Regression test updates due to recent fixes in norm calculations
git-svn-id: http://svn.sintef.no/trondheim/IFEM/trunk@1130 e10b68d5-8a6e-419e-a041-bce267b0401d
This commit is contained in:
parent
db7d829241
commit
fff507aab9
@ -97,4 +97,3 @@ Number of unknowns 297
|
||||
Total reaction forces: Sum(R) = 0 0 269.35
|
||||
Energy norm: |u^h| = a(u^h,u^h)^0.5 : 25.2357 a(u^h,u^h) = 636.8394095
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 47.3434 (f,u)+(t,u) = 2241.396332
|
||||
|
||||
|
@ -45,8 +45,8 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.0572888 (f,u)+(t,u) = 0.003282011423
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 1.25395
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 0.506837 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 1.29976 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 1.49092
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 0.895393 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 1.09663
|
||||
Node #5: sol1 = -4.998386e-03 2.545075e-02
|
||||
Node #15: sol1 = -1.162330e-02 2.616219e-02
|
||||
Node #25: sol1 = -2.013237e-02 2.708485e-02
|
||||
@ -59,8 +59,8 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.114557 (f,u)+(t,u) = 0.0131233192
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 2.50724
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 1.0134 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 2.15596 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 2.54568
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 1.79034 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 2.19271
|
||||
Node #5: sol1 = -1.000727e-02 5.088876e-02
|
||||
Node #15: sol1 = -2.325341e-02 5.230622e-02
|
||||
Node #25: sol1 = -4.026857e-02 5.414201e-02
|
||||
@ -73,8 +73,8 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.171805 (f,u)+(t,u) = 0.0295168308
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 3.75988
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 1.51968 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 3.02512 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 3.61613
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 2.68485 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 3.28825
|
||||
Node #5: sol1 = -1.502663e-02 7.631400e-02
|
||||
Node #15: sol1 = -3.489030e-02 7.843207e-02
|
||||
Node #25: sol1 = -6.040856e-02 8.117150e-02
|
||||
@ -87,8 +87,8 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.229032 (f,u)+(t,u) = 0.05245545
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 5.01186
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 2.02568 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 3.90166 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 4.69428
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 3.57891 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 4.38325
|
||||
Node #5: sol1 = -2.005645e-02 1.017265e-01
|
||||
Node #15: sol1 = -4.653394e-02 1.045397e-01
|
||||
Node #25: sol1 = -8.055229e-02 1.081733e-01
|
||||
@ -101,8 +101,8 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.286238 (f,u)+(t,u) = 0.08193207697
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 6.2632
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 2.53141 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 4.78235 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 5.77647
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 4.47253 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 5.47771
|
||||
Node #5: sol1 = -2.509670e-02 1.271261e-01
|
||||
Node #15: sol1 = -5.818429e-02 1.306292e-01
|
||||
Node #25: sol1 = -1.006997e-01 1.351474e-01
|
||||
@ -115,8 +115,8 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.343423 (f,u)+(t,u) = 0.1179396083
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 7.51387
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 3.03686 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 5.6655 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 6.86096
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 5.3657 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 6.57162
|
||||
Node #5: sol1 = -3.014737e-02 1.525130e-01
|
||||
Node #15: sol1 = -6.984135e-02 1.567005e-01
|
||||
Node #25: sol1 = -1.208508e-01 1.620939e-01
|
||||
@ -129,8 +129,8 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.400588 (f,u)+(t,u) = 0.1604709369
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 8.76389
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 3.54203 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 6.55016 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 7.9468
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 6.25843 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 7.66498
|
||||
Node #5: sol1 = -3.520842e-02 1.778870e-01
|
||||
Node #15: sol1 = -8.150507e-02 1.827536e-01
|
||||
Node #25: sol1 = -1.410054e-01 1.890127e-01
|
||||
@ -143,8 +143,8 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.457732 (f,u)+(t,u) = 0.2095189525
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 10.0133
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 4.04692 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 7.43578 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 9.03343
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 7.15071 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 8.7578
|
||||
Node #5: sol1 = -4.027984e-02 2.032482e-01
|
||||
Node #15: sol1 = -9.317542e-02 2.087884e-01
|
||||
Node #25: sol1 = -1.611636e-01 2.159038e-01
|
||||
@ -157,8 +157,8 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.516874 (f,u)+(t,u) = 0.2671582674
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 11.2707
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 4.55886 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 8.3228 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 10.1213
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 8.04241 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 9.8499
|
||||
Node #5: sol1 = -4.567188e-02 2.302417e-01
|
||||
Node #15: sol1 = -1.055543e-01 2.367059e-01
|
||||
Node #25: sol1 = -1.825830e-01 2.447018e-01
|
||||
@ -171,8 +171,8 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.578533 (f,u)+(t,u) = 0.334700519
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 12.5408
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 5.07692 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 9.21956 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 11.2204
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 8.94133 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 10.9508
|
||||
Node #5: sol1 = -5.061127e-02 2.593361e-01
|
||||
Node #15: sol1 = -1.187244e-01 2.669433e-01
|
||||
Node #25: sol1 = -2.057310e-01 2.757976e-01
|
||||
@ -185,8 +185,8 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.650797 (f,u)+(t,u) = 0.4235363795
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 13.858
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 5.63236 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 10.1197 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 12.3234
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 9.84247 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 12.0545
|
||||
Node #5: sol1 = -5.796877e-02 2.983897e-01
|
||||
Node #15: sol1 = -1.372365e-01 3.071552e-01
|
||||
Node #25: sol1 = -2.370396e-01 3.168040e-01
|
||||
@ -199,8 +199,8 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.747864 (f,u)+(t,u) = 0.5593003048
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 15.3002
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 6.26976 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 11.0584 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 13.4725
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 10.778 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 13.2003
|
||||
Node #5: sol1 = -6.902803e-02 3.610224e-01
|
||||
Node #15: sol1 = -1.676239e-01 3.723359e-01
|
||||
Node #25: sol1 = -2.884550e-01 3.826612e-01
|
||||
@ -213,8 +213,8 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.871446 (f,u)+(t,u) = 0.7594178079
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 16.8878
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 6.97537 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 12.0851 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 14.7289
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 11.7996 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 14.4515
|
||||
Node #5: sol1 = -8.278554e-02 4.518916e-01
|
||||
Node #15: sol1 = -2.097738e-01 4.669631e-01
|
||||
Node #25: sol1 = -3.627685e-01 4.791943e-01
|
||||
@ -227,8 +227,8 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.06876 (f,u)+(t,u) = 1.142245259
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 18.7107
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 7.82369 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 13.2002 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 16.0919
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 12.902 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 15.8016
|
||||
Node #5: sol1 = -1.111964e-01 6.338038e-01
|
||||
Node #15: sol1 = -2.891242e-01 6.520125e-01
|
||||
Node #25: sol1 = -5.017261e-01 6.673538e-01
|
||||
@ -241,8 +241,8 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.49695 (f,u)+(t,u) = 2.240863025
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 20.539
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 8.73029 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 14.1992 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 17.3153
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 13.8995 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 17.0233
|
||||
Node #5: sol1 = -2.127496e-01 1.166198e+00
|
||||
Node #15: sol1 = -5.405789e-01 1.190702e+00
|
||||
Node #25: sol1 = -9.310242e-01 1.216784e+00
|
||||
@ -255,8 +255,8 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.98959 (f,u)+(t,u) = 3.958472741
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 22.1047
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 9.46234 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 15.1274 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 18.4534
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 14.8327 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 18.1662
|
||||
Node #5: sol1 = -3.756985e-01 1.939111e+00
|
||||
Node #15: sol1 = -9.120024e-01 1.969263e+00
|
||||
Node #25: sol1 = -1.567799e+00 2.002381e+00
|
||||
@ -269,8 +269,8 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.5004 (f,u)+(t,u) = 6.252001699
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 23.4375
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 10.1164 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 15.8549 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 19.3459
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 15.5656 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 19.0639
|
||||
Node #5: sol1 = -5.830080e-01 2.894935e+00
|
||||
Node #15: sol1 = -1.369633e+00 2.928779e+00
|
||||
Node #25: sol1 = -2.345853e+00 2.950500e+00
|
||||
@ -283,8 +283,8 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.01702 (f,u)+(t,u) = 9.102429444
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 24.594
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 10.6914 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 16.4711 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 20.1014
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 16.1847 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 19.8222
|
||||
Node #5: sol1 = -8.421771e-01 3.998041e+00
|
||||
Node #15: sol1 = -1.914392e+00 4.031512e+00
|
||||
Node #25: sol1 = -3.258358e+00 4.019535e+00
|
||||
@ -297,8 +297,8 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.53723 (f,u)+(t,u) = 12.5119789
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 25.6616
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 11.2029 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 17.0765 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 20.8436
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 16.793 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 20.5672
|
||||
Node #5: sol1 = -1.159860e+00 5.232860e+00
|
||||
Node #15: sol1 = -2.551985e+00 5.256531e+00
|
||||
Node #25: sol1 = -4.305638e+00 5.183237e+00
|
||||
@ -311,8 +311,8 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 4.05902 (f,u)+(t,u) = 16.47561617
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 26.6219
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 11.6478 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 17.6508 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 21.5477
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 17.3699 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 21.2737
|
||||
Node #5: sol1 = -1.544440e+00 6.585063e+00
|
||||
Node #15: sol1 = -3.290548e+00 6.584161e+00
|
||||
Node #25: sol1 = -5.490680e+00 6.416231e+00
|
||||
|
@ -42,14 +42,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.0539182 (f,u)+(t,u) = 0.002907173786
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 1.15081
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 0.440125 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 1.56693 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 1.71171
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 0.862106 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 1.05586
|
||||
Node #5: sol1 = -4.439177e-03 2.256776e-02
|
||||
sol2 = 6.128175e-02 4.305727e-02 3.025873e-02 8.233465e-03 3.053769e-02
|
||||
sol2 = 6.128175e-02 4.305727e-02 3.025873e-02 8.233465e-03 3.053769e-02 0.000000e+00
|
||||
Node #15: sol1 = -1.010260e-02 2.326109e-02
|
||||
sol2 = 2.879261e-02 3.519538e-02 1.855677e-02 -6.415535e-04 1.457876e-02
|
||||
sol2 = 2.879261e-02 3.519538e-02 1.855677e-02 -6.415535e-04 1.457876e-02 0.000000e+00
|
||||
Node #25: sol1 = -1.702335e-02 2.384792e-02
|
||||
sol2 = -8.677970e-03 6.313725e-03 -6.856405e-04 -4.350914e-03 1.502002e-02
|
||||
sol2 = -8.677970e-03 6.313725e-03 -6.856405e-04 -4.350914e-03 1.502002e-02 0.000000e+00
|
||||
step=2 time=0.1
|
||||
Primary solution summary: L2-norm : 0.0194054
|
||||
Max X-displacement : 0.034049 node 25
|
||||
@ -59,14 +59,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.10782 (f,u)+(t,u) = 0.01162522738
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 2.30111
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 0.880047 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 2.25431 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 2.59103
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 1.72385 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 2.11128
|
||||
Node #5: sol1 = -8.885823e-03 4.512607e-02
|
||||
sol2 = 1.224869e-01 8.611124e-02 6.049429e-02 1.648877e-02 6.104823e-02
|
||||
sol2 = 1.224869e-01 8.611124e-02 6.049429e-02 1.648877e-02 6.104823e-02 0.000000e+00
|
||||
Node #15: sol1 = -2.021007e-02 4.650877e-02
|
||||
sol2 = 5.760117e-02 7.037434e-02 3.711341e-02 -1.286948e-03 2.914729e-02
|
||||
sol2 = 5.760117e-02 7.037434e-02 3.711341e-02 -1.286948e-03 2.914729e-02 0.000000e+00
|
||||
Node #25: sol1 = -3.404899e-02 4.767606e-02
|
||||
sol2 = -1.730925e-02 1.261345e-02 -1.361802e-03 -8.718084e-03 3.000856e-02
|
||||
sol2 = -1.730925e-02 1.261345e-02 -1.361802e-03 -8.718084e-03 3.000856e-02 0.000000e+00
|
||||
step=3 time=0.15
|
||||
Primary solution summary: L2-norm : 0.029102
|
||||
Max X-displacement : 0.0510769 node 25
|
||||
@ -76,14 +76,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.161706 (f,u)+(t,u) = 0.02614895723
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 3.45091
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 1.31976 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 3.01691 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 3.55333
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 2.58523 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 3.16625
|
||||
Node #5: sol1 = -1.333993e-02 6.767492e-02
|
||||
sol2 = 1.836153e-01 1.291619e-01 9.070665e-02 2.476578e-02 9.153162e-02
|
||||
sol2 = 1.836153e-01 1.291619e-01 9.070665e-02 2.476578e-02 9.153162e-02 0.000000e+00
|
||||
Node #15: sol1 = -3.032239e-02 6.974303e-02
|
||||
sol2 = 8.642557e-02 1.055368e-01 5.566986e-02 -1.936105e-03 4.370559e-02
|
||||
sol2 = 8.642557e-02 1.055368e-01 5.566986e-02 -1.936105e-03 4.370559e-02 0.000000e+00
|
||||
Node #25: sol1 = -5.107689e-02 7.148444e-02
|
||||
sol2 = -2.589385e-02 1.889915e-02 -2.028490e-03 -1.310137e-02 4.496559e-02
|
||||
sol2 = -2.589385e-02 1.889915e-02 -2.028490e-03 -1.310137e-02 4.496559e-02 0.000000e+00
|
||||
step=4 time=0.2
|
||||
Primary solution summary: L2-norm : 0.0387945
|
||||
Max X-displacement : 0.068107 node 25
|
||||
@ -93,14 +93,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.215576 (f,u)+(t,u) = 0.04647315732
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 4.6002
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 1.75928 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 3.8158 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 4.55143
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 3.44625 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 4.22078
|
||||
Node #5: sol1 = -1.780147e-02 9.021431e-02
|
||||
sol2 = 2.446671e-01 1.722091e-01 1.208958e-01 3.306437e-02 1.219879e-01
|
||||
sol2 = 2.446671e-01 1.722091e-01 1.208958e-01 3.306437e-02 1.219879e-01 0.000000e+00
|
||||
Node #15: sol1 = -4.043954e-02 9.296389e-02
|
||||
sol2 = 1.152657e-01 1.406827e-01 7.422605e-02 -2.588943e-03 5.825365e-02
|
||||
sol2 = 1.152657e-01 1.406827e-01 7.422605e-02 -2.588943e-03 5.825365e-02 0.000000e+00
|
||||
Node #25: sol1 = -6.810701e-02 9.527305e-02
|
||||
sol2 = -3.443175e-02 2.517081e-02 -2.685712e-03 -1.750062e-02 5.989112e-02
|
||||
sol2 = -3.443175e-02 2.517081e-02 -2.685712e-03 -1.750062e-02 5.989112e-02 0.000000e+00
|
||||
step=5 time=0.25
|
||||
Primary solution summary: L2-norm : 0.048483
|
||||
Max X-displacement : 0.0851393 node 25
|
||||
@ -110,14 +110,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.26943 (f,u)+(t,u) = 0.07259261912
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 5.74898
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 2.19859 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 4.63387 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 5.56747
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 4.3069 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 5.27486
|
||||
Node #5: sol1 = -2.227045e-02 1.127442e-01
|
||||
sol2 = 3.056421e-01 2.152530e-01 1.510617e-01 4.138440e-02 1.524169e-01
|
||||
sol2 = 3.056421e-01 2.152530e-01 1.510617e-01 4.138440e-02 1.524169e-01 0.000000e+00
|
||||
Node #15: sol1 = -5.056150e-02 1.161713e-01
|
||||
sol2 = 1.441214e-01 1.758119e-01 9.278195e-02 -3.245384e-03 7.279148e-02
|
||||
sol2 = 1.441214e-01 1.758119e-01 9.278195e-02 -3.245384e-03 7.279148e-02 0.000000e+00
|
||||
Node #25: sol1 = -8.513933e-02 1.190419e-01
|
||||
sol2 = -4.292296e-02 3.142839e-02 -3.333473e-03 -2.191571e-02 7.478512e-02
|
||||
sol2 = -4.292296e-02 3.142839e-02 -3.333473e-03 -2.191571e-02 7.478512e-02 0.000000e+00
|
||||
step=6 time=0.3
|
||||
Primary solution summary: L2-norm : 0.0581674
|
||||
Max X-displacement : 0.102174 node 25
|
||||
@ -127,14 +127,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.323268 (f,u)+(t,u) = 0.1045021317
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 6.89726
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 2.63769 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 5.46308 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 6.59361
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 5.1672 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 6.3285
|
||||
Node #5: sol1 = -2.674684e-02 1.352647e-01
|
||||
sol2 = 3.665404e-01 2.582934e-01 1.812043e-01 4.972574e-02 1.828189e-01
|
||||
sol2 = 3.665404e-01 2.582934e-01 1.812043e-01 4.972574e-02 1.828189e-01 0.000000e+00
|
||||
Node #15: sol1 = -6.068827e-02 1.393653e-01
|
||||
sol2 = 1.729926e-01 2.109244e-01 1.113375e-01 -3.905349e-03 8.731908e-02
|
||||
sol2 = 1.729926e-01 2.109244e-01 1.113375e-01 -3.905349e-03 8.731908e-02 0.000000e+00
|
||||
Node #25: sol1 = -1.021738e-01 1.427910e-01
|
||||
sol2 = -5.136748e-02 3.767187e-02 -3.971782e-03 -2.634648e-02 8.964758e-02
|
||||
sol2 = -5.136748e-02 3.767187e-02 -3.971782e-03 -2.634648e-02 8.964758e-02 0.000000e+00
|
||||
step=7 time=0.35
|
||||
Primary solution summary: L2-norm : 0.0678477
|
||||
Max X-displacement : 0.11921 node 25
|
||||
@ -144,14 +144,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.377089 (f,u)+(t,u) = 0.1421964817
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 8.04503
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 3.07659 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 6.29925 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 7.62591
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 6.02712 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 7.38169
|
||||
Node #5: sol1 = -3.123063e-02 1.577756e-01
|
||||
sol2 = 4.273619e-01 3.013304e-01 2.113237e-01 5.808826e-02 2.131937e-01
|
||||
sol2 = 4.273619e-01 3.013304e-01 2.113237e-01 5.808826e-02 2.131937e-01 0.000000e+00
|
||||
Node #15: sol1 = -7.081981e-02 1.625459e-01
|
||||
