added: BasisFunctionCache in ASMs3DmxLag
This commit is contained in:
parent
e595bd3556
commit
bffcfa640f
@ -266,20 +266,28 @@ bool ASMs3DmxLag::integrate (Integrand& integrand,
|
||||
{
|
||||
if (this->empty()) return true; // silently ignore empty patches
|
||||
|
||||
// Get Gaussian quadrature points and weights
|
||||
const double* x = GaussQuadrature::getCoord(nGauss);
|
||||
const double* w = GaussQuadrature::getWeight(nGauss);
|
||||
if (!x || !w) return false;
|
||||
if (myCache.empty()) {
|
||||
myCache.emplace_back(std::make_unique<BasisFunctionCache>(*this, cachePolicy, 1));
|
||||
const BasisFunctionCache& front = static_cast<const BasisFunctionCache&>(*myCache.front());
|
||||
for (size_t b = 2; b <= this->getNoBasis(); ++b)
|
||||
myCache.emplace_back(std::make_unique<BasisFunctionCache>(front, b));
|
||||
}
|
||||
|
||||
// Get parametric coordinates of the elements
|
||||
RealArray upar, vpar, wpar;
|
||||
this->getGridParameters(upar,0,1);
|
||||
this->getGridParameters(vpar,1,1);
|
||||
this->getGridParameters(wpar,2,1);
|
||||
for (std::unique_ptr<ASMs3D::BasisFunctionCache>& cache : myCache) {
|
||||
cache->setIntegrand(&integrand);
|
||||
cache->init(1);
|
||||
}
|
||||
|
||||
BasisFunctionCache& cache = static_cast<BasisFunctionCache&>(*myCache.front());
|
||||
|
||||
// Get Gaussian quadrature points and weights
|
||||
const std::array<int,3>& ng = cache.nGauss();
|
||||
const std::array<const double*,3>& xg = cache.coord();
|
||||
const std::array<const double*,3>& wg = cache.weight();
|
||||
|
||||
// Number of elements in each direction
|
||||
const int nelx = upar.size() - 1;
|
||||
const int nely = vpar.size() - 1;
|
||||
const int nelx = cache.noElms()[0];
|
||||
const int nely = cache.noElms()[1];
|
||||
|
||||
|
||||
// === Assembly loop over all elements in the patch ==========================
|
||||
@ -321,41 +329,40 @@ bool ASMs3DmxLag::integrate (Integrand& integrand,
|
||||
|
||||
// --- Integration loop over all Gauss points in each direction --------
|
||||
|
||||
int jp = ((i3*nely + i2)*nelx + i1)*nGauss*nGauss*nGauss;
|
||||
size_t ip = 0;
|
||||
int jp = ((i3*nely + i2)*nelx + i1)*ng[0]*ng[1]*ng[2];
|
||||
fe.iGP = firstIp + jp; // Global integration point counter
|
||||
|
||||
for (int k = 0; k < nGauss; k++)
|
||||
for (int j = 0; j < nGauss; j++)
|
||||
for (int i = 0; i < nGauss; i++, fe.iGP++)
|
||||
for (int k = 0; k < ng[2]; k++)
|
||||
for (int j = 0; j < ng[1]; j++)
|
||||
for (int i = 0; i < ng[0]; i++, fe.iGP++)
|
||||
{
|
||||
// Parameter value of current integration point
|
||||
fe.u = 0.5*(upar[i1]*(1.0-x[i]) + upar[i1+1]*(1.0+x[i]));
|
||||
fe.v = 0.5*(vpar[i2]*(1.0-x[j]) + vpar[i2+1]*(1.0+x[j]));
|
||||
fe.w = 0.5*(wpar[i3]*(1.0-x[k]) + wpar[i3+1]*(1.0+x[k]));
|
||||
fe.u = cache.getParam(0,i1,i);
|
||||
fe.v = cache.getParam(1,i2,j);
|
||||
fe.w = cache.getParam(2,i3,k);
|
||||
|
||||
// Local coordinate of current integration point
|
||||
fe.xi = x[i];
|
||||
fe.eta = x[j];
|
||||
fe.zeta = x[k];
|
||||
fe.xi = xg[0][i];
|
||||
fe.eta = xg[1][j];
|
||||
fe.zeta = xg[2][k];
|
||||
|
||||
// Compute basis function derivatives at current integration point
|
||||
// using tensor product of one-dimensional Lagrange polynomials
|
||||
for (size_t b = 0; b < nxx.size(); ++b)
|
||||
if (!Lagrange::computeBasis(fe.basis(b+1),dNxdu[b],
|
||||
elem_sizes[b][0],x[i],
|
||||
elem_sizes[b][1],x[j],
|
||||
elem_sizes[b][2],x[k]))
|
||||
ok = false;
|
||||
std::vector<const BasisFunctionVals*> bfs(this->getNoBasis());
|
||||
for (size_t b = 0; b < this->getNoBasis(); ++b) {
|
||||
bfs[b] = &myCache[b]->getVals(iel-1,ip);
|
||||
fe.basis(b+1) = bfs[b]->N;
|
||||
}
|
||||
|
||||
// Compute Jacobian inverse of coordinate mapping and derivatives
|
||||
if (!fe.Jacobian(Jac,Xnod,dNxdu,geoBasis))
|
||||
if (!fe.Jacobian(Jac,Xnod,geoBasis,&bfs))
|
||||
continue; // skip singular points
|
||||
|
||||
