Y-displacement : 2.9 node 265 + Total reaction forces: Sum(R) = -0.000566244 0 + displacement\*reactions: (R,u) = -223.947 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 14.2896 a(u^h,u^h) = 204.1916567 + External energy: ((f,u^h)+(t,u^h))^0.5 : -14.2879 (f,u)+(t,u) = 204.1436333 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.2744 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.1016 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 32.0551 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 39.2593 + Node #12: sol1 = -4.371825e-01 0.000000e+00 + sol2 = 6.980868e-03 6.965159e-01 -2.802544e-02 1.243346e-03 7.076911e-01 1.406174e-01 + reac = 0.000000e+00 4.872202e+00 + Node #265: sol1 = 0.000000e+00 2.900000e+00 + sol2 = 5.817889e+00 6.508393e+00 6.048587e+00 0.000000e+00 6.088676e-01 6.439276e-02 + reac = -9.919301e-05 -1.273278e-01 + step=59 time=2.95 + Primary solution summary: L2-norm : 1.14012 + Max X-displacement : 0.455801 node 12 + Max Y-displacement : 2.95 node 265 + Total reaction forces: Sum(R) = -0.000659299 0 + displacement\*reactions: (R,u) = -227.685 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 14.424 a(u^h,u^h) = 208.0529434 + External energy: ((f,u^h)+(t,u^h))^0.5 : -14.4223 (f,u)+(t,u) = 208.0037444 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.3327 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.1246 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 32.0982 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 39.3121 + Node #12: sol1 = -4.558007e-01 0.000000e+00 + sol2 = 7.065273e-03 6.966970e-01 -3.342611e-02 1.333800e-03 7.107468e-01 1.464381e-01 + reac = 0.000000e+00 4.846387e+00 + Node #265: sol1 = 0.000000e+00 2.950000e+00 + sol2 = 5.817902e+00 6.507824e+00 6.048430e+00 0.000000e+00 6.083490e-01 6.439276e-02 + reac = -9.993122e-05 -1.272294e-01 + step=60 time=3 + Primary solution summary: L2-norm : 1.16658 + Max X-displacement : 0.475477 node 12 + Max Y-displacement : 3 node 265 + Total reaction forces: Sum(R) = -0.000746582 0 + displacement\*reactions: (R,u) = -231.346 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 14.5572 a(u^h,u^h) = 211.9123661 + External energy: ((f,u^h)+(t,u^h))^0.5 : -14.5555 (f,u)+(t,u) = 211.8611573 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.3821 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.1458 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 32.1328 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 39.3544 + Node #12: sol1 = -4.754775e-01 0.000000e+00 + sol2 = 7.136107e-03 6.966592e-01 -3.901575e-02 1.437932e-03 7.137234e-01 1.525488e-01 + reac = 0.000000e+00 4.817927e+00 + Node #265: sol1 = 0.000000e+00 3.000000e+00 + sol2 = 5.817880e+00 6.507150e+00 6.048233e+00 0.000000e+00 6.077665e-01 6.439276e-02 + reac = -1.003997e-04 -1.271074e-01 + step=61 time=3.05 + Primary solution summary: L2-norm : 1.19334 + Max X-displacement : 0.496147 node 12 + Max Y-displacement : 3.05 node 265 + Total reaction forces: Sum(R) = -0.000875871 0 + displacement\*reactions: (R,u) = -234.925 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 14.6891 a(u^h,u^h) = 215.7691026 + External energy: ((f,u^h)+(t,u^h))^0.5 : -14.6872 (f,u)+(t,u) = 215.7146529 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.4224 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.1652 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 32.1584 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 39.3858 + Node #12: sol1 = -4.961465e-01 0.000000e+00 + sol2 = 7.185244e-03 6.964302e-01 -4.469895e-02 1.556817e-03 7.166023e-01 1.589271e-01 + reac = 0.000000e+00 4.787183e+00 + Node #265: sol1 = 0.000000e+00 3.050000e+00 + sol2 = 5.817816e+00 6.506290e+00 6.047971e+00 0.000000e+00 6.070520e-01 6.439276e-02 + reac = -1.006690e-04 -1.269514e-01 + step=62 time=3.1 + Primary solution summary: L2-norm : 1.22039 + Max X-displacement : 0.517764 node 12 + Max Y-displacement : 3.1 node 265 + Total reaction forces: Sum(R) = -0.00101258 0 + displacement\*reactions: (R,u) = -238.416 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 14.8197 a(u^h,u^h) = 219.6222717 + External energy: ((f,u^h)+(t,u^h))^0.5 : -14.8177 (f,u)+(t,u) = 219.562978 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.4536 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.1828 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 32.1749 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 39.406 + Node #12: sol1 = -5.177644e-01 0.000000e+00 + sol2 = 7.204086e-03 6.960247e-01 -5.042362e-02 1.691859e-03 7.193737e-01 1.655585e-01 + reac = 0.000000e+00 4.754396e+00 + Node #265: sol1 = 0.000000e+00 3.100000e+00 + sol2 = 5.817713e+00 6.505218e+00 6.047639e+00 0.000000e+00 6.061796e-01 6.439276e-02 + reac = -1.008173e-04 -1.267567e-01 + step=63 time=3.15 + Primary solution summary: L2-norm : 1.24771 + Max X-displacement : 0.540284 node 12 + Max Y-displacement : 3.15 node 265 + Total reaction forces: Sum(R) = -0.00119415 0 + displacement\*reactions: (R,u) = -241.816 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 14.9489 a(u^h,u^h) = 223.4709744 + External energy: ((f,u^h)+(t,u^h))^0.5 : -14.9467 (f,u)+(t,u) = 223.4048629 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.4754 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.1988 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 32.1821 