sol2 = 2.018792e-01 2.460201e-01 1.298926e-01 -4.568757e-03 1.018364e-01
|
||||
sol2 = 2.018792e-01 2.460201e-01 1.298926e-01 -4.568757e-03 1.018364e-01 0.000000e+00
|
||||
Node #25: sol1 = -1.192104e-01 1.665203e-01
|
||||
sol2 = -5.976531e-02 4.390124e-02 -4.600644e-03 -3.079281e-02 1.044785e-01
|
||||
sol2 = -5.976531e-02 4.390124e-02 -4.600644e-03 -3.079281e-02 1.044785e-01 0.000000e+00
|
||||
step=8 time=0.4
|
||||
Primary solution summary: L2-norm : 0.0775239
|
||||
Max X-displacement : 0.136249 node 25
|
||||
@ -161,14 +161,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.430895 (f,u)+(t,u) = 0.1856704534
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 9.19229
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 3.51529 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 7.14002 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 8.66219
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 6.88669 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 8.43443
|
||||
Node #5: sol1 = -3.572182e-02 1.802770e-01
|
||||
sol2 = 4.881066e-01 3.443638e-01 2.414198e-01 6.647182e-02 2.435414e-01
|
||||
sol2 = 4.881066e-01 3.443638e-01 2.414198e-01 6.647182e-02 2.435414e-01 0.000000e+00
|
||||
Node #15: sol1 = -8.095612e-02 1.857130e-01
|
||||
sol2 = 2.307811e-01 2.810989e-01 1.484472e-01 -5.235531e-03 1.163436e-01
|
||||
sol2 = 2.307811e-01 2.810989e-01 1.484472e-01 -5.235531e-03 1.163436e-01 0.000000e+00
|
||||
Node #25: sol1 = -1.362492e-01 1.902298e-01
|
||||
sol2 = -6.811645e-02 5.011647e-02 -5.220065e-03 -3.525454e-02 1.192778e-01
|
||||
sol2 = -6.811645e-02 5.011647e-02 -5.220065e-03 -3.525454e-02 1.192778e-01 0.000000e+00
|
||||
step=9 time=0.45
|
||||
Primary solution summary: L2-norm : 0.0883129
|
||||
Max X-displacement : 0.155133 node 25
|
||||
@ -178,14 +178,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.487863 (f,u)+(t,u) = 0.2380102501
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 10.3482
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 3.96304 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 7.98222 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 9.69896
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 7.74393 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 9.48434
|
||||
Node #5: sol1 = -4.058440e-02 2.055131e-01
|
||||
sol2 = 5.451972e-01 3.815588e-01 2.687630e-01 7.675469e-02 2.750128e-01
|
||||
sol2 = 5.451972e-01 3.815588e-01 2.687630e-01 7.675469e-02 2.750128e-01 0.000000e+00
|
||||
Node #15: sol1 = -9.212439e-02 2.116324e-01
|
||||
sol2 = 2.641099e-01 3.196906e-01 1.693045e-01 -7.120648e-03 1.322828e-01
|
||||
sol2 = 2.641099e-01 3.196906e-01 1.693045e-01 -7.120648e-03 1.322828e-01 0.000000e+00
|
||||
Node #25: sol1 = -1.551333e-01 2.167124e-01
|
||||
sol2 = -7.633409e-02 5.646230e-02 -5.762901e-03 -3.992994e-02 1.342638e-01
|
||||
sol2 = -7.633409e-02 5.646230e-02 -5.762901e-03 -3.992994e-02 1.342638e-01 0.000000e+00
|
||||
step=10 time=0.5
|
||||
Primary solution summary: L2-norm : 0.0998512
|
||||
Max X-displacement : 0.175608 node 25
|
||||
@ -195,14 +195,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.547275 (f,u)+(t,u) = 0.2995098259
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 11.5211
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 4.41828 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 8.83919 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 10.7527
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 8.61227 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 10.5478
|
||||
Node #5: sol1 = -4.530075e-02 2.328798e-01
|
||||
sol2 = 6.376491e-01 4.422907e-01 3.131869e-01 8.662667e-02 3.202605e-01
|
||||
sol2 = 6.376491e-01 4.422907e-01 3.131869e-01 8.662667e-02 3.202605e-01 0.000000e+00
|
||||
Node #15: sol1 = -1.040116e-01 2.396868e-01
|
||||
sol2 = 2.984598e-01 3.558628e-01 1.897562e-01 -6.905904e-03 1.466103e-01
|
||||
sol2 = 2.984598e-01 3.558628e-01 1.897562e-01 -6.905904e-03 1.466103e-01 0.000000e+00
|
||||
Node #25: sol1 = -1.756079e-01 2.452589e-01
|
||||
sol2 = -8.694004e-02 6.149661e-02 -7.378696e-03 -4.521607e-02 1.506224e-01
|
||||
sol2 = -8.694004e-02 6.149661e-02 -7.378696e-03 -4.521607e-02 1.506224e-01 0.000000e+00
|
||||
step=11 time=0.55
|
||||
Primary solution summary: L2-norm : 0.112547
|
||||
Max X-displacement : 0.198231 node 25
|
||||
@ -212,14 +212,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.609971 (f,u)+(t,u) = 0.3720647958
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 12.7285
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 4.89757 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 9.7076 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 11.8196
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 9.48974 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 11.6225
|
||||
Node #5: sol1 = -5.035536e-02 2.632194e-01
|
||||
sol2 = 7.587994e-01 5.187539e-01 3.704956e-01 9.913959e-02 3.803644e-01
|
||||
sol2 = 7.587994e-01 5.187539e-01 3.704956e-01 9.913959e-02 3.803644e-01 0.000000e+00
|
||||
Node #15: sol1 = -1.171128e-01 2.706425e-01
|
||||
sol2 = 3.343818e-01 3.931916e-01 2.109992e-01 -6.247780e-03 1.614158e-01
|
||||
sol2 = 3.343818e-01 3.931916e-01 2.109992e-01 -6.247780e-03 1.614158e-01 0.000000e+00
|
||||
Node #25: sol1 = -1.982313e-01 2.766864e-01
|
||||
sol2 = -9.942588e-02 6.509531e-02 -9.956002e-03 -5.088444e-02 1.676904e-01
|
||||
sol2 = -9.942588e-02 6.509531e-02 -9.956002e-03 -5.088444e-02 1.676904e-01 0.000000e+00
|
||||
step=12 time=0.6
|
||||
Primary solution summary: L2-norm : 0.1307
|
||||
Max X-displacement : 0.230623 node 25
|
||||
@ -229,14 +229,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.687339 (f,u)+(t,u) = 0.4724347533
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 14.0277
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 5.45348 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 10.5831 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 12.8942
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 10.3709 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 12.7018
|
||||
Node #5: sol1 = -5.750376e-02 3.060901e-01
|
||||
sol2 = 9.517933e-01 6.717960e-01 4.708474e-01 9.386520e-02 4.488607e-01
|
||||
sol2 = 9.513620e-01 6.718408e-01 4.712340e-01 9.370558e-02 4.480974e-01 3.186352e-06
|
||||
Node #15: sol1 = -1.357856e-01 3.151597e-01
|
||||
sol2 = 3.787751e-01 4.362902e-01 2.363722e-01 -5.604939e-03 1.785249e-01
|
||||
sol2 = 3.787751e-01 4.362902e-01 2.363722e-01 -5.604939e-03 1.785249e-01 0.000000e+00
|
||||
Node #25: sol1 = -2.306228e-01 3.216212e-01
|
||||
sol2 = -1.164348e-01 6.466090e-02 -1.501464e-02 -5.813163e-02 1.866891e-01
|
||||
sol2 = -1.164348e-01 6.466090e-02 -1.501464e-02 -5.813163e-02 1.866891e-01 0.000000e+00
|
||||
step=13 time=0.65
|
||||
Primary solution summary: L2-norm : 0.156985
|
||||
Max X-displacement : 0.277474 node 25
|
||||
@ -246,14 +246,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.784687 (f,u)+(t,u) = 0.6157329952
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 15.4301
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 6.05726 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 11.5227 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 14.0467
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 11.3144 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 13.8573
|
||||
Node #5: sol1 = -6.757824e-02 3.674775e-01
|
||||
sol2 = 1.282843e+00 9.464401e-01 6.465009e-01 5.216808e-02 5.587441e-01
|
||||
sol2 = 1.219422e+00 9.488400e-01 7.075221e-01 4.189096e-02 4.494546e-01 4.570236e-04
|
||||
Node #15: sol1 = -1.631176e-01 3.794605e-01
|
||||
sol2 = 4.300011e-01 4.839598e-01 2.650523e-01 -9.960648e-04 1.975425e-01
|
||||
sol2 = 4.300011e-01 4.839598e-01 2.650523e-01 -9.960648e-04 1.975425e-01 0.000000e+00
|
||||
Node #25: sol1 = -2.774736e-01 3.863446e-01
|
||||
sol2 = -1.360085e-01 6.741295e-02 -1.989299e-02 -6.742249e-02 2.118492e-01
|
||||
sol2 = -1.360085e-01 6.741295e-02 -1.989299e-02 -6.742249e-02 2.118492e-01 0.000000e+00
|
||||
step=14 time=0.7
|
||||
Primary solution summary: L2-norm : 0.216314
|
||||
Max X-displacement : 0.384695 node 25
|
||||
@ -263,14 +263,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.953836 (f,u)+(t,u) = 0.9098028267
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 17.0147
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 6.78521 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 12.5088 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 15.2561
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 12.3038 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 15.069
|
||||
Node #5: sol1 = -9.578273e-02 5.047292e-01
|
||||
sol2 = 1.836478e+00 1.393003e+00 9.365623e-01 9.381139e-04 7.793783e-01
|
||||
sol2 = 1.647545e+00 1.393141e+00 1.125357e+00 -6.453721e-03 4.524158e-01 1.378489e-03
|
||||
Node #15: sol1 = -2.294137e-01 5.211626e-01
|
||||
sol2 = 4.810971e-01 5.244895e-01 2.916242e-01 1.691654e-02 2.164789e-01
|
||||
sol2 = 4.810971e-01 5.244895e-01 2.916242e-01 1.691654e-02 2.164789e-01 0.000000e+00
|
||||
Node #25: sol1 = -3.846949e-01 5.280626e-01
|
||||
sol2 = -1.558966e-01 7.876127e-02 -2.236956e-02 -7.763875e-02 2.442211e-01
|
||||
sol2 = -1.558966e-01 7.876127e-02 -2.236956e-02 -7.763875e-02 2.442211e-01 0.000000e+00
|
||||
step=15 time=0.75
|
||||
Primary solution summary: L2-norm : 0.387938
|
||||
Max X-displacement : 0.692967 node 25
|
||||
@ -280,14 +280,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.32256 (f,u)+(t,u) = 1.749156653
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 18.8045
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 7.6693 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 13.5164 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 16.4904
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 13.3099 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 16.3012
|
||||
Node #5: sol1 = -1.739537e-01 9.095156e-01
|
||||
sol2 = 3.406422e+00 2.566625e+00 1.732208e+00 3.052852e-02 1.450878e+00
|
||||
sol2 = 2.834984e+00 2.567652e+00 2.302619e+00 8.528600e-03 4.612802e-01 4.185543e-03
|
||||
Node #15: sol1 = -4.133868e-01 9.368898e-01
|
||||
sol2 = 8.207532e-01 6.988579e-01 4.406933e-01 2.269003e-02 3.384095e-01
|
||||
sol2 = 8.207532e-01 6.988579e-01 4.406933e-01 2.269003e-02 3.384095e-01 0.000000e+00
|
||||
Node #25: sol1 = -6.929666e-01 9.397550e-01
|
||||
sol2 = -2.385006e-01 -3.093393e-02 -7.813710e-02 -8.233953e-02 2.363338e-01
|
||||
sol2 = -2.385006e-01 -3.093393e-02 -7.813710e-02 -8.233953e-02 2.363338e-01 0.000000e+00
|
||||
step=16 time=0.8
|
||||
Primary solution summary: L2-norm : 0.67254
|
||||
Max X-displacement : 1.22151 node 25
|
||||
@ -297,14 +297,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.79819 (f,u)+(t,u) = 3.233487561
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 20.3647
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 8.41179 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 14.4391 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 17.6199
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 14.2283 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 17.4261
|
||||
Node #5: sol1 = -3.131884e-01 1.584188e+00
|
||||
sol2 = 6.273894e+00 4.681545e+00 3.177121e+00 1.083613e-01 2.688803e+00
|
||||
sol2 = 4.989048e+00 4.702643e+00 4.440870e+00 2.062481e-02 4.762372e-01 9.480002e-03
|
||||
Node #15: sol1 = -7.311924e-01 1.624114e+00
|
||||
sol2 = 1.437418e+00 1.050287e+00 7.214444e-01 6.523355e-02 6.309350e-01
|
||||
sol2 = 1.332262e+00 1.055844e+00 8.210438e-01 4.657796e-02 4.504993e-01 7.549329e-04
|
||||
Node #25: sol1 = -1.221505e+00 1.616548e+00
|
||||
sol2 = -3.583830e-01 -1.968680e-01 -1.610250e-01 -8.760489e-02 2.370335e-01
|
||||
sol2 = -3.583830e-01 -1.968680e-01 -1.610250e-01 -8.760489e-02 2.370335e-01 0.000000e+00
|
||||
step=17 time=0.85
|
||||
Primary solution summary: L2-norm : 1.01819
|
||||
Max X-displacement : 1.88503 node 25
|
||||
@ -314,14 +314,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.28175 (f,u)+(t,u) = 5.206399299
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 21.642
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 8.99045 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 15.2359 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 18.5974
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 15.0297 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 18.4075
|
||||
Node #5: sol1 = -4.945680e-01 2.408788e+00
|
||||
sol2 = 9.756168e+00 7.306654e+00 4.948287e+00 3.236238e-01 4.201555e+00
|
||||
sol2 = 7.618682e+00 7.333309e+00 7.059119e+00 4.898803e-02 4.920001e-01 1.617892e-02
|
||||
Node #15: sol1 = -1.130919e+00 2.461529e+00
|
||||
sol2 = 2.142836e+00 1.724887e+00 1.121655e+00 2.479202e-01 9.874633e-01
|
||||
sol2 = 1.873305e+00 1.699978e+00 1.416096e+00 1.261235e-01 4.555843e-01 2.266735e-03
|
||||
Node #25: sol1 = -1.885032e+00 2.435935e+00
|
||||
sol2 = -6.199990e-01 -5.344901e-01 -3.348065e-01 -1.734597e-01 3.930965e-01
|
||||
sol2 = -6.199990e-01 -5.344901e-01 -3.348065e-01 -1.734597e-01 3.930965e-01 0.000000e+00
|
||||
step=18 time=0.9
|
||||
Primary solution summary: L2-norm : 1.41942
|
||||
Max X-displacement : 2.66523 node 25
|
||||
@ -331,14 +331,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.76796 (f,u)+(t,u) = 7.661592236
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 22.7787
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 9.52711 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 15.9075 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 19.4206
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 15.7026 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 19.2316
|
||||
Node #5: sol1 = -7.247951e-01 3.360913e+00
|
||||
sol2 = 1.348334e+01 1.018765e+01 6.864680e+00 5.566214e-01 5.812453e+00
|
||||
sol2 = 1.046397e+01 1.018239e+01 9.889305e+00 5.162635e-02 5.056755e-01 2.358884e-02
|
||||
Node #15: sol1 = -1.610549e+00 3.421584e+00
|
||||
sol2 = 3.047581e+00 2.631532e+00 1.646965e+00 4.062138e-01 1.430778e+00
|
||||
sol2 = 2.618254e+00 2.521086e+00 2.186738e+00 1.405425e-01 4.614919e-01 4.149101e-03
|
||||
Node #25: sol1 = -2.665230e+00 3.366167e+00
|
||||
sol2 = -8.949206e-01 -9.338072e-01 -5.303384e-01 -2.710820e-01 6.075081e-01
|
||||
sol2 = -8.676772e-01 -8.968055e-01 -5.945835e-01 -2.030565e-01 4.550595e-01 6.306545e-04
|
||||
step=19 time=0.95
|
||||
Primary solution summary: L2-norm : 1.87131
|
||||
Max X-displacement : 3.56371 node 25
|
||||
@ -348,14 +348,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.25713 (f,u)+(t,u) = 10.60889654
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 23.8339
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 10.0354 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 16.5111 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 20.1605
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 16.3072 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 19.9722
|
||||
Node #5: sol1 = -1.009716e+00 4.428970e+00
|
||||
sol2 = 1.734618e+01 1.324574e+01 8.871782e+00 8.494802e-01 7.486332e+00
|
||||
sol2 = 1.344169e+01 1.316554e+01 1.285648e+01 5.751542e-02 5.167709e-01 3.163799e-02
|
||||
Node #15: sol1 = -2.173502e+00 4.489496e+00
|
||||
sol2 = 4.156475e+00 3.739563e+00 2.289883e+00 5.528821e-01 1.948541e+00
|
||||
sol2 = 3.564359e+00 3.496007e+00 3.125554e+00 1.312229e-01 4.678534e-01 6.351657e-03
|
||||
Node #25: sol1 = -3.563710e+00 4.389083e+00
|
||||
sol2 = -1.164032e+00 -1.336890e+00 -7.252776e-01 -3.980781e-01 8.795603e-01
|
||||
sol2 = -1.118013e+00 -1.213891e+00 -8.942969e-01 -2.095270e-01 4.608639e-01 1.730542e-03
|
||||
step=20 time=1
|
||||
Primary solution summary: L2-norm : 2.37442
|
||||
Max X-displacement : 4.58917 node 25
|
||||
@ -365,11 +365,11 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.75214 (f,u)+(t,u) = 14.07852923
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 24.7919
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 10.5016 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 17.0461 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 20.8169
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 16.846 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 20.632
|
||||
Node #5: sol1 = -1.359135e+00 5.612376e+00
|
||||
sol2 = 2.124438e+01 1.642620e+01 1.092462e+01 1.219619e+00 9.189794e+00
|
||||
sol2 = 1.648385e+01 1.621739e+01 1.589396e+01 6.785806e-02 5.249805e-01 4.023298e-02
|
||||
Node #15: sol1 = -2.828455e+00 5.661550e+00
|
||||
sol2 = 5.513227e+00 5.064908e+00 3.067701e+00 6.816097e-01 2.545385e+00
|
||||
sol2 = 4.731170e+00 4.652502e+00 4.262165e+00 1.095894e-01 4.746455e-01 8.937843e-03
|
||||
Node #25: sol1 = -4.589167e+00 5.497531e+00
|
||||
sol2 = -1.390252e+00 -1.692249e+00 -8.939377e-01 -5.737662e-01 1.214512e+00
|
||||
sol2 = -1.346965e+00 -1.457702e+00 -1.171772e+00 -2.282816e-01 4.676467e-01 3.092474e-03
|
||||
|
@ -44,14 +44,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.0573153 (f,u)+(t,u) = 0.003285041252
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 1.26078
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 0.51468 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 1.44328 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 1.61378
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 0.891559 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 1.09193
|
||||
Node #5: sol1 = -4.960446e-03 2.540191e-02
|
||||
sol2 = 2.644478e-02 2.340967e-02 1.445799e-02 2.034086e-02 3.684787e-02
|
||||
sol2 = 2.644478e-02 2.340967e-02 1.445799e-02 2.034086e-02 3.684787e-02 0.000000e+00
|
||||
Node #15: sol1 = -1.170457e-02 2.626771e-02
|
||||
sol2 = -2.694526e-03 3.124873e-02 8.280832e-03 1.805492e-02 4.333594e-02
|
||||
sol2 = -2.694526e-03 3.124873e-02 8.280832e-03 1.805492e-02 4.333594e-02 0.000000e+00
|
||||
Node #25: sol1 = -2.016407e-02 2.712093e-02
|
||||
sol2 = -1.104698e-02 -5.339513e-05 -3.219154e-03 -2.855321e-03 1.097891e-02
|
||||
sol2 = -1.104698e-02 -5.339513e-05 -3.219154e-03 -2.855321e-03 1.097891e-02 0.000000e+00
|
||||
step=2 time=0.1
|
||||
Primary solution summary: L2-norm : 0.0227468
|
||||
Max X-displacement : 0.0403314 node 25
|
||||
@ -61,14 +61,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.11461 (f,u)+(t,u) = 0.01313534039
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 2.52089
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 1.02907 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 2.22758 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 2.59681
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 1.78267 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 2.18332
|
||||
Node #5: sol1 = -9.931252e-03 5.079114e-02
|
||||
sol2 = 5.281330e-02 4.689415e-02 2.891556e-02 4.069129e-02 7.370229e-02
|
||||
sol2 = 5.281330e-02 4.689415e-02 2.891556e-02 4.069129e-02 7.370229e-02 0.000000e+00
|
||||
Node #15: sol1 = -2.341605e-02 5.251670e-02
|
||||
sol2 = -5.420270e-03 6.255291e-02 1.656870e-02 3.603887e-02 8.663492e-02
|
||||
sol2 = -5.420270e-03 6.255291e-02 1.656870e-02 3.603887e-02 8.663492e-02 0.000000e+00
|
||||
Node #25: sol1 = -4.033144e-02 5.421341e-02
|
||||
sol2 = -2.201840e-02 -1.105773e-04 -6.417492e-03 -5.728853e-03 2.190932e-02
|
||||
sol2 = -2.201840e-02 -1.105773e-04 -6.417492e-03 -5.728853e-03 2.190932e-02 0.000000e+00
|
||||
step=3 time=0.15
|
||||
Primary solution summary: L2-norm : 0.0341115
|
||||
Max X-displacement : 0.0605021 node 25
|
||||
@ -78,14 +78,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.171883 (f,u)+(t,u) = 0.02954365771
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 3.78035
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 1.54318 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 3.05667 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 3.62917
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 2.67334 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 3.27417
|
||||
Node #5: sol1 = -1.491240e-02 7.616769e-02
|
||||
sol2 = 7.910557e-02 7.045336e-02 4.337269e-02 6.105102e-02 1.105632e-01
|
||||
sol2 = 7.910557e-02 7.045336e-02 4.337269e-02 6.105102e-02 1.105632e-01 0.000000e+00
|
||||
Node #15: sol1 = -3.513441e-02 7.874696e-02
|
||||
sol2 = -8.177016e-03 9.391216e-02 2.486354e-02 5.395185e-02 1.298969e-01
|
||||
sol2 = -8.177016e-03 9.391216e-02 2.486354e-02 5.395185e-02 1.298969e-01 0.000000e+00
|
||||
Node #25: sol1 = -6.050206e-02 8.127744e-02
|
||||
sol2 = -3.291424e-02 -1.715690e-04 -9.595016e-03 -8.620315e-03 3.279122e-02
|
||||
sol2 = -3.291424e-02 -1.715690e-04 -9.595016e-03 -8.620315e-03 3.279122e-02 0.000000e+00
|
||||
step=4 time=0.2
|
||||
Primary solution summary: L2-norm : 0.0454704
|
||||
Max X-displacement : 0.0806759 node 25
|
||||
@ -95,14 +95,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.229135 (f,u)+(t,u) = 0.05250274986
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 5.03913
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 2.05701 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 3.90727 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 4.68284
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 3.56357 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 4.36446
|
||||
Node #5: sol1 = -1.990386e-02 1.015315e-01
|
||||
sol2 = 1.053216e-01 9.408721e-02 5.782934e-02 8.141974e-02 1.474303e-01
|
||||
sol2 = 1.053216e-01 9.408721e-02 5.782934e-02 8.141974e-02 1.474303e-01 0.000000e+00
|
||||
Node #15: sol1 = -4.685963e-02 1.049585e-01
|
||||