// Cartesian coordinates of current integration point
|
||||
X.assign(Xnod * fe.basis(geoBasis));
|
||||
|
||||
// Evaluate the integrand and accumulate element contributions
|
||||
fe.detJxW *= w[i]*w[j]*w[k];
|
||||
fe.detJxW *= wg[0][i]*wg[1][j]*wg[2][k];
|
||||
if (!integrand.evalIntMx(*A,fe,time,X))
|
||||
ok = false;
|
||||
}
|
||||
@ -596,7 +603,7 @@ bool ASMs3DmxLag::evalSolution (Matrix& sField, const IntegrandBase& integrand,
|
||||
|
||||
// Compute Jacobian inverse of the coordinate mapping and
|
||||
// basis function derivatives w.r.t. Cartesian coordinates
|
||||
if (!fe.Jacobian(Jac,Xnod,dNxdu,geoBasis))
|
||||
if (!fe.Jacobian(Jac,Xnod,geoBasis,nullptr,&dNxdu))
|
||||
continue; // skip singular points
|
||||
|
||||
// Now evaluate the solution field
|
||||
@ -618,3 +625,38 @@ bool ASMs3DmxLag::evalSolution (Matrix& sField, const IntegrandBase& integrand,
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
ASMs3DmxLag::BasisFunctionCache::BasisFunctionCache (const ASMs3DLag& pch,
|
||||
ASM::CachePolicy plcy,
|
||||
int b) :
|
||||
ASMs3DLag::BasisFunctionCache(pch,plcy,b)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
ASMs3DmxLag::BasisFunctionCache::BasisFunctionCache (const BasisFunctionCache& cache,
|
||||
int b) :
|
||||
ASMs3DLag::BasisFunctionCache(cache,b)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
BasisFunctionVals ASMs3DmxLag::BasisFunctionCache::calculatePt (size_t el,
|
||||
size_t gp,
|
||||
bool reduced) const
|
||||
{
|
||||
std::array<size_t,3> gpIdx = this->gpIndex(gp,reduced);
|
||||
const Quadrature& q = reduced ? *reducedQ : *mainQ;
|
||||
|
||||
const ASMs3DmxLag& pch = static_cast<const ASMs3DmxLag&>(patch);
|
||||
|
||||
BasisFunctionVals result;
|
||||
if (nderiv == 1)
|
||||
Lagrange::computeBasis(result.N,result.dNdu,
|
||||
pch.elem_sizes[basis-1][0],q.xg[0][gpIdx[0]],
|
||||
pch.elem_sizes[basis-1][1],q.xg[1][gpIdx[1]],
|
||||
pch.elem_sizes[basis-1][2],q.xg[2][gpIdx[2]]);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
@ -28,6 +28,32 @@
|
||||
|
||||
class ASMs3DmxLag : public ASMs3DLag, private ASMmxBase
|
||||
{
|
||||
//! \brief Implementation of basis function cache.
|
||||
class BasisFunctionCache : public ASMs3DLag::BasisFunctionCache
|
||||
{
|
||||
public:
|
||||
//! \brief The constructor initializes the class.
|
||||
//! \param pch Patch the cache is for
|
||||
//! \param plcy Cache policy to use
|
||||
//! \param b Basis to use
|
||||
BasisFunctionCache(const ASMs3DLag& pch, ASM::CachePolicy plcy, int b);
|
||||
|
||||
//! \brief Constructor reusing quadrature info from another instance.
|
||||
//! \param cache Instance holding quadrature information
|
||||
//! \param b Basis to use
|
||||
BasisFunctionCache(const BasisFunctionCache& cache, int b);
|
||||
|
||||
//! \brief Empty destructor.
|
||||
virtual ~BasisFunctionCache() = default;
|
||||
|
||||
protected:
|
||||
//! \brief Calculates basis function info in a single integration point.
|
||||
//! \param el Element of integration point (0-indexed)
|
||||
//! \param gp Integratin point on element (0-indexed)
|
||||
//! \param reduced If true, returns values for reduced integration scheme
|
||||
BasisFunctionVals calculatePt(size_t el, size_t gp, bool reduced) const override;
|
||||
};
|
||||
|
||||
public:
|
||||
//! \brief The constructor initializes the dimension of each basis.
|
||||
explicit ASMs3DmxLag(const CharVec& n_f);
|
||||
@ -50,6 +76,8 @@ public:
|
||||
//! This is used to reinitialize the patch after it has been refined.
|
||||
virtual void clear(bool retainGeometry);
|
||||
|
||||
//! \brief Returns the number of bases.
|
||||
virtual size_t getNoBasis() const { return 2; }
|
||||
//! \brief Returns the total number of nodes in this patch.
|
||||
virtual size_t getNoNodes(int basis) const;
|
||||
//! \brief Returns the number of solution fields.
|
||||
|
Loading…
Reference in New Issue
Block a user