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 39.4148 + Node #12: sol1 = -5.402839e-01 0.000000e+00 + sol2 = 7.183402e-03 6.954676e-01 -5.612776e-02 1.844561e-03 7.220317e-01 1.724289e-01 + reac = 0.000000e+00 4.719868e+00 + Node #265: sol1 = 0.000000e+00 3.150000e+00 + sol2 = 5.817575e+00 6.503922e+00 6.047233e+00 0.000000e+00 6.051362e-01 6.439276e-02 + reac = -1.009088e-04 -1.265212e-01 + step=64 time=3.2 + Primary solution summary: L2-norm : 1.27527 + Max X-displacement : 0.563668 node 12 + Max Y-displacement : 3.2 node 265 + Total reaction forces: Sum(R) = -0.00139825 0 + displacement\*reactions: (R,u) = -245.12 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 15.0769 a(u^h,u^h) = 227.3142899 + External energy: ((f,u^h)+(t,u^h))^0.5 : -15.0744 (f,u)+(t,u) = 227.2390369 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.4882 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.2131 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 32.18 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 39.4123 + Node #12: sol1 = -5.636681e-01 0.000000e+00 + sol2 = 7.113845e-03 6.947752e-01 -6.177602e-02 2.016775e-03 7.245751e-01 1.795280e-01 + reac = 0.000000e+00 4.683824e+00 + Node #265: sol1 = 0.000000e+00 3.200000e+00 + sol2 = 5.817406e+00 6.502401e+00 6.046755e+00 0.000000e+00 6.039172e-01 6.439276e-02 + reac = -1.009767e-04 -1.262439e-01 + step=65 time=3.25 + Primary solution summary: L2-norm : 1.30308 + Max X-displacement : 0.587892 node 12 + Max Y-displacement : 3.25 node 265 + Total reaction forces: Sum(R) = -0.00165593 0 + displacement\*reactions: (R,u) = -248.326 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 15.2037 a(u^h,u^h) = 231.1512794 + External energy: ((f,u^h)+(t,u^h))^0.5 : -15.2008 (f,u)+(t,u) = 231.0642416 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.4919 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.226 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 32.1688 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 39.3986 + Node #12: sol1 = -5.878922e-01 0.000000e+00 + sol2 = 6.986027e-03 6.939578e-01 -6.735143e-02 2.210786e-03 7.270066e-01 1.868500e-01 + reac = 0.000000e+00 4.646427e+00 + Node #265: sol1 = 0.000000e+00 3.250000e+00 + sol2 = 5.817208e+00 6.500653e+00 6.046204e+00 0.000000e+00 6.025198e-01 6.439276e-02 + reac = -1.010173e-04 -1.259249e-01 + step=66 time=3.3 + Primary solution summary: L2-norm : 1.33111 + Max X-displacement : 0.612918 node 12 + Max Y-displacement : 3.3 node 265 + Total reaction forces: Sum(R) = -0.00193408 0 + displacement\*reactions: (R,u) = -251.433 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 15.3291 a(u^h,u^h) = 234.9810329 + External energy: ((f,u^h)+(t,u^h))^0.5 : -15.3258 (f,u)+(t,u) = 234.8792405 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.4868 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.2373 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 32.1485 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 39.3737 + Node #12: sol1 = -6.129181e-01 0.000000e+00 + sol2 = 6.790421e-03 6.930448e-01 -7.280574e-02 2.428976e-03 7.293295e-01 1.943859e-01 + reac = 0.000000e+00 4.607962e+00 + Node #265: sol1 = 0.000000e+00 3.300000e+00 + sol2 = 5.816982e+00 6.498681e+00 6.045582e+00 0.000000e+00 6.009456e-01 6.439276e-02 + reac = -1.010600e-04 -1.255649e-01 + step=67 time=3.35 + Primary solution summary: L2-norm : 1.35935 + Max X-displacement : 0.638717 node 12 + Max Y-displacement : 3.35 node 265 + Total reaction forces: Sum(R) = -0.00224319 0 + displacement\*reactions: (R,u) = -254.438 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 15.4532 a(u^h,u^h) = 238.8026484 + External energy: ((f,u^h)+(t,u^h))^0.5 : -15.4494 (f,u)+(t,u) = 238.682829 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.4729 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.2471 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 32.1193 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 39.338 + Node #12: sol1 = -6.387167e-01 0.000000e+00 + sol2 = 6.517658e-03 6.920501e-01 -7.812328e-02 2.674231e-03 7.315493e-01 2.021304e-01 + reac = 0.000000e+00 4.568598e+00 + Node #265: sol1 = 0.000000e+00 3.350000e+00 + sol2 = 5.816728e+00 6.496490e+00 6.044890e+00 0.000000e+00 5.991982e-01 6.439276e-02 + reac = -1.010721e-04 -1.251649e-01 + step=68 time=3.4 + Primary solution summary: L2-norm : 1.3878 + Max X-displacement : 0.665266 node 12 + Max Y-displacement : 3.4 node 265 + Total reaction forces: Sum(R) = -0.00256811 0 + displacement\*reactions: (R,u) = -257.342 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 15.5761 a(u^h,u^h) = 242.6152389 + External energy: ((f,u^h)+(t,u^h))^0.5 : -15.5716 (f,u)+(t,u) = 242.4738414 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.4506 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.2556 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 32.0815 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 39.2916 + Node #12: sol1 = -6.652662e-01 0.000000e+00 + sol2 = 6.158389e-03 6.909827e-01 -8.329999e-02 2.949930e-03 7.336734e-01 2.100803e-01 + reac = 0.000000e+00 4.528453e+00 + Node #265: sol1 = 0.000000e+00 3.400000e+00 + sol2 = 5.816448e+00 6.494087e+00 6.044130e+00 0.000000e+00 5.972832e-01 6.439276e-02 + reac = -1.010698e-04 -1.247263e-01 + step=69 time=3.45 + Primary solution summary: L2-norm : 1.41645 + Max X-displacement : 0.692548 node 12 + Max