sol2 = -1.096455e-02 1.253261e-01 3.316530e-02 7.179383e-02 1.731218e-01
|
||||
sol2 = -1.096455e-02 1.253261e-01 3.316530e-02 7.179383e-02 1.731218e-01 0.000000e+00
|
||||
Node #25: sol1 = -8.067587e-02 1.083130e-01
|
||||
sol2 = -4.373448e-02 -2.363914e-04 -1.275173e-02 -1.152943e-02 4.362462e-02
|
||||
sol2 = -4.373448e-02 -2.363914e-04 -1.275173e-02 -1.152943e-02 4.362462e-02 0.000000e+00
|
||||
step=5 time=0.25
|
||||
Primary solution summary: L2-norm : 0.0568235
|
||||
Max X-displacement : 0.100853 node 25
|
||||
@ -112,14 +112,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.286366 (f,u)+(t,u) = 0.08200536986
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 6.29725
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 2.57054 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 4.76925 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 5.74726
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 4.45335 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 5.45422
|
||||
Node #5: sol1 = -2.490563e-02 1.268827e-01
|
||||
sol2 = 1.314613e-01 1.177956e-01 7.228550e-02 1.017972e-01 1.843036e-01
|
||||
sol2 = 1.314613e-01 1.177956e-01 7.228550e-02 1.017972e-01 1.843036e-01 0.000000e+00
|
||||
Node #15: sol1 = -5.859168e-02 1.311513e-01
|
||||
sol2 = -1.378265e-02 1.567943e-01 4.147394e-02 8.956479e-02 2.163096e-01
|
||||
sol2 = -1.378265e-02 1.567943e-01 4.147394e-02 8.956479e-02 2.163096e-01 0.000000e+00
|
||||
Node #25: sol1 = -1.008528e-01 1.353202e-01
|
||||
sol2 = -5.447912e-02 -3.050646e-04 -1.588763e-02 -1.445591e-02 5.440950e-02
|
||||
sol2 = -5.447912e-02 -3.050646e-04 -1.588763e-02 -1.445591e-02 5.440950e-02 0.000000e+00
|
||||
step=6 time=0.3
|
||||
Primary solution summary: L2-norm : 0.0681707
|
||||
Max X-displacement : 0.121033 node 25
|
||||
@ -129,14 +129,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.343576 (f,u)+(t,u) = 0.1180442672
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 7.55471
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 3.08379 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 5.63787 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 6.81775
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 5.34268 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 6.54342
|
||||
Node #5: sol1 = -2.991766e-02 1.522211e-01
|
||||
sol2 = 1.575247e-01 1.415785e-01 8.674113e-02 1.221830e-01 2.211830e-01
|
||||
sol2 = 1.575247e-01 1.415785e-01 8.674113e-02 1.221830e-01 2.211830e-01 0.000000e+00
|
||||
Node #15: sol1 = -7.033052e-02 1.573253e-01
|
||||
sol2 = -1.663112e-02 1.883163e-01 4.978939e-02 1.072647e-01 2.594602e-01
|
||||
sol2 = -1.663112e-02 1.883163e-01 4.978939e-02 1.072647e-01 2.594602e-01 0.000000e+00
|
||||
Node #25: sol1 = -1.210329e-01 1.622989e-01
|
||||
sol2 = -6.514815e-02 -3.776073e-04 -1.900273e-02 -1.739948e-02 6.514588e-02
|
||||
sol2 = -6.514815e-02 -3.776073e-04 -1.900273e-02 -1.739948e-02 6.514588e-02 0.000000e+00
|
||||
step=7 time=0.35
|
||||
Primary solution summary: L2-norm : 0.0795121
|
||||
Max X-displacement : 0.141216 node 25
|
||||
@ -146,14 +146,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.400765 (f,u)+(t,u) = 0.1606121879
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 8.81149
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 3.59675 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 6.51065 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 7.89192
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 6.23157 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 7.63209
|
||||
Node #5: sol1 = -3.493996e-02 1.775467e-01
|
||||
sol2 = 1.835118e-01 1.654358e-01 1.011962e-01 1.425770e-01 2.580683e-01
|
||||
sol2 = 1.835118e-01 1.654358e-01 1.011962e-01 1.425770e-01 2.580683e-01 0.000000e+00
|
||||
Node #15: sol1 = -8.207613e-02 1.834806e-01
|
||||
sol2 = -1.950972e-02 2.198918e-01 5.811161e-02 1.248936e-01 3.025735e-01
|
||||
sol2 = -1.950972e-02 2.198918e-01 5.811161e-02 1.248936e-01 3.025735e-01 0.000000e+00
|
||||
Node #25: sol1 = -1.412159e-01 1.892492e-01
|
||||
sol2 = -7.574157e-02 -4.540370e-04 -2.209703e-02 -2.035987e-02 7.583374e-02
|
||||
sol2 = -7.574157e-02 -4.540370e-04 -2.209703e-02 -2.035987e-02 7.583374e-02 0.000000e+00
|
||||
step=8 time=0.4
|
||||
Primary solution summary: L2-norm : 0.0908477
|
||||
Max X-displacement : 0.161402 node 25
|
||||
@ -163,14 +163,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.457932 (f,u)+(t,u) = 0.2097018746
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 10.0676
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 4.10943 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 7.38613 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 8.96842
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 7.12001 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 8.7202
|
||||
Node #5: sol1 = -3.997249e-02 2.028596e-01
|
||||
sol2 = 2.094227e-01 1.893673e-01 1.156507e-01 1.629788e-01 2.949594e-01
|
||||
sol2 = 2.094227e-01 1.893673e-01 1.156507e-01 1.629788e-01 2.949594e-01 0.000000e+00
|
||||
Node #15: sol1 = -9.382848e-02 2.096171e-01
|
||||
sol2 = -2.241825e-02 2.515204e-01 6.644053e-02 1.424514e-01 3.456496e-01
|
||||
sol2 = -2.241825e-02 2.515204e-01 6.644053e-02 1.424514e-01 3.456496e-01 0.000000e+00
|
||||
Node #25: sol1 = -1.614020e-01 2.161710e-01
|
||||
sol2 = -8.625936e-02 -5.343700e-04 -2.517053e-02 -2.333679e-02 8.647310e-02
|
||||
sol2 = -8.625936e-02 -5.343700e-04 -2.517053e-02 -2.333679e-02 8.647310e-02 0.000000e+00
|
||||
step=9 time=0.45
|
||||
Primary solution summary: L2-norm : 0.102684
|
||||
Max X-displacement : 0.182388 node 25
|
||||
@ -180,14 +180,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.516374 (f,u)+(t,u) = 0.2666415928
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 11.3278
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 4.62594 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 8.26353 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 10.0464
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 8.00764 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 9.80732
|
||||
Node #5: sol1 = -4.506772e-02 2.292369e-01
|
||||
sol2 = 2.404106e-01 2.256008e-01 1.351452e-01 1.739764e-01 3.170876e-01
|
||||
sol2 = 2.404106e-01 2.256008e-01 1.351452e-01 1.739764e-01 3.170876e-01 0.000000e+00
|
||||
Node #15: sol1 = -1.060317e-01 2.369363e-01
|
||||
sol2 = -2.616186e-02 2.830817e-01 7.450778e-02 1.599958e-01 3.891407e-01
|
||||
sol2 = -2.616186e-02 2.830817e-01 7.450778e-02 1.599958e-01 3.891407e-01 0.000000e+00
|
||||
Node #25: sol1 = -1.823884e-01 2.442632e-01
|
||||
sol2 = -9.595536e-02 -5.834743e-04 -2.799665e-02 -2.605558e-02 9.627830e-02
|
||||
sol2 = -9.595536e-02 -5.834743e-04 -2.799665e-02 -2.605558e-02 9.627830e-02 0.000000e+00
|
||||
step=10 time=0.5
|
||||
Primary solution summary: L2-norm : 0.116396
|
||||
Max X-displacement : 0.206623 node 25
|
||||
@ -197,14 +197,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.579384 (f,u)+(t,u) = 0.3356861958
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 12.6127
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 5.16388 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 9.14117 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 11.124
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 8.89291 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 10.8915
|
||||
Node #5: sol1 = -5.081357e-02 2.598432e-01
|
||||
sol2 = 2.818422e-01 2.684077e-01 1.595747e-01 1.790418e-01 3.311422e-01
|
||||
sol2 = 2.818422e-01 2.684077e-01 1.595747e-01 1.790418e-01 3.311422e-01 0.000000e+00
|
||||
Node #15: sol1 = -1.202538e-01 2.684868e-01
|
||||
sol2 = -3.263626e-02 3.133029e-01 8.139444e-02 1.783716e-01 4.343714e-01
|
||||
sol2 = -3.263626e-02 3.133029e-01 8.139444e-02 1.783716e-01 4.343714e-01 0.000000e+00
|
||||
Node #25: sol1 = -2.066228e-01 2.765098e-01
|
||||
sol2 = -1.082387e-01 -5.238840e-03 -3.290893e-02 -3.003316e-02 1.059743e-01
|
||||
sol2 = -1.082387e-01 -5.238840e-03 -3.290893e-02 -3.003316e-02 1.059743e-01 0.000000e+00
|
||||
step=11 time=0.55
|
||||
Primary solution summary: L2-norm : 0.135844
|
||||
Max X-displacement : 0.241007 node 25
|
||||
@ -214,14 +214,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.655918 (f,u)+(t,u) = 0.430228314
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 13.9763
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 5.7612 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 10.029 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 12.2132
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 9.78591 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 11.9852
|
||||
Node #5: sol1 = -5.869619e-02 3.031769e-01
|
||||
sol2 = 3.640264e-01 3.365909e-01 2.031818e-01 1.678435e-01 3.266881e-01
|
||||
sol2 = 3.640264e-01 3.365909e-01 2.031818e-01 1.678435e-01 3.266881e-01 0.000000e+00
|
||||
Node #15: sol1 = -1.408313e-01 3.129229e-01
|
||||
sol2 = -4.991071e-02 3.393246e-01 8.393118e-02 1.985528e-01 4.853776e-01
|
||||
sol2 = -3.732093e-02 3.238092e-01 8.685676e-02 1.842161e-01 4.503304e-01 1.457876e-04
|
||||
Node #25: sol1 = -2.410066e-01 3.214493e-01
|
||||
sol2 = -1.220415e-01 -1.223211e-02 -3.893990e-02 -3.634370e-02 1.174787e-01
|
||||
sol2 = -1.220415e-01 -1.223211e-02 -3.893990e-02 -3.634370e-02 1.174787e-01 0.000000e+00
|
||||
step=12 time=0.6
|
||||
Primary solution summary: L2-norm : 0.16088
|
||||
Max X-displacement : 0.285707 node 25
|
||||
@ -231,14 +231,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.745803 (f,u)+(t,u) = 0.5562224461
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 15.4223
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 6.39641 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 10.9695 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 13.3663
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 10.7288 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 13.14
|
||||
Node #5: sol1 = -6.758382e-02 3.595813e-01
|
||||
sol2 = 5.230014e-01 4.460672e-01 2.810338e-01 1.496998e-01 3.362763e-01
|
||||
sol2 = 5.230014e-01 4.460672e-01 2.810338e-01 1.496998e-01 3.362763e-01 0.000000e+00
|
||||
Node #15: sol1 = -1.666467e-01 3.711282e-01
|
||||
sol2 = -8.499873e-02 3.720475e-01 8.324528e-02 2.308704e-01 5.658670e-01
|
||||
sol2 = -4.321192e-02 3.217908e-01 9.171512e-02 1.843698e-01 4.518409e-01 4.743447e-04
|
||||
Node #25: sol1 = -2.857068e-01 3.801773e-01
|
||||
sol2 = -1.247744e-01 -1.557625e-03 -3.663679e-02 -3.867544e-02 1.287554e-01
|
||||
sol2 = -1.247744e-01 -1.557625e-03 -3.663679e-02 -3.867544e-02 1.287554e-01 0.000000e+00
|
||||
step=13 time=0.65
|
||||
Primary solution summary: L2-norm : 0.206213
|
||||
Max X-displacement : 0.370253 node 25
|
||||
@ -248,14 +248,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.880122 (f,u)+(t,u) = 0.7746150373
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 17.0191
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 7.12052 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 11.9682 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 14.5901
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 11.7279 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 14.3637
|
||||
Node #5: sol1 = -8.393454e-02 4.626787e-01
|
||||
sol2 = 7.405689e-01 6.115534e-01 3.921209e-01 1.911903e-01 4.502966e-01
|
||||
sol2 = 7.399125e-01 6.114291e-01 3.929016e-01 1.904018e-01 4.484395e-01 7.746735e-06
|
||||
Node #15: sol1 = -2.145676e-01 4.773997e-01
|
||||
sol2 = -1.896075e-01 4.285945e-01 6.930720e-02 2.972373e-01 7.444454e-01
|
||||
sol2 = -7.783604e-02 3.014042e-01 8.472607e-02 1.813117e-01 4.552157e-01 1.203600e-03
|
||||
Node #25: sol1 = -3.702529e-01 4.877346e-01
|
||||
sol2 = -9.278054e-02 3.428098e-02 -1.696511e-02 -4.870124e-02 1.391934e-01
|
||||
sol2 = -9.278054e-02 3.428098e-02 -1.696511e-02 -4.870124e-02 1.391934e-01 0.000000e+00
|
||||
step=14 time=0.7
|
||||
Primary solution summary: L2-norm : 0.331109
|
||||
Max X-displacement : 0.607337 node 25
|
||||
@ -265,14 +265,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.16022 (f,u)+(t,u) = 1.346114433
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 18.8837
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 8.03514 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 13.0118 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 15.8667
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 12.7633 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 15.6318
|
||||
Node #5: sol1 = -1.331341e-01 7.476359e-01
|
||||
sol2 = 1.096006e+00 9.533746e-01 5.943287e-01 4.580255e-01 9.109508e-01
|
||||
sol2 = 9.886784e-01 9.173616e-01 7.376695e-01 2.294198e-01 4.561697e-01 1.900768e-03
|
||||
Node #15: sol1 = -3.468201e-01 7.716003e-01
|
||||
sol2 = -4.889115e-01 6.119709e-01 3.568772e-02 4.824526e-01 1.268032e+00
|
||||
sol2 = -1.497984e-01 2.564862e-01 5.205929e-02 1.754018e-01 4.648649e-01 3.343245e-03
|
||||
Node #25: sol1 = -6.073367e-01 7.835132e-01
|
||||
sol2 = -4.319895e-03 7.852234e-02 2.151901e-02 -5.563574e-02 1.211443e-01
|
||||
sol2 = -4.319895e-03 7.852234e-02 2.151901e-02 -5.563574e-02 1.211443e-01 0.000000e+00
|
||||
step=15 time=0.75
|
||||
Primary solution summary: L2-norm : 0.553839
|
||||
Max X-displacement : 1.03531 node 25
|
||||
@ -282,14 +282,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.55679 (f,u)+(t,u) = 2.423599964
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 20.8839
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 9.05198 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 14.0501 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 17.1374
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 13.7958 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 16.8963
|
||||
Node #5: sol1 = -2.249261e-01 1.258590e+00
|
||||
sol2 = 1.664355e+00 1.526187e+00 9.252698e-01 1.052098e+00 1.945238e+00
|
||||
sol2 = 1.433326e+00 1.406483e+00 1.276002e+00 2.599129e-01 4.731938e-01 6.197690e-03
|
||||
Node #15: sol1 = -5.845639e-01 1.298213e+00
|
||||
sol2 = -1.056388e+00 1.054507e+00 -5.454994e-04 8.539867e-01 2.351551e+00
|
||||
sol2 = -2.202581e-01 2.134431e-01 4.388478e-03 1.758810e-01 4.836690e-01 7.769572e-03
|
||||
Node #25: sol1 = -1.035313e+00 1.310042e+00
|
||||
sol2 = 1.999963e-02 -2.569364e-02 -1.651287e-03 -6.153761e-02 1.137012e-01
|
||||
sol2 = 1.999963e-02 -2.569364e-02 -1.651287e-03 -6.153761e-02 1.137012e-01 0.000000e+00
|
||||
step=16 time=0.8
|
||||
Primary solution summary: L2-norm : 0.861557
|
||||
Max X-displacement : 1.64962 node 25
|
||||
@ -299,14 +299,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.00979 (f,u)+(t,u) = 4.0392507
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 22.8119
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 10.1014 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 14.8859 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 18.163
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 14.6379 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 17.9277
|
||||
Node #5: sol1 = -3.659494e-01 1.968437e+00
|
||||
sol2 = 2.434838e+00 2.361161e+00 1.390859e+00 2.069301e+00 3.723496e+00
|
||||
sol2 = 2.103866e+00 2.091760e+00 1.991232e+00 2.819735e-01 4.999966e-01 1.363751e-02
|
||||
Node #15: sol1 = -9.277262e-01 2.030392e+00
|
||||
sol2 = -1.974381e+00 1.993013e+00 5.403083e-03 1.502543e+00 4.310230e+00
|
||||
sol2 = -2.241311e-01 2.396647e-01 8.500561e-03 1.853451e-01 5.141876e-01 1.579266e-02
|
||||
Node #25: sol1 = -1.649619e+00 2.038034e+00
|
||||
sol2 = -1.070865e-01 -3.920063e-01 -1.447389e-01 -5.389452e-02 2.838713e-01
|
||||
sol2 = -1.070865e-01 -3.920063e-01 -1.447389e-01 -5.389452e-02 2.838713e-01 0.000000e+00
|
||||
step=17 time=0.85
|
||||
Primary solution summary: L2-norm : 1.2146
|
||||
Max X-displacement : 2.37144 node 25
|
||||
@ -316,14 +316,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.45918 (f,u)+(t,u) = 6.04756105
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 24.7345
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 11.1837 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 15.6227 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 19.0672
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 15.3808 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 18.8376
|
||||
Node #5: sol1 = -5.460613e-01 2.782265e+00
|
||||
sol2 = 3.199655e+00 3.412905e+00 1.917669e+00 3.261816e+00 5.820711e+00
|
||||
sol2 = 2.872927e+00 2.880000e+00 2.777301e+00 2.990629e-01 5.274339e-01 2.248728e-02
|
||||
Node #15: sol1 = -1.339173e+00 2.863578e+00
|
||||
sol2 = -3.103833e+00 3.171116e+00 1.951233e-02 2.137028e+00 6.575113e+00
|
||||
sol2 = -2.233524e-01 2.824537e-01 2.769392e-02 1.870935e-01 5.448809e-01 2.509736e-02
|
||||
Node #25: sol1 = -2.371444e+00 2.854692e+00
|
||||
sol2 = -1.861257e-01 -7.398006e-01 -2.685223e-01 -4.861866e-03 5.174892e-01
|
||||
sol2 = -2.128196e-01 -6.967865e-01 -2.848425e-01 -4.249754e-03 4.523370e-01 2.701573e-04
|
||||
step=18 time=0.9
|
||||
Primary solution summary: L2-norm : 1.61558
|
||||
Max X-displacement : 3.20198 node 25
|
||||
@ -333,14 +333,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.91294 (f,u)+(t,u) = 8.485209773
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 26.5937
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 12.2694 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 16.226 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 19.8072
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 15.9878 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 19.581
|
||||
Node #5: sol1 = -7.710072e-01 3.704034e+00
|
||||
sol2 = 3.837212e+00 4.701279e+00 2.476197e+00 4.501605e+00 8.035442e+00
|
||||
sol2 = 3.683613e+00 3.727225e+00 3.603849e+00 3.125130e-01 5.520291e-01 3.193583e-02
|
||||
Node #15: sol1 = -1.824898e+00 3.797797e+00
|
||||
sol2 = -4.386064e+00 4.538992e+00 4.434970e-02 2.642516e+00 8.982882e+00
|
||||
sol2 = -2.089017e-01 3.429813e-01 6.319801e-02 1.822806e-01 5.728216e-01 3.501930e-02
|
||||
Node #25: sol1 = -3.201984e+00 3.754574e+00
|
||||
sol2 = -1.989923e-01 -1.018495e+00 -3.530763e-01 8.801882e-02 7.696082e-01
|
||||
sol2 = -3.302120e-01 -8.168188e-01 -4.235331e-01 5.508378e-02 4.573697e-01 1.295972e-03
|
||||
step=19 time=0.95
|
||||
Primary solution summary: L2-norm : 2.06287
|
||||
Max X-displacement : 4.13677 node 25
|
||||
@ -350,14 +350,14 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.37349 (f,u)+(t,u) = 11.38040223
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 28.4428
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 13.3729 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 16.7432 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 20.4414
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 16.5073 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 20.2173
|
||||
Node #5: sol1 = -1.040872e+00 4.733219e+00
|
||||
sol2 = 4.340878e+00 6.299624e+00 3.085788e+00 5.794294e+00 1.042074e+01
|
||||
sol2 = 4.566278e+00 4.655496e+00 4.504517e+00 3.226743e-01 5.741432e-01 4.224225e-02
|
||||
Node #15: sol1 = -2.383520e+00 4.829879e+00
|
||||
sol2 = -5.856416e+00 6.064515e+00 6.034957e-02 2.986280e+00 1.154716e+01
|
||||
sol2 = -2.069912e-01 3.879119e-01 8.752790e-02 1.754612e-01 5.981645e-01 4.562257e-02
|
||||
Node #25: sol1 = -4.136775e+00 4.729152e+00
|
||||
sol2 = -1.569782e-01 -1.200525e+00 -3.936814e-01 2.222884e-01 1.022861e+00
|
||||
sol2 = -3.889823e-01 -8.559815e-01 -5.062211e-01 1.103814e-01 4.622066e-01 2.334775e-03
|
||||
step=20 time=1
|
||||
Primary solution summary: L2-norm : 2.54011
|
||||
Max X-displacement : 5.16011 node 25
|
||||
@ -367,11 +367,11 @@ Number of unknowns 40
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.82956 (f,u)+(t,u) = 14.6654933
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 30.2951
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 14.4775 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 17.2337 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 21.0428
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 17 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 20.8206
|
||||
Node #5: sol1 = -1.357090e+00 5.830056e+00
|
||||
sol2 = 4.617821e+00 8.215679e+00 3.721766e+00 7.109735e+00 1.298524e+01
|
||||
sol2 = 5.479852e+00 5.628692e+00 5.446722e+00 3.287840e-01 5.936992e-01 5.346368e-02
|
||||
Node #15: sol1 = -3.007140e+00 5.918411e+00
|
||||
sol2 = -7.432482e+00 7.759897e+00 9.495165e-02 3.106853e+00 1.421508e+01
|
||||
sol2 = -1.757081e-01 4.608114e-01 1.372634e-01 1.642340e-01 6.203339e-01 5.670656e-02
|
||||
Node #25: sol1 = -5.160108e+00 5.735090e+00
|
||||
sol2 = -6.443714e-02 -1.248534e+00 -3.807668e-01 4.150442e-01 1.282330e+00
|
||||
sol2 = -3.831078e-01 -7.915831e-01 -5.190467e-01 1.715344e-01 4.669861e-01 3.428895e-03
|
||||
|
@ -46,8 +46,8 @@ Number of unknowns 524
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 45.1299 (f,u)+(t,u) = 2036.705874
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 9960.12
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 4323.44 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 6567.29 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 8043.22
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 6567.15 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 8043.08
|
||||
step=2 time=0.5
|
||||
Primary solution summary: L2-norm : 1.86743
|
||||
Max X-displacement : 5.62165 node 122
|
||||
@ -58,8 +58,8 @@ Number of unknowns 524
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 96.6566 (f,u)+(t,u) = 9342.501373