Y-displacement : 3.45 node 265 + Total reaction forces: Sum(R) = -0.00291293 0 + displacement\*reactions: (R,u) = -260.143 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 15.6977 a(u^h,u^h) = 246.4179394 + External energy: ((f,u^h)+(t,u^h))^0.5 : -15.6924 (f,u)+(t,u) = 246.2511543 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.4202 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.2627 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 32.0353 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 39.235 + Node #12: sol1 = -6.925475e-01 0.000000e+00 + sol2 = 5.703297e-03 6.898531e-01 -8.833054e-02 3.259930e-03 7.357095e-01 2.182342e-01 + reac = 0.000000e+00 4.487644e+00 + Node #265: sol1 = 0.000000e+00 3.450000e+00 + sol2 = 5.816143e+00 6.491480e+00 6.043306e+00 0.000000e+00 5.952065e-01 6.439276e-02 + reac = -1.010704e-04 -1.242505e-01 + step=70 time=3.5 + Primary solution summary: L2-norm : 1.44529 + Max X-displacement : 0.720531 node 12 + Max Y-displacement : 3.5 node 265 + Total reaction forces: Sum(R) = -0.00322891 0 + displacement\*reactions: (R,u) = -262.842 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 15.818 a(u^h,u^h) = 250.2099289 + External energy: ((f,u^h)+(t,u^h))^0.5 : -15.8118 (f,u)+(t,u) = 250.0136899 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.3818 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.2683 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 31.9809 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 39.1685 + Node #12: sol1 = -7.205306e-01 0.000000e+00 + sol2 = 5.143545e-03 6.886893e-01 -9.318003e-02 3.608297e-03 7.376653e-01 2.265881e-01 + reac = 0.000000e+00 4.446387e+00 + Node #265: sol1 = 0.000000e+00 3.500000e+00 + sol2 = 5.815815e+00 6.488677e+00 6.042420e+00 0.000000e+00 5.929744e-01 6.439276e-02 + reac = -1.010870e-04 -1.237391e-01 + step=71 time=3.55 + Primary solution summary: L2-norm : 1.4743 + Max X-displacement : 0.74919 node 12 + Max Y-displacement : 3.55 node 265 + Total reaction forces: Sum(R) = -0.00366907 0 + displacement\*reactions: (R,u) = -265.439 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 15.9371 a(u^h,u^h) = 253.9904135 + External energy: ((f,u^h)+(t,u^h))^0.5 : -15.9299 (f,u)+(t,u) = 253.760419 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.3356 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.2725 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 31.9188 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 39.0924 + Node #12: sol1 = -7.491899e-01 0.000000e+00 + sol2 = 4.470782e-03 6.875047e-01 -9.783974e-02 3.999696e-03 7.395487e-01 2.351397e-01 + reac = 0.000000e+00 4.404793e+00 + Node #265: sol1 = 0.000000e+00 3.550000e+00 + sol2 = 5.815465e+00 6.485687e+00 6.041475e+00 0.000000e+00 5.905945e-01 6.439276e-02 + reac = -1.010845e-04 -1.231938e-01 + step=72 time=3.6 + Primary solution summary: L2-norm : 1.50349 + Max X-displacement : 0.778508 node 12 + Max Y-displacement : 3.6 node 265 + Total reaction forces: Sum(R) = -0.00407169 -9.65846e-08 + displacement\*reactions: (R,u) = -267.934 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 16.0549 a(u^h,u^h) = 257.7586223 + External energy: ((f,u^h)+(t,u^h))^0.5 : -16.0465 (f,u)+(t,u) = 257.4903623 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.282 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.2753 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 31.8491 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 39.0071 + Node #12: sol1 = -7.785080e-01 0.000000e+00 + sol2 = 3.676958e-03 6.863000e-01 -1.023226e-01 4.439498e-03 7.413683e-01 2.438895e-01 + reac = 0.000000e+00 4.362881e+00 + Node #265: sol1 = 0.000000e+00 3.600000e+00 + sol2 = 5.815094e+00 6.482522e+00 6.040474e+00 0.000000e+00 5.880742e-01 6.439276e-02 + reac = -1.010950e-04 -1.226163e-01 + step=73 time=3.65 + Primary solution summary: L2-norm : 1.53285 + Max X-displacement : 0.808468 node 12 + Max Y-displacement : 3.65 node 265 + Total reaction forces: Sum(R) = -0.00462909 -1.09965e-07 + displacement\*reactions: (R,u) = -270.329 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 16.1714 a(u^h,u^h) = 261.513812 + External energy: ((f,u^h)+(t,u^h))^0.5 : -16.1618 (f,u)+(t,u) = 261.202589 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.2212 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.2768 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 31.7723 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 38.913 + Node #12: sol1 = -8.084681e-01 0.000000e+00 + sol2 = 2.754564e-03 6.850809e-01 -1.066325e-01 4.933653e-03 7.431322e-01 2.528381e-01 + reac = 0.000000e+00 4.320691e+00 + Node #265: sol1 = 0.000000e+00 3.650000e+00 + sol2 = 5.814703e+00 6.479188e+00 6.039419e+00 0.000000e+00 5.854208e-01 6.439276e-02 + reac = -1.010963e-04 -1.220081e-01 + step=74 time=3.7 + Primary solution summary: L2-norm : 1.56237 + Max X-displacement : 0.839058 node 12 + Max Y-displacement : 3.7 node 265 + Total reaction forces: Sum(R) = -0.00519966 0 + displacement\*reactions: (R,u) = -272.624 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 16.2867 a(u^h,u^h) = 265.2552652 + External energy: ((f,u^h)+(t,u^h))^0.5 : -16.2756 (f,u)+(t,u) = 264.8962144 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.1536 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.2769 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 31.6888 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 38.8106 + Node #12: sol1 = -8.390577e-01 0.000000e+00 + sol2 = 1.696691e-03 6.838494e-01 -1.107794e-01 5.488879e-03 7.448486e-01 2.619880e-01 + reac = 0.000000e+00 4.278221e+00 + Node #265: sol1 = 0.000000e+00 3.700000e+00 + sol2 = 5.814293e+00 6.475695e+00 6.038315e+00 0.000000e+00 5.826405e-01 6.439276e-02 + reac = -1.011075e-04 -1.213709e-01 + step=75 time=3.75 + Primary solution summary: L2-norm : 1.59205 + Max X-displacement : 0.870265 node 12 + Max Y-displacement : 3.75 node 265 + Total reaction forces: Sum(R) = -0.00584978 -6.21459e-08 + displacement\*reactions: (R,u) = -274.819 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 16.4007 a(u^h,u^h) = 268.9822896 + External energy: ((f,u^h)+(t,u^h))^0.5 : -16.3881 (f,u)+(t,u) = 268.5703971 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.0795 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.2756 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 31.5987 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 38.7004 + Node #12: sol1 = -8.702652e-01 0.000000e+00 + sol2 = 4.972150e-04 6.826095e-01 -1.147689e-01 6.112642e-03 7.465252e-01 2.713421e-01 + reac = 0.000000e+00 4.235471e+00 + Node #265: sol1 = 0.000000e+00 3.750000e+00 + sol2 = 5.813866e+00 6.472051e+00 6.037163e+00 0.000000e+00 5.797395e-01 6.439276e-02 + reac = -1.011177e-04 -1.207059e-01 + step=76 time=3.8 + Primary solution summary: L2-norm : 1.62188 + Max X-displacement : 0.902077 node 12 + Max Y-displacement : 3.8 node 265 + Total reaction forces: Sum(R) = -0.00657091 0 + displacement\*reactions: (R,u) = -276.915 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 16.5135 a(u^h,u^h) = 272.6942114 + External energy: ((f,u^h)+(t,u^h))^0.5 : -16.4992 (f,u)+(t,u) = 272.2243355 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 38.9992 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.2731 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 31.5025 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 38.5825 + Node #12: sol1 = -9.020769e-01 0.000000e+00 + sol2 = -8.491538e-04 6.813716e-01 -1.185952e-01 6.813170e-03 7.481693e-01 2.809030e-01 + reac = 0.000000e+00 4.192467e+00 + Node #265: sol1 = 0.000000e+00 3.800000e+00 + sol2 = 5.813423e+00 6.468262e+00 6.035965e+00 0.000000e+00 5.767235e-01 6.439276e-02 + reac = -1.011276e-04 -1.200145e-01 + step=77 time=3.85 + Primary solution summary: L2-norm : 1.65186 + Max X-displacement : 0.934477 node 12 + Max Y-displacement : 3.85 node 265 + Total reaction forces: Sum(R) = -0.0073015 0 + displacement\*reactions: (R,u) = -278.912 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 16.625 a(u^h,u^h) = 276.3903812 + External energy: ((f,u^h)+(t,u^h))^0.5 : -16.609 (f,u)+(t,u) = 275.8572659 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 38.913 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.2694 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 31.4004 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 38.4575 + Node #12: sol1 = -9.344771e-01 0.000000e+00 + sol2 = -2.346333e-03 6.801465e-01 -1.222514e-01 7.599507e-03 7.497875e-01 2.906736e-01 + reac = 0.000000e+00 4.149224e+00 + Node #265: sol1 = 0.000000e+00 3.850000e+00 + sol2 = 5.812963e+00 6.464335e+00 6.034723e+00 0.000000e+00 5.735984e-01 6.439276e-02 + reac = -1.011208e-04 -1.192980e-01 + step=78 time=3.9 + Primary solution summary: L2-norm : 1.68197 + Max X-displacement : 0.967453 node 12 + Max Y-displacement : 3.9 node 265 + Total reaction forces: Sum(R) = -0.0080945 0 + displacement\*reactions: (R,u) = -280.812 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 16.7353 a(u^h,u^h) = 280.0701651 + External energy: ((f,u^h)+(t,u^h))^0.5 : -16.7173 (f,u)+(t,u) = 279.4684601 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 38.8211 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.2646 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 31.2926 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 38.3255 + Node #12: sol1 = -9.674529e-01 0.000000e+00 + sol2 = -3.996963e-03 6.789367e-01 -1.257435e-01 8.481795e-03 7.513862e-01 3.006573e-01 + reac = 0.000000e+00 4.105693e+00 + Node #265: sol1 = 0.000000e+00 3.900000e+00 + sol2 = 5.812488e+00 6.460277e+00 6.033440e+00 0.000000e+00 5.703688e-01 6.439276e-02 + reac = -1.011306e-04 -1.185575e-01 + step=79 time=3.95 + Primary solution summary: L2-norm : 1.71223 + Max X-displacement : 1.00099 node 12 + Max Y-displacement : 3.95 node 265 + Total reaction forces: Sum(R) = -0.00894633 0 + displacement\*reactions: (R,u) = -282.613 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 16.8444 a(u^h,u^h) = 283.7329461 + External energy: ((f,u^h)+(t,u^h))^0.5 : -16.8243 (f,u)+(t,u) = 283.0572227 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 38.7238 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.2586 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 31.1794 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 38.1868 + Node #12: sol1 = -1.000992e+00 0.000000e+00 + sol2 = -5.802111e-03 6.777454e-01 -1.290755e-01 9.471165e-03 7.529713e-01 3.108584e-01 + reac = 0.000000e+00 4.061816e+00 + Node #265: sol1 = 0.000000e+00 3.950000e+00 + sol2 = 5.811998e+00 6.456094e+00 6.032117e+00 0.000000e+00 5.670396e-01 6.439276e-02 + reac = -1.011528e-04 -1.177941e-01 + step=80 time=4 + Primary solution summary: L2-norm : 1.74261 + Max