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 21723.5
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 9434.77 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 14313.3 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 17530.1
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 14313.2 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 17530
|
||||
step=3 time=0.75
|
||||
Primary solution summary: L2-norm : 3.01809
|
||||
Max X-displacement : 9.29344 node 122
|
||||
@ -70,8 +70,8 @@ Number of unknowns 524
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 151.952 (f,u)+(t,u) = 23089.56034
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 34486.6
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 15012.2 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 22654.7 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 27746.2
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 22654.5 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 27746
|
||||
step=4 time=1
|
||||
Primary solution summary: L2-norm : 4.1633
|
||||
Max X-displacement : 12.8109 node 188
|
||||
@ -82,5 +82,5 @@ Number of unknowns 524
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 206.728 (f,u)+(t,u) = 42736.63385
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 47063.8
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 20608.2 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 30674.3 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 37568.2
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 30674.2 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 37568
|
||||
|
@ -46,8 +46,8 @@ Number of unknowns 737
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 46.9091 (f,u)+(t,u) = 2200.468219
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 10013.1
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 4175.64 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 6925.06 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 8481.4
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 6924.92 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 8481.26
|
||||
step=2 time=0.5
|
||||
Primary solution summary: L2-norm : 2.04992
|
||||
Max X-displacement : 6.17809 node 170
|
||||
@ -58,8 +58,8 @@ Number of unknowns 737
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 101.151 (f,u)+(t,u) = 10231.50468
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 22054.8
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 9210.82 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 15228.3 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 18650.8
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 15228.2 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 18650.6
|
||||
step=3 time=0.75
|
||||
Primary solution summary: L2-norm : 3.34713
|
||||
Max X-displacement : 10.325 node 261
|
||||
@ -70,8 +70,8 @@ Number of unknowns 737
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 159.98 (f,u)+(t,u) = 25593.73514
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 35389.4
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 14873.6 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 24264.1 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 29717.3
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 24264 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 29717.2
|
||||
step=4 time=1
|
||||
Primary solution summary: L2-norm : 4.65727
|
||||
Max X-displacement : 14.2944 node 261
|
||||
@ -82,5 +82,5 @@ Number of unknowns 737
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 218.25 (f,u)+(t,u) = 47633.0966
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 48739.8
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 20771.6 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 32881.7 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 40271.6
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 32881.5 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 40271.5
|
||||
|
@ -46,5 +46,5 @@ Number of unknowns 1315
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 47.394 (f,u)+(t,u) = 2246.188377
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 9985.96
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 4093.36 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 7032.39 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 8612.86
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 7032.26 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 8612.72
|
||||
|
@ -1,4 +1,4 @@
|
||||
FBlock-h8x2-Q4P3.inp -2Dpstrain -MX 3 -nGauss 5 -lagrange
|
||||
FBlock-h8x2-Q4P3.inp -2D -MX 3 -nGauss 5 -lagrange
|
||||
|
||||
Input file: FBlock-h8x2-Q4P3.inp
|
||||
Equation solver: 2
|
||||
@ -41,8 +41,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.0704567 (f,u)+(t,u) = 0.004964148534
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 3.9941
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 2.18817 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 2.80673 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 2.97971
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 1.26038 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 1.54364
|
||||
step=2 time=2
|
||||
Primary solution summary: L2-norm : 0.00328181
|
||||
Max X-displacement : 0.0055198 node 25
|
||||
@ -52,8 +52,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.140662 (f,u)+(t,u) = 0.01978592118
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 7.98107
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 4.37314 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 3.66312 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 4.10926
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 2.51484 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 3.08004
|
||||
step=3 time=3
|
||||
Primary solution summary: L2-norm : 0.00491442
|
||||
Max X-displacement : 0.00828012 node 25
|
||||
@ -63,8 +63,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.210627 (f,u)+(t,u) = 0.04436385634
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 11.961
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 6.5549 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 4.67988 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 5.42018
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 3.7637 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 4.60957
|
||||
step=4 time=4
|
||||
Primary solution summary: L2-norm : 0.00654176
|
||||
Max X-displacement : 0.0110409 node 25
|
||||
@ -74,8 +74,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.280361 (f,u)+(t,u) = 0.07860231162
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 15.9341
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 8.73348 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 5.77687 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 6.81077
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 5.00727 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 6.13262
|
||||
step=5 time=5
|
||||
Primary solution summary: L2-norm : 0.00816404
|
||||
Max X-displacement : 0.0138022 node 25
|
||||
@ -85,8 +85,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.349873 (f,u)+(t,u) = 0.1224111766
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 19.9003
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 10.9089 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 6.9156 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 8.23947
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 6.24584 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 7.64956
|
||||
step=6 time=6
|
||||
Primary solution summary: L2-norm : 0.00978146
|
||||
Max X-displacement : 0.0165641 node 25
|
||||
@ -96,8 +96,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.419173 (f,u)+(t,u) = 0.1757056073
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 23.8599
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 13.0811 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 8.07728 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 9.68767
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 7.4797 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 9.16072
|
||||
step=7 time=7
|
||||
Primary solution summary: L2-norm : 0.0113942
|
||||
Max X-displacement : 0.0193268 node 25
|
||||
@ -107,8 +107,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.488268 (f,u)+(t,u) = 0.2384057834
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 27.8128
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 15.2502 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 9.2521 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 11.1461
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 8.70912 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 10.6665
|
||||
step=8 time=8
|
||||
Primary solution summary: L2-norm : 0.0130024
|
||||
Max X-displacement : 0.0220902 node 25
|
||||
@ -118,8 +118,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.557168 (f,u)+(t,u) = 0.3104366867
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 31.7593
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 17.4161 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 10.4345 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 12.6099
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 9.93439 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 12.1671
|
||||
step=9 time=9
|
||||
Primary solution summary: L2-norm : 0.0146062
|
||||
Max X-displacement : 0.0248544 node 25
|
||||
@ -129,8 +129,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.625882 (f,u)+(t,u) = 0.3917279035
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 35.6993
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 19.5788 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 11.6214 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 14.0762
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 11.1558 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 13.6629
|
||||
step=10 time=10
|
||||
Primary solution summary: L2-norm : 0.0162058
|
||||
Max X-displacement : 0.0276196 node 25
|
||||
@ -140,8 +140,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.694416 (f,u)+(t,u) = 0.482213452
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.633
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 21.7384 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 12.8106 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 15.5432
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 12.3735 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 15.1543
|
||||
step=11 time=11
|
||||
Primary solution summary: L2-norm : 0.0178013
|
||||
Max X-displacement : 0.0303856 node 25
|
||||
@ -151,8 +151,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.762779 (f,u)+(t,u) = 0.5818316352
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 43.5605
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 23.8948 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 14.001 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 17.0099
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 13.5878 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 16.6416
|
||||
step=12 time=12
|
||||
Primary solution summary: L2-norm : 0.0193928
|
||||
Max X-displacement : 0.0331526 node 25
|
||||
@ -162,8 +162,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.830978 (f,u)+(t,u) = 0.6905249257
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 47.4817
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 26.048 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 15.1918 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 18.4758
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 14.799 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 18.125
|
||||
step=13 time=13
|
||||
Primary solution summary: L2-norm : 0.0209805
|
||||
Max X-displacement : 0.0359205 node 25
|
||||
@ -173,8 +173,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.899022 (f,u)+(t,u) = 0.8082398855
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 51.3968
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 28.1981 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 16.3823 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 19.9406
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 16.0072 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 19.6048
|
||||
step=14 time=14
|
||||
Primary solution summary: L2-norm : 0.0225646
|
||||
Max X-displacement : 0.0386894 node 25
|
||||
@ -184,8 +184,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.966916 (f,u)+(t,u) = 0.9349271302
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 55.3058
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 30.3449 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 17.5725 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 21.4039
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 17.2128 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 21.0813
|
||||
step=15 time=15
|
||||
Primary solution summary: L2-norm : 0.024145
|
||||
Max X-displacement : 0.0414592 node 25
|
||||
@ -195,8 +195,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.03467 (f,u)+(t,u) = 1.070541349
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 59.2087
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 32.4886 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 18.7619 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 22.8658
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 18.416 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 22.5549
|
||||
step=16 time=16
|
||||
Primary solution summary: L2-norm : 0.0257219
|
||||
Max X-displacement : 0.04423 node 9
|
||||
@ -206,8 +206,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.10229 (f,u)+(t,u) = 1.215041398
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 63.1057
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 34.629 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 19.9507 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 24.3262
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 19.617 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 24.0258
|
||||
step=17 time=17
|
||||
Primary solution summary: L2-norm : 0.0272954
|
||||
Max X-displacement : 0.0470016 node 25
|
||||
@ -217,8 +217,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.16978 (f,u)+(t,u) = 1.368390501
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 66.9968
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 36.7662 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 21.1388 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 25.7854
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 20.8161 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 25.4944
|
||||
step=18 time=18
|
||||
Primary solution summary: L2-norm : 0.0288657
|
||||
Max X-displacement : 0.0497742 node 25
|
||||
@ -228,8 +228,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.23716 (f,u)+(t,u) = 1.530556591
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 70.882
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 38.9001 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 22.3262 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 27.2433
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 22.0134 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 26.9608
|
||||
step=19 time=19
|
||||
Primary solution summary: L2-norm : 0.0304327
|
||||
Max X-displacement : 0.0525476 node 25
|
||||
@ -239,8 +239,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.30442 (f,u)+(t,u) = 1.701512874
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 74.7613
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 41.0308 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 23.5131 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 28.7003
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 23.2094 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 28.4256
|
||||
step=20 time=20
|
||||
Primary solution summary: L2-norm : 0.0319965
|
||||
Max X-displacement : 0.0553217 node 25
|
||||
@ -250,8 +250,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.37158 (f,u)+(t,u) = 1.881238732
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 78.6348
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 43.1581 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 24.6996 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 30.1565
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 24.4042 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 29.8889
|
||||
step=21 time=21
|
||||
Primary solution summary: L2-norm : 0.0335573
|
||||
Max X-displacement : 0.0580966 node 25
|
||||
@ -261,8 +261,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.43865 (f,u)+(t,u) = 2.069721147
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 82.5026
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 45.2821 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 25.8859 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 31.6123
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 25.5982 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 31.3513
|
||||
step=22 time=22
|
||||
Primary solution summary: L2-norm : 0.0351151
|
||||
Max X-displacement : 0.0608721 node 25
|
||||
@ -272,8 +272,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.50564 (f,u)+(t,u) = 2.266957014
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 86.3645
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 47.4027 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 27.0724 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 33.068
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 26.7918 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 32.8131
|
||||
step=23 time=23
|
||||
Primary solution summary: L2-norm : 0.03667
|
||||
Max X-displacement : 0.0636482 node 25
|
||||
@ -283,8 +283,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.57256 (f,u)+(t,u) = 2.472956946
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 90.2208
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 49.5197 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 28.2594 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 34.5242
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 27.9854 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 34.275
|
||||
step=24 time=24
|
||||
Primary solution summary: L2-norm : 0.038222
|
||||
Max X-displacement : 0.0664248 node 9
|
||||
@ -294,8 +294,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.63944 (f,u)+(t,u) = 2.687751779
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 94.0713
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 51.6332 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 29.4475 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 35.9816
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 29.1796 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 35.7376
|
||||
step=25 time=25
|
||||
Primary solution summary: L2-norm : 0.0397714
|
||||
Max X-displacement : 0.0692019 node 9
|
||||
@ -305,8 +305,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.70628 (f,u)+(t,u) = 2.91140414
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 97.9161
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 53.7429 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 30.6374 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 37.441
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 30.3754 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 37.2021
|
||||
step=26 time=26
|
||||
Primary solution summary: L2-norm : 0.0413182
|
||||
Max X-displacement : 0.0719794 node 25
|
||||
@ -316,8 +316,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.77314 (f,u)+(t,u) = 3.144030168
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 101.755
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 55.8486 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 31.8304 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 38.904
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 31.5737 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 38.6698
|
||||
step=27 time=27
|
||||
Primary solution summary: L2-norm : 0.0428627
|
||||
Max X-displacement : 0.0747576 node 25
|
||||
@ -327,8 +327,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.84007 (f,u)+(t,u) = 3.385842967
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 105.588
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 57.95 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 33.0282 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 40.373
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 32.7768 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 40.1432
|
||||
step=28 time=28
|
||||
Primary solution summary: L2-norm : 0.0444052
|
||||
Max X-displacement : 0.0775367 node 25
|
||||
@ -338,8 +338,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.90716 (f,u)+(t,u) = 3.637246868
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 109.416
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 60.0462 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 34.2345 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 41.8521
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 33.988 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 41.6267
|
||||
step=29 time=29
|
||||
Primary solution summary: L2-norm : 0.0459467
|
||||
Max X-displacement : 0.0803179 node 25
|
||||