X-displacement : 1.03508 node 12 + Max Y-displacement : 4 node 265 + Total reaction forces: Sum(R) = -0.00981617 0 + displacement\*reactions: (R,u) = -284.316 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 16.9522 a(u^h,u^h) = 287.3781202 + External energy: ((f,u^h)+(t,u^h))^0.5 : -16.9299 (f,u)+(t,u) = 286.6228882 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 38.6215 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.2518 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 31.061 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 38.0418 + Node #12: sol1 = -1.035085e+00 0.000000e+00 + sol2 = -7.761303e-03 6.765721e-01 -1.322566e-01 1.057994e-02 7.545485e-01 3.212819e-01 + reac = 0.000000e+00 4.017501e+00 + Node #265: sol1 = 0.000000e+00 4.000000e+00 + sol2 = 5.811494e+00 6.451790e+00 6.030757e+00 0.000000e+00 5.636152e-01 6.439276e-02 + reac = -1.011603e-04 -1.170087e-01 + step=81 time=4.05 + Primary solution summary: L2-norm : 1.77312 + Max X-displacement : 1.06972 node 12 + Max Y-displacement : 4.05 node 265 + Total reaction forces: Sum(R) = -0.0107841 0 + displacement\*reactions: (R,u) = -285.922 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 17.0589 a(u^h,u^h) = 291.0050932 + External energy: ((f,u^h)+(t,u^h))^0.5 : -17.0342 (f,u)+(t,u) = 290.1648186 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 38.5144 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.2441 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 30.9376 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 37.8907 + Node #12: sol1 = -1.069721e+00 0.000000e+00 + sol2 = -9.872880e-03 6.754209e-01 -1.352880e-01 1.182162e-02 7.561230e-01 3.319332e-01 + reac = 0.000000e+00 3.972668e+00 + Node #265: sol1 = 0.000000e+00 4.050000e+00 + sol2 = 5.810977e+00 6.447372e+00 6.029360e+00 0.000000e+00 5.600994e-01 6.439276e-02 + reac = -1.011662e-04 -1.162024e-01 + step=82 time=4.1 + Primary solution summary: L2-norm : 1.80376 + Max X-displacement : 1.10489 node 12 + Max Y-displacement : 4.1 node 265 + Total reaction forces: Sum(R) = -0.0118101 0 + displacement\*reactions: (R,u) = -287.431 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 17.1643 a(u^h,u^h) = 294.6132798 + External energy: ((f,u^h)+(t,u^h))^0.5 : -17.1372 (f,u)+(t,u) = 293.6824003 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 38.4029 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.2358 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 30.8094 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 37.7336 + Node #12: sol1 = -1.104892e+00 0.000000e+00 + sol2 = -1.213404e-02 6.742954e-01 -1.381697e-01 1.321081e-02 7.576994e-01 3.428184e-01 + reac = 0.000000e+00 3.927226e+00 + Node #265: sol1 = 0.000000e+00 4.100000e+00 + sol2 = 5.810447e+00 6.442842e+00 6.027928e+00 0.000000e+00 5.564955e-01 6.439276e-02 + reac = -1.011806e-04 -1.153758e-01 + step=83 time=4.15 + Primary solution summary: L2-norm : 1.83451 + Max X-displacement : 1.14059 node 12 + Max Y-displacement : 4.15 node 265 + Total reaction forces: Sum(R) = -0.0129192 -3.77644e-08 + displacement\*reactions: (R,u) = -288.842 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 17.2685 a(u^h,u^h) = 298.2021055 + External energy: ((f,u^h)+(t,u^h))^0.5 : -17.2388 (f,u)+(t,u) = 297.1750422 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 38.2872 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.227 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 30.6765 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 37.5708 + Node #12: sol1 = -1.140590e+00 0.000000e+00 + sol2 = -1.454004e-02 6.732007e-01 -1.408988e-01 1.476311e-02 7.592824e-01 3.539438e-01 + reac = 0.000000e+00 3.881078e+00 + Node #265: sol1 = 0.000000e+00 4.150000e+00 + sol2 = 5.809905e+00 6.438205e+00 6.026462e+00 0.000000e+00 5.528069e-01 6.439276e-02 + reac = -1.012007e-04 -1.145297e-01 + step=84 time=4.2 + Primary solution summary: L2-norm : 1.86538 + Max X-displacement : 1.17681 node 12 + Max Y-displacement : 4.2 node 265 + Total reaction forces: Sum(R) = -0.0141197 0 + displacement\*reactions: (R,u) = -290.156 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 17.3716 a(u^h,u^h) = 301.7710015 + External energy: ((f,u^h)+(t,u^h))^0.5 : -17.339 (f,u)+(t,u) = 300.642174 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 38.1676 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.2178 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 30.539 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 37.4025 + Node #12: sol1 = -1.176807e+00 0.000000e+00 + sol2 = -1.708473e-02 6.721397e-01 -1.434752e-01 1.649532e-02 7.608761e-01 3.653169e-01 + reac = 0.000000e+00 3.834104e+00 + Node #265: sol1 = 0.000000e+00 4.200000e+00 + sol2 = 5.809350e+00 6.433465e+00 6.024963e+00 0.000000e+00 5.490363e-01 6.439276e-02 + reac = -1.012199e-04 -1.136647e-01 + step=85 time=4.25 + Primary solution summary: L2-norm : 1.89636 + Max X-displacement : 1.21354 node 12 + Max Y-displacement : 4.25 node 265 + Total reaction forces: Sum(R) = -0.015384 0 + displacement\*reactions: (R,u) = -291.372 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 17.4734 a(u^h,u^h) = 305.319404 + External energy: ((f,u^h)+(t,u^h))^0.5 : -17.438 (f,u)+(t,u) = 304.0832435 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 38.0446 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.2087 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 