@ -349,8 +349,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.9746 (f,u)+(t,u) = 3.899064319
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 113.237
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 62.1358 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 35.4558 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 43.3496
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 35.2142 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 43.1284
|
||||
step=30 time=30
|
||||
Primary solution summary: L2-norm : 0.047489
|
||||
Max X-displacement : 0.0831043 node 9
|
||||
@ -360,8 +360,8 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.04283 (f,u)+(t,u) = 4.173168642
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 117.051
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 64.2155 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 36.7073 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 44.8841
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 36.4705 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 44.667
|
||||
step=31 time=31
|
||||
Primary solution summary: L2-norm : 0.0490378
|
||||
Max X-displacement : 0.0859065 node 25
|
||||
@ -371,6 +371,6 @@ Number of unknowns 543
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.113 (f,u)+(t,u) = 4.464773279
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 120.857
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 66.2764 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 38.0307 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 46.5067
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 37.799 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 46.2941
|
||||
step=32 time=32
|
||||
|
@ -1,4 +1,4 @@
|
||||
FBlock-h8x2-Q4Q3.inp -2Dpstrain -mixed -nGauss 5 -lagrange
|
||||
FBlock-h8x2-Q4Q3.inp -2D -mixed -nGauss 5 -lagrange
|
||||
|
||||
Input file: FBlock-h8x2-Q4Q3.inp
|
||||
Equation solver: 2
|
||||
@ -43,8 +43,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.0704687 (f,u)+(t,u) = 0.004965840411
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 3.99367
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 2.18787 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 2.80697 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 2.97999
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 1.2606 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 1.54391
|
||||
step=2 time=2
|
||||
Primary solution summary: L2-norm : 0.0032649
|
||||
Max X-displacement : 0.00552068 node 9
|
||||
@ -54,8 +54,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.140689 (f,u)+(t,u) = 0.01979336034
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 7.98016
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 4.37249 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 3.66363 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 4.10989
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 2.51534 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 3.08065
|
||||
step=3 time=3
|
||||
Primary solution summary: L2-norm : 0.00488855
|
||||
Max X-displacement : 0.00828143 node 9
|
||||
@ -65,8 +65,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.210671 (f,u)+(t,u) = 0.04438207954
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 11.9596
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 6.55388 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 4.68073 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 5.42122
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 3.76454 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 4.6106
|
||||
step=4 time=4
|
||||
Primary solution summary: L2-norm : 0.00650661
|
||||
Max X-displacement : 0.0110426 node 25
|
||||
@ -76,8 +76,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.280423 (f,u)+(t,u) = 0.07863730027
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 15.932
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 8.73203 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 5.77812 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 6.81231
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 5.0085 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 6.13413
|
||||
step=5 time=5
|
||||
Primary solution summary: L2-norm : 0.00811928
|
||||
Max X-displacement : 0.0138043 node 9
|
||||
@ -87,8 +87,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.349957 (f,u)+(t,u) = 0.1224698226
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 19.8976
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 10.9069 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 6.9173 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 8.24156
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 6.24751 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 7.65161
|
||||
step=6 time=6
|
||||
Primary solution summary: L2-norm : 0.00972677
|
||||
Max X-displacement : 0.0165665 node 9
|
||||
@ -98,8 +98,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.41928 (f,u)+(t,u) = 0.17579569
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 23.8564
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 13.0786 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 8.07948 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 9.69037
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 7.48187 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 9.16338
|
||||
step=7 time=7
|
||||
Primary solution summary: L2-norm : 0.0113292
|
||||
Max X-displacement : 0.0193294 node 9
|
||||
@ -109,8 +109,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.488401 (f,u)+(t,u) = 0.238535968
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 27.8085
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 15.2471 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 9.25485 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 11.1495
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 8.71184 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 10.6698
|
||||
step=8 time=8
|
||||
Primary solution summary: L2-norm : 0.0129269
|
||||
Max X-displacement : 0.022093 node 9
|
||||
@ -120,8 +120,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.55733 (f,u)+(t,u) = 0.3106165615
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 31.754
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 17.4122 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 10.4379 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 12.614
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 9.93771 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 12.1712
|
||||
step=9 time=9
|
||||
Primary solution summary: L2-norm : 0.0145198
|
||||
Max X-displacement : 0.0248573 node 9
|
||||
@ -131,8 +131,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.626074 (f,u)+(t,u) = 0.3919680785
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 35.6929
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 19.5742 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 11.6254 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 14.0811
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 11.1597 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 13.6678
|
||||
step=10 time=10
|
||||
Primary solution summary: L2-norm : 0.0161082
|
||||
Max X-displacement : 0.0276224 node 9
|
||||
@ -142,8 +142,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.694641 (f,u)+(t,u) = 0.4825257495
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.6253
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 21.7328 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 12.8154 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 15.549
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 12.3782 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 15.1601
|
||||
step=11 time=11
|
||||
Primary solution summary: L2-norm : 0.0176922
|
||||
Max X-displacement : 0.0303883 node 25
|
||||
@ -153,8 +153,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.76304 (f,u)+(t,u) = 0.5822294194
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 43.5512
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 23.8881 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 14.0066 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 17.0167
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 13.5933 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 16.6483
|
||||
step=12 time=12
|
||||
Primary solution summary: L2-norm : 0.019272
|
||||
Max X-displacement : 0.033155 node 9
|
||||
@ -164,8 +164,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.831278 (f,u)+(t,u) = 0.6910236353
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 47.4707
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 26.0401 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 15.1982 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 18.4837
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 14.8053 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 18.1328
|
||||
step=13 time=13
|
||||
Primary solution summary: L2-norm : 0.0208476
|
||||
Max X-displacement : 0.0359224 node 9
|
||||
@ -175,8 +175,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.899365 (f,u)+(t,u) = 0.808857865
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 51.3838
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 28.1888 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 16.3898 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 19.9497
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 16.0146 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 19.6138
|
||||
step=14 time=14
|
||||
Primary solution summary: L2-norm : 0.0224192
|
||||
Max X-displacement : 0.0386907 node 9
|
||||
@ -186,8 +186,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.967309 (f,u)+(t,u) = 0.9356869015
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 55.2904
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 30.334 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 17.5811 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 21.4144
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 17.2214 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 21.0918
|
||||
step=15 time=15
|
||||
Primary solution summary: L2-norm : 0.023987
|
||||
Max X-displacement : 0.0414597 node 25
|
||||
@ -197,8 +197,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.03512 (f,u)+(t,u) = 1.071471539
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 59.1907
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 32.4758 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 18.7719 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 22.878
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 18.4259 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 22.5671
|
||||
step=16 time=16
|
||||
Primary solution summary: L2-norm : 0.0255509
|
||||
Max X-displacement : 0.0442294 node 9
|
||||
@ -208,8 +208,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.10281 (f,u)+(t,u) = 1.21617966
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 63.0846
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 34.614 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 19.9624 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 24.3405
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 19.6286 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 24.04
|
||||
step=17 time=17
|
||||
Primary solution summary: L2-norm : 0.0271111
|
||||
Max X-displacement : 0.0469998 node 9
|
||||
@ -219,8 +219,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.17038 (f,u)+(t,u) = 1.36978797
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 66.9721
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 36.7486 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 21.1525 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 25.8022
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 20.8298 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 25.5112
|
||||
step=18 time=18
|
||||
Primary solution summary: L2-norm : 0.0286678
|
||||
Max X-displacement : 0.0497708 node 9
|
||||
@ -230,8 +230,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.23785 (f,u)+(t,u) = 1.532284776
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 70.8531
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 38.8795 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 22.3427 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 27.2635
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 22.0299 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 26.981
|
||||
step=19 time=19
|
||||
Primary solution summary: L2-norm : 0.030221
|
||||
Max X-displacement : 0.0525424 node 9
|
||||
@ -241,8 +241,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.30525 (f,u)+(t,u) = 1.703674545
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 74.7275
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 41.0065 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 23.5332 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 28.7249
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 23.2295 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 28.4502
|
||||
step=20 time=20
|
||||
Primary solution summary: L2-norm : 0.0317707
|
||||
Max X-displacement : 0.0553144 node 9
|
||||
@ -252,8 +252,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.37258 (f,u)+(t,u) = 1.88398562
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 78.5953
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 43.1294 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 24.7247 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 30.1872
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 24.4293 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 29.9196
|
||||
step=21 time=21
|
||||
Primary solution summary: L2-norm : 0.0333172
|
||||
Max X-displacement : 0.0580868 node 25
|
||||
@ -263,8 +263,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.43989 (f,u)+(t,u) = 2.073283871
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 82.4561
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 45.2478 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 25.918 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 31.6516
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 25.6304 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 31.3907
|
||||
step=22 time=22
|
||||
Primary solution summary: L2-norm : 0.0348604
|
||||
Max X-displacement : 0.0608596 node 9
|
||||
@ -274,8 +274,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.50722 (f,u)+(t,u) = 2.271698317
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 86.3097
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 47.3613 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 27.1147 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 33.1199
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 26.8343 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 32.8651
|
||||
step=23 time=23
|
||||
Primary solution summary: L2-norm : 0.0364007
|
||||
Max X-displacement : 0.0636327 node 9
|
||||
@ -285,8 +285,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.57463 (f,u)+(t,u) = 2.47947319
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 90.1555
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 49.4691 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 28.3172 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 34.5951
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 28.0435 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 34.3461
|
||||
step=24 time=24
|
||||
Primary solution summary: L2-norm : 0.0379384
|
||||
Max X-displacement : 0.0664063 node 9
|
||||
@ -296,8 +296,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.64228 (f,u)+(t,u) = 2.697085933
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 93.9927
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 51.5698 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 29.53 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 36.0827
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 29.2626 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 35.8392
|
||||
step=25 time=25
|
||||
Primary solution summary: L2-norm : 0.0394739
|
||||
Max X-displacement : 0.0691808 node 9
|
||||
@ -307,8 +307,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.71043 (f,u)+(t,u) = 2.925562404
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 97.8195
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 53.6605 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 30.7622 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 37.5941
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 30.5009 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 37.3559
|
||||
step=26 time=26
|
||||
Primary solution summary: L2-norm : 0.0410091
|
||||
Max X-displacement : 0.0719581 node 9
|
||||
@ -318,8 +318,8 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.77977 (f,u)+(t,u) = 3.167592687
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 101.632
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 55.7344 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 32.0382 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 39.159
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 31.783 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 38.926
|
||||
step=27 time=27
|
||||
Primary solution summary: L2-norm : 0.042553
|
||||
Max X-displacement : 0.0747501 node 9
|
||||
@ -329,6 +329,6 @@ Number of unknowns 893
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.85353 (f,u)+(t,u) = 3.435557675
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 105.418
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 57.7613 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 33.4711 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 40.9164
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 33.2229 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 40.6896
|
||||
step=28 time=28
|
||||
|
@ -1,4 +1,4 @@
|
||||
FBlock-h8x3-Q3P2.inp -2Dpstrain -MX 2 -nGauss 4 -lagrange
|
||||
FBlock-h8x3-Q3P2.inp -2D -MX 2 -nGauss 4 -lagrange
|
||||
|
||||
Input file: FBlock-h8x3-Q3P2.inp
|
||||
Equation solver: 2
|
||||
@ -41,8 +41,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.0704449 (f,u)+(t,u) = 0.004962477372
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 3.99384
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 2.18805 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 2.75398 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 2.92466
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 1.26017 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 1.54338
|
||||
step=2 time=2
|
||||
Primary solution summary: L2-norm : 0.00328012
|
||||
Max X-displacement : 0.005524 node 7
|
||||
@ -52,8 +52,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.140639 (f,u)+(t,u) = 0.01977924288
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 7.98053
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 4.37289 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 3.60427 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 4.05006
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 2.51441 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 3.07951
|
||||
step=3 time=3
|
||||
Primary solution summary: L2-norm : 0.00491199
|
||||
Max X-displacement : 0.00828649 node 7
|
||||
@ -63,8 +63,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.210592 (f,u)+(t,u) = 0.04434886081
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 11.9602
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 6.55453 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 4.6207 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 5.36185
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 3.76306 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 4.60879
|
||||
step=4 time=4
|
||||
Primary solution summary: L2-norm : 0.00653869
|
||||
Max X-displacement : 0.0110495 node 7
|
||||
@ -74,8 +74,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.280314 (f,u)+(t,u) = 0.07857573804
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 15.933
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 8.73299 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 5.71876 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 6.75403
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 5.00642 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 6.13159
|
||||
step=5 time=5
|
||||
Primary solution summary: L2-norm : 0.00816039
|
||||
Max X-displacement : 0.0138131 node 7
|
||||
@ -85,8 +85,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.349814 (f,u)+(t,u) = 0.1223698367
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 19.899
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 10.9083 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 6.85875 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 8.18417
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 6.24478 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 7.64826
|
||||
step=6 time=6
|
||||
Primary solution summary: L2-norm : 0.00977728
|
||||
Max X-displacement : 0.0165773 node 7
|
||||
@ -96,8 +96,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.419102 (f,u)+(t,u) = 0.1756464061
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 23.8583
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 13.0804 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 8.02159 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 9.63357