30.3971 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 37.2287 + Node #12: sol1 = -1.213537e+00 0.000000e+00 + sol2 = -1.976115e-02 6.711150e-01 -1.458967e-01 1.842541e-02 7.624845e-01 3.769458e-01 + reac = 0.000000e+00 3.786183e+00 + Node #265: sol1 = 0.000000e+00 4.250000e+00 + sol2 = 5.808784e+00 6.428625e+00 6.023433e+00 0.000000e+00 5.451866e-01 6.439276e-02 + reac = -1.012374e-04 -1.127814e-01 + step=86 time=4.3 + Primary solution summary: L2-norm : 1.92744 + Max X-displacement : 1.25078 node 12 + Max Y-displacement : 4.3 node 265 + Total reaction forces: Sum(R) = -0.016699 0 + displacement\*reactions: (R,u) = -292.49 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 17.574 a(u^h,u^h) = 308.8467586 + External energy: ((f,u^h)+(t,u^h))^0.5 : -17.5356 (f,u)+(t,u) = 307.4977152 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 37.9186 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.1998 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 30.2509 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 37.0496 + Node #12: sol1 = -1.250775e+00 0.000000e+00 + sol2 = -2.256236e-02 6.701298e-01 -1.481583e-01 2.057228e-02 7.641111e-01 3.888394e-01 + reac = 0.000000e+00 3.737200e+00 + Node #265: sol1 = 0.000000e+00 4.300000e+00 + sol2 = 5.808207e+00 6.423687e+00 6.021872e+00 0.000000e+00 5.412599e-01 6.439276e-02 + reac = -1.012554e-04 -1.118804e-01 + step=87 time=4.35 + Primary solution summary: L2-norm : 1.95864 + Max X-displacement : 1.28852 node 12 + Max Y-displacement : 4.35 node 265 + Total reaction forces: Sum(R) = -0.0180622 -4.64823e-08 + displacement\*reactions: (R,u) = -293.509 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 17.6735 a(u^h,u^h) = 312.3525181 + External energy: ((f,u^h)+(t,u^h))^0.5 : -17.6319 (f,u)+(t,u) = 310.8850687 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 37.79 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.1915 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 30.1005 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 36.8654 + Node #12: sol1 = -1.288517e+00 0.000000e+00 + sol2 = -2.548150e-02 6.691807e-01 -1.502628e-01 2.295589e-02 7.657596e-01 4.010073e-01 + reac = 0.000000e+00 3.687007e+00 + Node #265: sol1 = 0.000000e+00 4.350000e+00 + sol2 = 5.807618e+00 6.418655e+00 6.020281e+00 0.000000e+00 5.372586e-01 6.439276e-02 + reac = -1.012752e-04 -1.109621e-01 + step=88 time=4.4 + Primary solution summary: L2-norm : 1.98993 + Max X-displacement : 1.32676 node 12 + Max Y-displacement : 4.4 node 265 + Total reaction forces: Sum(R) = -0.0195316 0 + displacement\*reactions: (R,u) = -294.43 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 17.7718 a(u^h,u^h) = 315.8361374 + External energy: ((f,u^h)+(t,u^h))^0.5 : -17.727 (f,u)+(t,u) = 314.2447971 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 37.6593 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.1842 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 29.9459 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 36.6761 + Node #12: sol1 = -1.326760e+00 0.000000e+00 + sol2 = -2.851201e-02 6.682680e-01 -1.522042e-01 2.559600e-02 7.674332e-01 4.134600e-01 + reac = 0.000000e+00 3.635490e+00 + Node #265: sol1 = 0.000000e+00 4.400000e+00 + sol2 = 5.807019e+00 6.413531e+00 6.018662e+00 0.000000e+00 5.331846e-01 6.439276e-02 + reac = -1.012965e-04 -1.100271e-01 + step=89 time=4.45 + Primary solution summary: L2-norm : 2.02132 + Max X-displacement : 1.3655 node 12 + Max Y-displacement : 4.45 node 265 + Total reaction forces: Sum(R) = -0.0210805 0 + displacement\*reactions: (R,u) = -295.251 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 17.8689 a(u^h,u^h) = 319.2970739 + External energy: ((f,u^h)+(t,u^h))^0.5 : -17.8207 (f,u)+(t,u) = 317.5764054 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 37.527 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.1782 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 29.7873 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 36.4818 + Node #12: sol1 = -1.365501e+00 0.000000e+00 + sol2 = -3.164810e-02 6.673885e-01 -1.539782e-01 2.851256e-02 7.691352e-01 4.262090e-01 + reac = 0.000000e+00 3.582532e+00 + Node #265: sol1 = 0.000000e+00 4.450000e+00 + sol2 = 5.806409e+00 6.408317e+00 6.017013e+00 0.000000e+00 5.290396e-01 6.439276e-02 + reac = -1.013182e-04 -1.090756e-01 + step=90 time=4.5 + Primary solution summary: L2-norm : 2.0528 + Max X-displacement : 1.40474 node 12 + Max Y-displacement : 4.5 node 265 + Total reaction forces: Sum(R) = -0.0226716 0 + displacement\*reactions: (R,u) = -295.972 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 17.9648 a(u^h,u^h) = 322.7347905 + External energy: ((f,u^h)+(t,u^h))^0.5 : -17.9131 (f,u)+(t,u) = 320.87941 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 37.3934 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.1739 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 29.6245 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 36.2825 + Node #12: sol1 = -1.404738e+00 0.000000e+00 + sol2 = -3.488600e-02 6.665299e-01 -1.555916e-01 3.172625e-02 7.708687e-01 4.392668e-01 + reac = 0.000000e+00 3.528003e+00 + Node #265: sol1 = 0.000000e+00 4.500000e+00 + sol2 = 5.805789e+00 6.403015e+00 6.015337e+00 0.000000e+00 5.248251e-01 6.439276e-02 + reac = -1.013399e-04 -1.081080e-01 + step=91 time=4.55 + Primary solution summary: L2-norm : 2.08438 + Max X-displacement : 1.44447 node 12 + Max Y-displacement : 4.55 node 265 + Total reaction forces: Sum(R) = -0.0243712 0 + displacement\*reactions: (R,u) = -296.594 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 18.0596 a(u^h,u^h) = 326.1487537 + External energy: ((f,u^h)+(t,u^h))^0.5 : -18.0043 (f,u)+(t,u) = 324.1533368 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 37.2592 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.1718 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 29.4577 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 36.0782 + Node #12: sol1 = -1.444474e+00 0.000000e+00 + sol2 = -3.822904e-02 6.656643e-01 -1.570678e-01 3.525850e-02 7.726369e-01 4.526476e-01 + reac = 0.000000e+00 3.471752e+00 + Node #265: sol1 = 0.000000e+00 4.550000e+00 + sol2 = 5.805159e+00 6.397626e+00 6.013634e+00 0.000000e+00 5.205426e-01 6.439276e-02 + reac = -1.013624e-04 -1.071246e-01 + step=92 time=4.6 + Primary solution summary: L2-norm : 2.11604 + Max X-displacement : 1.48471 node 12 + Max Y-displacement : 4.6 node 265 + Total reaction forces: Sum(R) = -0.0260588 0 + displacement\*reactions: (R,u) = -297.114 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 18.1532 a(u^h,u^h) = 329.5384307 + External energy: ((f,u^h)+(t,u^h))^0.5 : -18.0941 (f,u)+(t,u) = 327.3977195 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 37.1249 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.1723 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 29.287 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 35.8691 + Node #12: sol1 = -1.484714e+00 0.000000e+00 + sol2 = -4.168975e-02 6.647540e-01 -1.584378e-01 3.912968e-02 7.744431e-01 4.663670e-01 + reac = 0.000000e+00 3.413653e+00 + Node #265: sol1 = 0.000000e+00 4.600000e+00 + sol2 = 5.804519e+00 6.392153e+00 6.011903e+00 0.000000e+00 5.161931e-01 6.439276e-02 + reac = -1.013857e-04 -1.061257e-01 + step=93 time=4.65 + Primary solution summary: L2-norm : 2.14779 + Max X-displacement : 1.52546 node 12 + Max Y-displacement : 4.65 node 265 + Total reaction forces: Sum(R) = -0.0278811 -8.42262e-08 + displacement\*reactions: (R,u) = -297.531 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 18.2456 a(u^h,u^h) = 332.9032887 + External energy: ((f,u^h)+(t,u^h))^0.5 : -18.1827 (f,u)+(t,u) = 330.6120982 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 36.9911 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.1759 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 29.1123 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 35.6552 + Node #12: sol1 = -1.525463e+00 0.000000e+00 + sol2 = -4.529011e-02 6.637519e-01 -1.597385e-01 4.335733e-02 7.762907e-01 4.804421e-01 + reac = 0.000000e+00 3.353615e+00 + Node #265: sol1 = 0.000000e+00 4.650000e+00 + sol2 = 5.803870e+00 6.386595e+00 6.010146e+00 0.000000e+00 5.117774e-01 6.439276e-02 + reac = -1.014096e-04 -1.051114e-01 + step=94 time=4.7 + Primary solution summary: L2-norm : 2.17962 + Max X-displacement : 1.56673 node 12 + Max Y-displacement : 4.7 node 265 + Total reaction forces: Sum(R) = -0.0298111 0 + displacement\*reactions: (R,u) = -297.846 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 18.3369 a(u^h,u^h) = 336.2427993 + External energy: ((f,u^h)+(t,u^h))^0.5 : -18.2701 (f,u)+(t,u) = 333.7960166 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 36.8586 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.1831 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 28.9339 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 35.4367 + Node #12: sol1 = -1.566732e+00 0.000000e+00 + sol2 = -4.906324e-02 6.625954e-01 -1.610224e-01 4.795636e-02 7.781831e-01 4.948920e-01 + reac = 0.000000e+00 3.291573e+00 + Node #265: sol1 = 0.000000e+00 4.700000e+00 + sol2 = 5.803210e+00 6.380953e+00 6.008363e+00 0.000000e+00 5.072960e-01 6.439276e-02 + reac = -1.014342e-04 -1.040818e-01 + step=95 time=4.75 + Primary solution summary: L2-norm : 2.21154 + Max X-displacement : 1.60853 node 12 + Max Y-displacement : 4.75 node 265 + Total reaction forces: Sum(R) = -0.0317334 0 + displacement\*reactions: (R,u) = -298.056 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 18.4271 a(u^h,u^h) = 339.5564343 + External energy: ((f,u^h)+(t,u^h))^0.5 : -18.3562 (f,u)+(t,u) = 336.9490206 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 36.7279 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.1943 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 28.7518 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 35.2137 + Node #12: sol1 = -1.608531e+00 0.000000e+00 + sol2 = -5.305481e-02 6.612054e-01 -1.623586e-01 5.293810e-02 7.801241e-01 5.097371e-01 + reac = 0.000000e+00 3.227499e+00 + Node #265: sol1 = 0.000000e+00 4.750000e+00 + sol2 = 5.802541e+00 6.375228e+00 6.006553e+00 0.000000e+00 5.027491e-01 6.439276e-02 + reac = -1.014595e-04 -1.030370e-01 + step=96 time=4.8 + Primary solution summary: L2-norm : 2.24354 + Max X-displacement : 1.65087 node 12 + Max Y-displacement : 4.8 node 265 + Total reaction forces: Sum(R) = -0.0338054 -1.36524e-07 + displacement\*reactions: (R,u) = -298.16 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 18.516 a(u^h,u^h) = 342.8436638 + External energy: ((f,u^h)+(t,u^h))^0.5 : -18.441 (f,u)+(t,u) = 340.0706562 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 36.5993 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.2097 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 28.5661 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 34.9862 + Node #12: sol1 = -1.650872e+00 0.000000e+00 + sol2 = -5.732400e-02 6.594871e-01 -1.638316e-01 5.830930e-02 7.821175e-01 5.249991e-01 + reac = 0.000000e+00 3.161426e+00 + Node #265: sol1 = 0.000000e+00 4.800000e+00 + sol2 = 5.801862e+00 6.369420e+00 6.004717e+00 0.000000e+00 4.981366e-01 6.439276e-02 + reac = -1.014854e-04 -1.019770e-01 + step=97 time=4.85 + Primary solution summary: L2-norm : 2.27561 + Max X-displacement : 1.69377 node 12 + Max Y-displacement : 4.85 node 265 + Total reaction forces: Sum(R) = -0.0359292 0 + displacement\*reactions: (R,u) = -298.157 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 18.6039 a(u^h,u^h) = 346.1039557 + External energy: ((f,u^h)+(t,u^h))^0.5 : -18.5246 (f,u)+(t,u) = 343.1604678 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 36.4733 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.2296 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 28.3767 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 34.7542 + Node #12: sol1 = -1.693770e+00 0.000000e+00 + sol2 = -6.194445e-02 6.573216e-01 -1.655552e-01 6.407168e-02 7.841671e-01 5.407014e-01 + reac = 0.000000e+00 3.093413e+00 + Node #265: sol1 = 0.000000e+00 4.850000e+00 + sol2 = 5.801173e+00 6.363527e+00 6.002854e+00 0.000000e+00 4.934584e-01 6.439276e-02 + reac = -1.015120e-04 -1.009016e-01 + step=98 time=4.9 + Primary solution summary: L2-norm : 2.30776 + Max X-displacement : 1.73724 node 12 + Max Y-displacement : 4.9 node 265 + Total reaction forces: Sum(R) = -0.0380822 -1.76668e-07 + displacement\*reactions: (R,u) = -298.045 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 18.6906 a(u^h,u^h) = 349.3367704 + External energy: ((f,u^h)+(t,u^h))^0.5 : -18.6069 (f,u)+(t,u) = 346.2179969 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 36.3497 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.2538 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 28.1836 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 34.5178 + Node #12: sol1 = -1.737241e+00 0.000000e+00 + sol2 = -6.701032e-02 6.545790e-01 -1.676506e-01 7.021753e-02 7.862773e-01 5.568688e-01 + reac = 0.000000e+00 3.023646e+00 + Node #265: sol1 = 0.000000e+00 4.900000e+00 + sol2 = 5.800475e+00 6.357550e+00 6.000965e+00 0.000000e+00 4.887139e-01 6.439276e-02 + reac = -1.015392e-04 -9.981072e-02 + step=99 time=4.95 + Primary solution summary: L2-norm : 2.33999 + Max X-displacement : 1.7813 node 12 + Max Y-displacement : 4.95 node 265 + Total reaction forces: Sum(R) = -0.0403401 0 + displacement\*reactions: (R,u) = -297.821 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 18.7761 a(u^h,u^h) = 352.541565 + External energy: ((f,u^h)+(t,u^h))^0.5 : -18.688 (f,u)+(t,u) = 349.2427797 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 36.2286 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.2821 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 27.9868 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 34.2767 + Node #12: sol1 = -1.781301e+00 0.000000e+00 + sol2 = -7.264263e-02 6.510997e-01 -1.702742e-01 7.672995e-02 7.884525e-01 5.735278e-01 + reac = 0.000000e+00 2.952384e+00 + Node #265: sol1 = 0.000000e+00 4.950000e+00 + sol2 = 5.799766e+00 6.351487e+00 5.999048e+00 0.000000e+00 4.839024e-01 6.439276e-02 + reac = -1.015669e-04 -9.870418e-02 + step=100 time=5 + Primary solution summary: L2-norm : 2.37228 + Max X-displacement : 1.82597 node 12 + Max Y-displacement : 5 node 265 + Total reaction forces: Sum(R) = -0.0427267 0 + displacement\*reactions: (R,u) = -297.484 + Energy norm: |u^h| = a(u^h,u^h)^0.5 : 18.8605 a(u^h,u^h) = 355.7177965 + External energy: ((f,u^h)+(t,u^h))^0.5 : -18.7679 (f,u)+(t,u) = 352.2343458 + Stress norm, L2: (sigma^h,sigma^h)^0.5 : 36.1095 + Pressure norm, L2: (p^h,p^h)^0.5 : 13.3144 (p^h = trace(sigma^h)/3) + Deviatoric stress norm: (s^d,s^d)^0.5 : 27.7863 (s^d = sigma^h - p^h\*I) + Stress norm, von Mises: vm(sigma^h) : 34.0311 + Node #12: sol1 = -1.825972e+00 0.000000e+00 + sol2 = -7.898845e-02 6.466950e-01 -1.736209e-01 8.358181e-02 7.906976e-01 5.907069e-01 + reac = 0.000000e+00 2.879965e+00 + Node #265: sol1 = 0.000000e+00 5.000000e+00 + sol2 = 5.799047e+00 6.345337e+00 5.997104e+00 0.000000e+00 4.790227e-01 6.439276e-02 + reac = -1.015952e-04 -9.758172e-02 diff --git a/Apps/FiniteDefElasticity/Test/run.sh b/Apps/FiniteDefElasticity/Test/run.sh index e1df637f..9a836433 100755 --- a/Apps/FiniteDefElasticity/Test/run.sh +++ b/Apps/FiniteDefElasticity/Test/run.sh @@ -65,6 +65,7 @@ run FBlock-h8x2-Q4Q3.inp -2D -mixed -nGauss 5 -vtf 1 -lagrange run Necking-Q2P1.inp -2D -MX 1 -vtf 1 -nviz 3 -nGauss 3 -outPrec 6 run Necking-Q2Q1.inp -2D -mixed -vtf 1 -nviz 3 -nGauss 3 -outPrec 6 run Necking-Q2-Q1.inp -2D -Mixed -vtf 1 -nviz 3 -nGauss 3 -outPrec 6 +run Necking-AxS-Fbar2.inp -2Daxis -vtf 1 -Fbar -nviz 3 -nGauss 3 -outPrec 6 # Cooks membrane, 2D plasticity run Cook2D-p1-h1.inp -2D -Fbar 1 -nGauss 2 -vtf 1 -nviz 3 -outPrec 6 diff --git a/Apps/FiniteDefElasticity/Test/strip2D1rett.g2 b/Apps/FiniteDefElasticity/Test/strip2D1rett.g2 new file mode 100644 index 00000000..a244f88e --- /dev/null +++ b/Apps/FiniteDefElasticity/Test/strip2D1rett.g2 @@ -0,0 +1,10 @@ +200 1 0 0 +2 0 +2 2 +0 0 1 1 +2 2 +0 0 1 1 +0.0 0.0 +6.297566 0.0 +0.0 26.667 +6.413 26.667