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 7.47844 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 9.15918
|
||||
step=7 time=7
|
||||
Primary solution summary: L2-norm : 0.0113895
|
||||
Max X-displacement : 0.0193424 node 19
|
||||
@ -107,8 +107,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.488186 (f,u)+(t,u) = 0.2383257322
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 27.811
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 15.2493 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 9.19739 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 11.093
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 8.70766 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 10.6647
|
||||
step=8 time=8
|
||||
Primary solution summary: L2-norm : 0.0129973
|
||||
Max X-displacement : 0.0221083 node 19
|
||||
@ -118,8 +118,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.557075 (f,u)+(t,u) = 0.3103329056
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 31.7572
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 17.4151 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 10.3807 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 12.5575
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 9.93273 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 12.1651
|
||||
step=9 time=9
|
||||
Primary solution summary: L2-norm : 0.0146008
|
||||
Max X-displacement : 0.0248751 node 19
|
||||
@ -129,8 +129,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.625778 (f,u)+(t,u) = 0.391597605
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 35.697
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 19.5778 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 11.5682 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 14.0244
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 11.1539 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 13.6607
|
||||
step=10 time=10
|
||||
Primary solution summary: L2-norm : 0.0162001
|
||||
Max X-displacement : 0.0276429 node 7
|
||||
@ -140,8 +140,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.694301 (f,u)+(t,u) = 0.4820538974
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.6305
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 21.7372 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 12.758 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 15.4918
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 12.3714 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 15.1519
|
||||
step=11 time=11
|
||||
Primary solution summary: L2-norm : 0.0177954
|
||||
Max X-displacement : 0.0304117 node 19
|
||||
@ -151,8 +151,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.762653 (f,u)+(t,u) = 0.5816400532
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 43.5577
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 23.8936 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 13.9489 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 16.959
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 13.5856 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 16.6389
|
||||
step=12 time=12
|
||||
Primary solution summary: L2-norm : 0.0193867
|
||||
Max X-displacement : 0.0331815 node 7
|
||||
@ -162,8 +162,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.830842 (f,u)+(t,u) = 0.6902983759
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 47.4788
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 26.0467 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 15.14 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 18.4252
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 14.7966 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 18.122
|
||||
step=13 time=13
|
||||
Primary solution summary: L2-norm : 0.0209743
|
||||
Max X-displacement : 0.0359524 node 19
|
||||
@ -173,8 +173,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.898874 (f,u)+(t,u) = 0.8079750463
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 51.3937
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 28.1967 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 16.3308 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 19.8901
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 16.0046 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 19.6016
|
||||
step=14 time=14
|
||||
Primary solution summary: L2-norm : 0.0225582
|
||||
Max X-displacement : 0.0387244 node 7
|
||||
@ -184,8 +184,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.966757 (f,u)+(t,u) = 0.9346199802
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 55.3026
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 30.3436 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 17.5212 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 21.3536
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 17.21 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 21.0779
|
||||
step=15 time=15
|
||||
Primary solution summary: L2-norm : 0.0241385
|
||||
Max X-displacement : 0.0414975 node 7
|
||||
@ -195,8 +195,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.0345 (f,u)+(t,u) = 1.0701867
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 59.2055
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 32.4872 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 18.7108 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 22.8155
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 18.4129 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 22.5512
|
||||
step=16 time=16
|
||||
Primary solution summary: L2-norm : 0.0257153
|
||||
Max X-displacement : 0.0442717 node 19
|
||||
@ -206,8 +206,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.1021 (f,u)+(t,u) = 1.214632218
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 63.1025
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 34.6277 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 19.8996 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 24.2758
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 19.6136 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 24.0217
|
||||
step=17 time=17
|
||||
Primary solution summary: L2-norm : 0.0272888
|
||||
Max X-displacement : 0.047047 node 7
|
||||
@ -217,8 +217,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.16958 (f,u)+(t,u) = 1.367916937
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 66.9936
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 36.765 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 21.0875 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 25.7348
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 20.8123 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 25.4897
|
||||
step=18 time=18
|
||||
Primary solution summary: L2-norm : 0.0288589
|
||||
Max X-displacement : 0.0498234 node 19
|
||||
@ -228,8 +228,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.23693 (f,u)+(t,u) = 1.53000456
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 70.8789
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 38.8991 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 22.2747 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 27.1923
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 22.0091 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 26.9555
|
||||
step=19 time=19
|
||||
Primary solution summary: L2-norm : 0.0304258
|
||||
Max X-displacement : 0.0526008 node 19
|
||||
@ -239,8 +239,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.30417 (f,u)+(t,u) = 1.700862017
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 74.7583
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 41.0299 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 23.4611 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 28.6486
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 23.2043 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 28.4194
|
||||
step=20 time=20
|
||||
Primary solution summary: L2-norm : 0.0319895
|
||||
Max X-displacement : 0.0553792 node 19
|
||||
@ -250,8 +250,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.3713 (f,u)+(t,u) = 1.880459408
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 78.6321
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 43.1576 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 24.6468 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 30.1038
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 24.3981 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 29.8815
|
||||
step=21 time=21
|
||||
Primary solution summary: L2-norm : 0.0335502
|
||||
Max X-displacement : 0.0581585 node 19
|
||||
@ -261,8 +261,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.43832 (f,u)+(t,u) = 2.068769959
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 82.5001
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 45.282 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 25.832 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 31.558
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 25.5907 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 31.3421
|
||||
step=22 time=22
|
||||
Primary solution summary: L2-norm : 0.0351077
|
||||
Max X-displacement : 0.0609388 node 19
|
||||
@ -272,8 +272,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.50525 (f,u)+(t,u) = 2.265770006
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 86.3624
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 47.4031 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 27.0167 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 33.0115
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 26.7823 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 32.8015
|
||||
step=23 time=23
|
||||
Primary solution summary: L2-norm : 0.0366623
|
||||
Max X-displacement : 0.0637199 node 19
|
||||
@ -283,8 +283,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.57208 (f,u)+(t,u) = 2.471438993
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 90.2191
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 49.521 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 28.2011 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 34.4644
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 27.9731 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 34.2599
|
||||
step=24 time=24
|
||||
Primary solution summary: L2-norm : 0.0382138
|
||||
Max X-displacement : 0.0665019 node 19
|
||||
@ -294,8 +294,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.63883 (f,u)+(t,u) = 2.685759503
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 94.0702
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 51.6356 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 29.3853 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 35.917
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 29.1633 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 35.7176
|
||||
step=25 time=25
|
||||
Primary solution summary: L2-norm : 0.0397624
|
||||
Max X-displacement : 0.0692846 node 19
|
||||
@ -305,8 +305,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.7055 (f,u)+(t,u) = 2.908717321
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 97.9157
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 53.7468 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 30.5695 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 37.3693
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 30.3531 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 37.1748
|
||||
step=26 time=26
|
||||
Primary solution summary: L2-norm : 0.0413081
|
||||
Max X-displacement : 0.0720679 node 19
|
||||
@ -316,8 +316,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.77209 (f,u)+(t,u) = 3.140301547
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 101.756
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 55.8548 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 31.7538 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 38.8217
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 31.5427 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 38.6318
|
||||
step=27 time=27
|
||||
Primary solution summary: L2-norm : 0.0428509
|
||||
Max X-displacement : 0.0748518 node 19
|
||||
@ -327,8 +327,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.83861 (f,u)+(t,u) = 3.380504759
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 105.59
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 57.9594 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 32.9384 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 40.2743
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 32.7323 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 40.0887
|
||||
step=28 time=28
|
||||
Primary solution summary: L2-norm : 0.0443908
|
||||
Max X-displacement : 0.0776363 node 7
|
||||
@ -338,8 +338,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.90508 (f,u)+(t,u) = 3.629323253
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 109.419
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 60.0606 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 34.1235 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 41.7274
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 33.9221 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 41.5459
|
||||
step=29 time=29
|
||||
Primary solution summary: L2-norm : 0.0459278
|
||||
Max X-displacement : 0.0804211 node 19
|
||||
@ -349,8 +349,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.97149 (f,u)+(t,u) = 3.886757389
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 113.243
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 62.1584 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 35.3092 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 43.1813
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 35.1123 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 43.0036
|
||||
step=30 time=30
|
||||
Primary solution summary: L2-norm : 0.047462
|
||||
Max X-displacement : 0.0832063 node 19
|
||||
@ -360,8 +360,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.03784 (f,u)+(t,u) = 4.152812073
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 117.061
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 64.2528 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 36.4959 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 44.6361
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 36.3031 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 44.4621
|
||||
step=31 time=31
|
||||
Primary solution summary: L2-norm : 0.0489932
|
||||
Max X-displacement : 0.0859918 node 19
|
||||
@ -371,8 +371,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.10416 (f,u)+(t,u) = 4.427497426
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 120.873
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 66.3438 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 37.6836 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 46.0922
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 37.4949 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 45.9216
|
||||
step=32 time=32
|
||||
Primary solution summary: L2-norm : 0.0505214
|
||||
Max X-displacement : 0.0887774 node 7
|
||||
@ -382,8 +382,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.17044 (f,u)+(t,u) = 4.710829736
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 124.681
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 68.4313 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 38.8726 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 47.5498
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 38.6878 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 47.3826
|
||||
step=33 time=33
|
||||
Primary solution summary: L2-norm : 0.0520467
|
||||
Max X-displacement : 0.0915632 node 19
|
||||
@ -393,8 +393,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.2367 (f,u)+(t,u) = 5.002832778
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 128.483
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 70.5153 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 40.0632 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 49.0093
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 39.8821 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 48.8454
|
||||
step=34 time=34
|
||||
Primary solution summary: L2-norm : 0.0535691
|
||||
Max X-displacement : 0.0943491 node 19
|
||||
@ -404,8 +404,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.30294 (f,u)+(t,u) = 5.303539709
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 132.279
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 72.5957 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 41.2557 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 50.4711
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 41.0781 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 50.3102
|
||||
step=35 time=35
|
||||
Primary solution summary: L2-norm : 0.0550883
|
||||
Max X-displacement : 0.097135 node 19
|
||||
@ -415,8 +415,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.36918 (f,u)+(t,u) = 5.612995756
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 136.071
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 74.6727 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 42.4505 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 51.9356
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 42.2763 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 51.7777
|
||||
step=36 time=36
|
||||
Primary solution summary: L2-norm : 0.0566045
|
||||
Max X-displacement : 0.099921 node 19
|
||||
@ -426,8 +426,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.43542 (f,u)+(t,u) = 5.931262114
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 139.857
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 76.746 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 43.648 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 53.4034
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 43.4771 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 53.2484
|
||||
step=37 time=37
|
||||
Primary solution summary: L2-norm : 0.0581176
|
||||
Max X-displacement : 0.102707 node 19
|
||||
@ -437,8 +437,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.50168 (f,u)+(t,u) = 6.25842161
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 143.639
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 78.8157 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 44.8488 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 54.8751
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 44.681 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 54.7229
|
||||
step=38 time=38
|
||||
Primary solution summary: L2-norm : 0.0596274
|
||||
Max X-displacement : 0.105494 node 19
|
||||
@ -448,8 +448,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.56799 (f,u)+(t,u) = 6.594587004
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 147.416
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 80.8817 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 46.0535 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 56.3515
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 45.8888 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 56.2021
|
||||
step=39 time=39
|
||||
Primary solution summary: L2-norm : 0.0611339
|
||||
Max X-displacement : 0.10828 node 19
|
||||
@ -459,8 +459,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.63437 (f,u)+(t,u) = 6.93991319
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 151.188
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 82.9441 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 47.263 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 57.8339
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 47.1013 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 57.6871
|
||||
step=40 time=40
|
||||
Primary solution summary: L2-norm : 0.0626371
|
||||
Max X-displacement : 0.111068 node 19
|
||||
@ -470,8 +470,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.70085 (f,u)+(t,u) = 7.294615047
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 154.955
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 85.0026 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 48.4785 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 59.3236
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 48.3198 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 59.1794
|
||||
step=41 time=41
|
||||
Primary solution summary: L2-norm : 0.0641369
|
||||
Max X-displacement : 0.113858 node 19
|
||||
@ -481,8 +481,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.76749 (f,u)+(t,u) = 7.658993194
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 158.719
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 87.0573 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 49.7018 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 60.8227
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 49.5458 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 60.681
|
||||
step=42 time=42
|
||||
Primary solution summary: L2-norm : 0.0656332
|
||||
Max X-displacement : 0.116649 node 19
|
||||
@ -492,8 +492,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.83434 (f,u)+(t,u) = 8.03347005
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 162.479
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 89.1079 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 50.9349 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 62.334
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 50.7818 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 62.1947
|
||||
step=43 time=43
|
||||
Primary solution summary: L2-norm : 0.0671261
|
||||
Max X-displacement : 0.119445 node 19
|
||||
@ -503,8 +503,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.90149 (f,u)+(t,u) = 8.418637604
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 166.236
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 91.1543 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 52.1811 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 63.8611
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 52.0307 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 63.7243
|
||||
step=44 time=44
|
||||
Primary solution summary: L2-norm : 0.0686157
|
||||
Max X-displacement : 0.122247 node 19
|
||||
@ -514,8 +514,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.96906 (f,u)+(t,u) = 8.815315248
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 169.992
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 93.1962 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 53.4444 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 65.4093
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 53.2967 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 65.2748
|
||||
step=45 time=45
|
||||
Primary solution summary: L2-norm : 0.0701024
|
||||
Max X-displacement : 0.125057 node 19
|
||||
@ -525,8 +525,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.0372 (f,u)+(t,u) = 9.224610704
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 173.746
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 95.2332 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 54.7302 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 66.985
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 54.5853 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 66.853
|
||||
step=46 time=46
|
||||
Primary solution summary: L2-norm : 0.0715867
|
||||
Max X-displacement : 0.127878 node 19
|
||||
@ -536,8 +536,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.10612 (f,u)+(t,u) = 9.647973787
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 177.501
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 97.2648 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 56.0456 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 68.5969
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 55.9033 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 68.4673
|
||||
step=47 time=47
|
||||
Primary solution summary: L2-norm : 0.0730696
|
||||
Max X-displacement : 0.130717 node 19
|
||||
@ -547,8 +547,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.17604 (f,u)+(t,u) = 10.0872428
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 181.258
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 99.2906 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 57.3987 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 70.2551
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 57.2593 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 70.128
|
||||
step=48 time=48
|
||||
Primary solution summary: L2-norm : 0.0745524
|
||||
Max X-displacement : 0.133577 node 19
|
||||
@ -558,8 +558,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.24726 (f,u)+(t,u) = 10.54472023
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 185.02
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 101.31 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 58.7999 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 71.972
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 58.6633 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 71.8475
|
||||
step=49 time=49
|
||||
Primary solution summary: L2-norm : 0.0760371
|
||||
Max X-displacement : 0.136467 node 19
|
||||
@ -569,8 +569,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.32015 (f,u)+(t,u) = 11.02337973
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 188.792
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 103.323 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 60.2618 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 73.7634
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 60.1281 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 73.6416
|
||||
step=50 time=50
|
||||
Primary solution summary: L2-norm : 0.0775267
|
||||
Max X-displacement : 0.139396 node 19
|
||||
@ -580,8 +580,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.3952 (f,u)+(t,u) = 11.52739589
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 192.578
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 105.329 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 61.8027 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 75.6516
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 61.6721 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 75.5326
|
||||
step=51 time=51
|
||||
Primary solution summary: L2-norm : 0.0790263
|
||||
Max X-displacement : 0.142383 node 19
|
||||
@ -591,8 +591,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.47323 (f,u)+(t,u) = 12.06333618
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 196.391
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 107.33 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 63.4523 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 77.673
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 63.325 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 77.557
|
||||
step=52 time=52
|
||||
Primary solution summary: L2-norm : 0.0805448
|
||||
Max X-displacement : 0.145456 node 19
|
||||
@ -602,8 +602,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.55564 (f,u)+(t,u) = 12.64255442
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 200.248
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 109.325 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 65.264 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 79.893
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 65.1404 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 79.7803
|
||||
step=53 time=53
|
||||
Primary solution summary: L2-norm : 0.0820979
|
||||
Max X-displacement : 0.148661 node 7
|
||||
@ -613,8 +613,8 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.64472 (f,u)+(t,u) = 13.28398936
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 204.18
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 111.314 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 67.3298 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 82.4244
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 67.2103 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 82.3154
|
||||
step=54 time=54
|
||||
Primary solution summary: L2-norm : 0.0837008
|
||||
Max X-displacement : 0.152022 node 7
|
||||
@ -624,6 +624,6 @@ Number of unknowns 455
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.74199 (f,u)+(t,u) = 14.00251399
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 208.196
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 113.285 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 69.7216 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 85.3552
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 69.6068 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 85.2506
|
||||
step=55 time=55
|
||||
|
@ -1,4 +1,4 @@
|
||||
FBlock-h8x3-Q3Q2.inp -2Dpstrain -mixed -nGauss 4 -lagrange
|
||||
FBlock-h8x3-Q3Q2.inp -2D -mixed -nGauss 4 -lagrange
|
||||
|
||||
Input file: FBlock-h8x3-Q3Q2.inp
|
||||
Equation solver: 2
|
||||
@ -43,8 +43,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.0706832 (f,u)+(t,u) = 0.00499612004
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 3.99366
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 2.18711 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 2.75575 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 2.92724
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 1.26452 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 1.54871
|
||||
step=2 time=2
|
||||
Primary solution summary: L2-norm : 0.00326272
|
||||
Max X-displacement : 0.00552287 node 19
|
||||
@ -54,8 +54,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.141143 (f,u)+(t,u) = 0.01992120874
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 7.98002
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 4.37079 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 3.6106 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 4.05858
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 2.52377 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 3.09097
|
||||
step=3 time=3
|
||||
Primary solution summary: L2-norm : 0.00488561
|
||||
Max X-displacement : 0.0082847 node 19
|
||||
@ -65,8 +65,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.21139 (f,u)+(t,u) = 0.04468591404
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 11.9592
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 6.55102 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 4.63283 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 5.37757
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 3.77814 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 4.62725
|
||||
step=4 time=4
|
||||
Primary solution summary: L2-norm : 0.00650313
|
||||
Max X-displacement : 0.0110469 node 19
|
||||
@ -76,8 +76,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.28144 (f,u)+(t,u) = 0.0792082865
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 15.9312
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 8.72778 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 5.73756 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 6.77793
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 5.02801 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 6.15803
|
||||
step=5 time=5
|
||||
Primary solution summary: L2-norm : 0.00811549
|
||||
Max X-displacement : 0.0138095 node 19
|
||||
@ -87,8 +87,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.351303 (f,u)+(t,u) = 0.1234138678
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 19.8961
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 10.901 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 6.88509 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 8.21731
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 6.27378 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 7.68379
|
||||
step=6 time=6
|
||||
Primary solution summary: L2-norm : 0.00972287
|
||||
Max X-displacement : 0.0165726 node 7
|
||||
@ -98,8 +98,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.420994 (f,u)+(t,u) = 0.1772359156
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 23.854
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 13.0707 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 8.05645 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 9.67712
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 7.51586 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 9.20501
|
||||
step=7 time=7
|
||||
Primary solution summary: L2-norm : 0.0113255
|
||||
Max X-displacement : 0.0193363 node 19
|
||||
@ -109,8 +109,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.490526 (f,u)+(t,u) = 0.2406157994
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 27.8049
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 15.2367 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 9.24189 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 11.1483
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 8.75465 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 10.7222
|
||||
step=8 time=8
|
||||
Primary solution summary: L2-norm : 0.0129235
|
||||
Max X-displacement : 0.0221004 node 19
|
||||
@ -120,8 +120,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.559914 (f,u)+(t,u) = 0.313503615
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 31.7487
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 17.3989 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 10.4361 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 12.6262
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 9.99061 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 12.2359
|
||||
step=9 time=9
|
||||
Primary solution summary: L2-norm : 0.0145171
|
||||
Max X-displacement : 0.0248651 node 19
|
||||
@ -131,8 +131,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.629173 (f,u)+(t,u) = 0.3958590765
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 35.6854
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 19.5573 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 11.6361 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 14.1083
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 11.2242 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 13.7468
|
||||
step=10 time=10
|
||||
Primary solution summary: L2-norm : 0.0161064
|
||||
Max X-displacement : 0.0276304 node 19
|
||||
@ -142,8 +142,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.698321 (f,u)+(t,u) = 0.4876527678
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.6151
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 21.7118 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 12.8401 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 15.5932
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 12.456 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 15.2554
|
||||
step=11 time=11
|
||||
Primary solution summary: L2-norm : 0.0176916
|
||||
Max X-displacement : 0.0303961 node 19
|
||||
@ -153,8 +153,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.767377 (f,u)+(t,u) = 0.5888678514
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 43.5375
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 23.8621 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 14.0473 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 17.0804
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 13.6865 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 16.7624
|
||||
step=12 time=12
|
||||
Primary solution summary: L2-norm : 0.0192729
|
||||
Max X-displacement : 0.0331623 node 19
|
||||
@ -164,8 +164,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.836363 (f,u)+(t,u) = 0.6995023634
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 47.4527
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 26.0081 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 15.2573 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 18.5697
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 14.9164 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 18.2688
|
||||
step=13 time=13
|
||||
Primary solution summary: L2-norm : 0.0208504
|
||||
Max X-displacement : 0.0359289 node 19
|
||||
@ -175,8 +175,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.905302 (f,u)+(t,u) = 0.819572242
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 51.3604
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 28.1495 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 16.4701 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 20.0615
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 16.1465 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 19.7754
|
||||
step=14 time=14
|
||||
Primary solution summary: L2-norm : 0.0224243
|
||||
Max X-displacement : 0.0386959 node 19
|
||||
@ -186,8 +186,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.974225 (f,u)+(t,u) = 0.9491152538
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 55.2603
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 30.286 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 17.6861 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 21.5565
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 17.3777 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 21.2832
|
||||
step=15 time=15
|
||||
Primary solution summary: L2-norm : 0.0239948
|
||||
Max X-displacement : 0.0414632 node 19
|
||||
@ -197,8 +197,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.04317 (f,u)+(t,u) = 1.088195966
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 59.1523
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 32.4172 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 18.9059 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 23.0555
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 18.611 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 22.7937
|
||||
step=16 time=16
|
||||
Primary solution summary: L2-norm : 0.025562
|
||||
Max X-displacement : 0.0442307 node 19
|
||||
@ -208,8 +208,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.11217 (f,u)+(t,u) = 1.236911832
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 63.036
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 34.5427 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 20.1306 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 24.5598
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 19.8477 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 24.3084
|
||||
step=17 time=17
|
||||
Primary solution summary: L2-norm : 0.0271261
|
||||
Max X-displacement : 0.0469983 node 19
|
||||
@ -219,8 +219,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.18127 (f,u)+(t,u) = 1.395400274
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 66.9108
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 36.6619 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 21.3613 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 26.0711
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 21.0893 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 25.829
|
||||
step=18 time=18
|
||||
Primary solution summary: L2-norm : 0.0286874
|
||||
Max X-displacement : 0.049766 node 19
|
||||
@ -230,8 +230,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.25054 (f,u)+(t,u) = 1.563846225
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 70.7762
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 38.7741 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 22.5996 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 27.5914
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 22.3376 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 27.3579
|
||||
step=19 time=19
|
||||
Primary solution summary: L2-norm : 0.030246
|
||||
Max X-displacement : 0.0525336 node 19
|
||||
@ -241,8 +241,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.32003 (f,u)+(t,u) = 1.742488983
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 74.6315
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 40.8785 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 23.8474 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 29.1231
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 23.5946 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 28.8974
|
||||
step=20 time=20
|
||||
Primary solution summary: L2-norm : 0.0318021
|
||||
Max X-displacement : 0.0553011 node 19
|
||||
@ -252,8 +252,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.38983 (f,u)+(t,u) = 1.931626323
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 78.4759
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 42.9741 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 25.107 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 30.6688
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 24.8627 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 30.4505
|
||||
step=21 time=21
|
||||
Primary solution summary: L2-norm : 0.0333558
|
||||
Max X-displacement : 0.0580684 node 19
|
||||
@ -263,8 +263,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.46 (f,u)+(t,u) = 2.131613052
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 82.3085
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 45.0598 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 26.3807 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 32.2316
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 26.1443 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 32.0201
|
||||
step=22 time=22
|
||||
Primary solution summary: L2-norm : 0.0349073
|
||||
Max X-displacement : 0.0608352 node 19
|
||||
@ -274,8 +274,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.53064 (f,u)+(t,u) = 2.342851309
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 86.1282
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 47.1346 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 27.6709 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 33.8146
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 27.4421 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 33.6096
|
||||
step=23 time=23
|
||||
Primary solution summary: L2-norm : 0.0364565
|
||||
Max X-displacement : 0.0636014 node 19
|
||||
@ -285,8 +285,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.6018 (f,u)+(t,u) = 2.56577201
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 89.9343
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 49.1973 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 28.9802 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 35.4206
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 28.7584 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 35.2217
|
||||
step=24 time=24
|
||||
Primary solution summary: L2-norm : 0.0380032
|
||||
Max X-displacement : 0.0663666 node 7
|
||||
@ -296,8 +296,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.67356 (f,u)+(t,u) = 2.800811483
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 93.7259
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 51.2472 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 30.3104 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 37.0522
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 30.0954 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 36.8592
|
||||
step=25 time=25
|
||||
Primary solution summary: L2-norm : 0.0395472
|
||||
Max X-displacement : 0.0691301 node 7
|
||||
@ -307,8 +307,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.74596 (f,u)+(t,u) = 3.048393091
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 97.5025
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 53.2833 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 31.6633 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 38.7115
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 31.4548 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 38.5241
|
||||
step=26 time=26
|
||||
Primary solution summary: L2-norm : 0.041088
|
||||
Max X-displacement : 0.0718912 node 7
|
||||
@ -318,8 +318,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.81905 (f,u)+(t,u) = 3.308927058
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 101.264
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 55.3053 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 33.0403 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 40.4001
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 32.8379 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 40.2181
|
||||
step=27 time=27
|
||||
Primary solution summary: L2-norm : 0.0426252
|
||||
Max X-displacement : 0.0746488 node 19
|
||||
@ -329,8 +329,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.89284 (f,u)+(t,u) = 3.582840541
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 105.01
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 57.3127 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 34.4428 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 42.1199
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 34.2464 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 41.9431
|
||||
step=28 time=28
|
||||
Primary solution summary: L2-norm : 0.0441582
|
||||
Max X-displacement : 0.0774015 node 19
|
||||
@ -340,8 +340,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.9674 (f,u)+(t,u) = 3.87064709
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 108.741
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 59.3052 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 35.8732 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 43.8738
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 35.6825 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 43.702
|
||||
step=29 time=29
|
||||
Primary solution summary: L2-norm : 0.0456865
|
||||
Max X-displacement : 0.0801476 node 19
|
||||
@ -351,8 +351,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.04281 (f,u)+(t,u) = 4.173068394
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 112.457
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 61.282 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 37.3354 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 45.6665
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 37.1503 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 45.4997
|
||||
step=30 time=30
|
||||
Primary solution summary: L2-norm : 0.0472098
|
||||
Max X-displacement : 0.0828846 node 19
|
||||
@ -362,8 +362,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.11926 (f,u)+(t,u) = 4.49124456
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 116.16
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 63.2421 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 38.8368 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 47.5072
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 38.6572 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 47.3452
|
||||
step=31 time=31
|
||||
Primary solution summary: L2-norm : 0.0487279
|
||||
Max X-displacement : 0.085609 node 19
|
||||
@ -373,8 +373,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.19708 (f,u)+(t,u) = 4.827141478
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 119.849
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 65.1828 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 40.391 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 49.4126
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 40.2168 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 49.2553
|
||||
step=32 time=32
|
||||
Primary solution summary: L2-norm : 0.050241
|
||||
Max X-displacement : 0.0883151 node 19
|
||||
@ -384,8 +384,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.27695 (f,u)+(t,u) = 5.184502684
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 123.527
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 67.0995 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 42.0251 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 51.4158
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 41.8563 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 51.2633
|
||||
step=33 time=33
|
||||
Primary solution summary: L2-norm : 0.0517508
|
||||
Max X-displacement : 0.0909915 node 19
|
||||
@ -395,8 +395,8 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.36046 (f,u)+(t,u) = 5.571750318
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 127.199
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 68.9811 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 43.8014 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 53.5932
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 43.6384 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 53.4459
|
||||
step=34 time=34
|
||||
Primary solution summary: L2-norm : 0.053266
|
||||
Max X-displacement : 0.0936054 node 19
|
||||
@ -406,6 +406,6 @@ Number of unknowns 693
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.45286 (f,u)+(t,u) = 6.016509793
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 130.883
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 70.7935 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 45.9291 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 56.2013
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 45.7729 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 56.0601
|
||||
step=35 time=35
|
||||
|
@ -1,4 +1,4 @@
|
||||
FBlock-h9x5-Q2P1.inp -2Dpstrain -MX 1 -nGauss 3 -lagrange
|
||||
FBlock-h9x5-Q2P1.inp -2D -MX 1 -nGauss 3 -lagrange
|
||||
|
||||
Input file: FBlock-h9x5-Q2P1.inp
|
||||
Equation solver: 2
|
||||
@ -42,8 +42,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.0703524 (f,u)+(t,u) = 0.004949465648
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 3.99207
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 2.1873 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 2.87221 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 3.03087
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 1.2585 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 1.54134
|
||||
step=2 time=2
|
||||
Primary solution summary: L2-norm : 0.00327124
|
||||
Max X-displacement : 0.00552132 node 5
|
||||
@ -53,8 +53,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.140452 (f,u)+(t,u) = 0.0197266334
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 7.97697
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 4.37137 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 3.67637 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 4.10702
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 2.51103 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 3.07537
|
||||
step=3 time=3
|
||||
Primary solution summary: L2-norm : 0.00489861
|
||||
Max X-displacement : 0.00828239 node 5
|
||||
@ -64,8 +64,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.210307 (f,u)+(t,u) = 0.04422916175
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 11.9548
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 6.55225 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 4.66269 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 5.38961
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 3.7579 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 4.60247
|
||||
step=4 time=4
|
||||
Primary solution summary: L2-norm : 0.00652077
|
||||
Max X-displacement : 0.0110439 node 5
|
||||
@ -75,8 +75,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.279929 (f,u)+(t,u) = 0.07836046385
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 15.9258
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 8.72994 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 5.74079 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 6.76336
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 4.99941 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 6.123
|
||||
step=5 time=5
|
||||
Primary solution summary: L2-norm : 0.00813792
|
||||
Max X-displacement : 0.0138059 node 5
|
||||
@ -86,8 +86,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.349327 (f,u)+(t,u) = 0.1220294116
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 19.8899
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 10.9045 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 6.86675 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 8.18076
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 6.23586 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 7.63734
|
||||
step=6 time=6
|
||||
Primary solution summary: L2-norm : 0.00975025
|
||||
Max X-displacement : 0.0165686 node 5
|
||||
@ -97,8 +97,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.418509 (f,u)+(t,u) = 0.1751500561
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 23.8473
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 13.0758 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 8.01911 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 9.62058
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 7.46753 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 9.14582
|
||||
step=7 time=7
|
||||
Primary solution summary: L2-norm : 0.011358
|
||||
Max X-displacement : 0.019332 node 5
|
||||
@ -108,8 +108,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.487485 (f,u)+(t,u) = 0.237641364
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 27.7981
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 15.244 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 9.18663 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 11.0723
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 8.69469 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 10.6488
|
||||
step=8 time=8
|
||||
Primary solution summary: L2-norm : 0.0129612
|
||||
Max X-displacement : 0.0220962 node 5
|
||||
@ -119,8 +119,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.556262 (f,u)+(t,u) = 0.3094269683
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 31.7424
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 17.409 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 10.363 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 12.5304
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 9.9176 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 12.1465
|
||||
step=9 time=9
|
||||
Primary solution summary: L2-norm : 0.0145601
|
||||
Max X-displacement : 0.0248612 node 15
|
||||
@ -130,8 +130,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.624848 (f,u)+(t,u) = 0.3904349331
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 35.6803
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 19.5709 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 11.5447 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 13.9915
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 11.1365 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 13.6394
|
||||
step=10 time=10
|
||||
Primary solution summary: L2-norm : 0.0161549
|
||||
Max X-displacement : 0.0276271 node 5
|
||||
@ -141,8 +141,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.693251 (f,u)+(t,u) = 0.4805975322
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.6118
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 21.7296 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 12.7292 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 15.4538
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 12.3517 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 15.1277
|
||||
step=11 time=11
|
||||
Primary solution summary: L2-norm : 0.0177457
|
||||
Max X-displacement : 0.030394 node 5
|
||||
@ -152,8 +152,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.76148 (f,u)+(t,u) = 0.5798510386
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 43.537
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 23.8852 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 13.9153 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 16.9161
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 13.5634 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 16.6117
|
||||
step=12 time=12
|
||||
Primary solution summary: L2-norm : 0.0193327
|
||||
Max X-displacement : 0.0331619 node 5
|
||||
@ -163,8 +163,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.829539 (f,u)+(t,u) = 0.6881355279
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 47.456
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 26.0376 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 15.1019 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 18.3776
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 14.7718 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 18.0917
|
||||
step=13 time=13
|
||||
Primary solution summary: L2-norm : 0.0209159
|
||||
Max X-displacement : 0.0359307 node 5
|
||||
@ -174,8 +174,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.897438 (f,u)+(t,u) = 0.8053946907
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 51.3689
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 28.1868 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 16.2884 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 19.8379
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 15.9772 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 19.568
|
||||
step=14 time=14
|
||||
Primary solution summary: L2-norm : 0.0224954
|
||||
Max X-displacement : 0.0387006 node 5
|
||||
@ -185,8 +185,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.965182 (f,u)+(t,u) = 0.9315756568
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 55.2757
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 30.3329 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 17.4745 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 21.2968
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 17.1797 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 21.0408
|
||||
step=15 time=15
|
||||
Primary solution summary: L2-norm : 0.0240715
|
||||
Max X-displacement : 0.0414715 node 5
|
||||
@ -196,8 +196,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.03278 (f,u)+(t,u) = 1.066628829
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 59.1765
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 32.4759 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 18.66 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 22.7541
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 18.3797 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 22.5104
|
||||
step=16 time=16
|
||||
Primary solution summary: L2-norm : 0.0256442
|
||||
Max X-displacement : 0.0442434 node 5
|
||||
@ -207,8 +207,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.10023 (f,u)+(t,u) = 1.210507726
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 63.0713
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 34.6156 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 19.8446 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 24.2099
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 19.5772 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 23.9771
|
||||
step=17 time=17
|
||||
Primary solution summary: L2-norm : 0.0272136
|
||||
Max X-displacement : 0.0470163 node 5
|
||||
@ -218,8 +218,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.16755 (f,u)+(t,u) = 1.363168834
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 66.9602
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 36.7522 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 21.0284 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 25.664
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 20.7725 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 25.441
|
||||
step=18 time=18
|
||||
Primary solution summary: L2-norm : 0.0287797
|
||||
Max X-displacement : 0.0497902 node 5
|
||||
@ -229,8 +229,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.23474 (f,u)+(t,u) = 1.524571467
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 70.8433
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 38.8856 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 22.2112 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 27.1166
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 21.9658 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 26.9025
|
||||
step=19 time=19
|
||||
Primary solution summary: L2-norm : 0.0303427
|
||||
Max X-displacement : 0.0525651 node 5
|
||||
@ -240,8 +240,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.3018 (f,u)+(t,u) = 1.694677636
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 74.7205
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 41.0158 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 23.3932 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 28.5678
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 23.1572 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 28.3617
|
||||
step=20 time=20
|
||||
Primary solution summary: L2-norm : 0.0319027
|
||||
Max X-displacement : 0.0553408 node 5
|
||||
@ -251,8 +251,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.36874 (f,u)+(t,u) = 1.873451922
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 78.5919
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 43.1428 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 24.5743 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 30.0177
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 24.347 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 29.8189
|
||||
step=21 time=21
|
||||
Primary solution summary: L2-norm : 0.0334597
|
||||
Max X-displacement : 0.0581174 node 5
|
||||
@ -262,8 +262,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.43557 (f,u)+(t,u) = 2.060861361
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 82.4575
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 45.2666 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 25.7547 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 31.4663
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 25.5353 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 31.2743
|
||||
step=22 time=22
|
||||
Primary solution summary: L2-norm : 0.0350137
|
||||
Max X-displacement : 0.0608948 node 5
|
||||
@ -273,8 +273,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.50229 (f,u)+(t,u) = 2.256875332
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 86.3174
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 47.3871 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 26.9344 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 32.9138
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 26.7223 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 32.728
|
||||
step=23 time=23
|
||||
Primary solution summary: L2-norm : 0.0365649
|
||||
Max X-displacement : 0.0636729 node 5
|
||||
@ -284,8 +284,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.56891 (f,u)+(t,u) = 2.46146545
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 90.1717
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 49.5044 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 28.1135 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 34.3604
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 27.9082 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 34.1804
|
||||
step=24 time=24
|
||||
Primary solution summary: L2-norm : 0.0381133
|
||||
Max X-displacement : 0.0664518 node 5
|
||||
@ -295,8 +295,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.63542 (f,u)+(t,u) = 2.674605475
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 94.0202
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 51.6185 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 29.2921 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 35.8063
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 29.0931 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 35.6316
|
||||
step=25 time=25
|
||||
Primary solution summary: L2-norm : 0.0396589
|
||||
Max X-displacement : 0.0692312 node 5
|
||||
@ -306,8 +306,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.70184 (f,u)+(t,u) = 2.896271208
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 97.8631
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 53.7292 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 30.4703 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 37.2514
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 30.2772 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 37.0818
|
||||
step=26 time=26
|
||||
Primary solution summary: L2-norm : 0.0412018
|
||||
Max X-displacement : 0.0720111 node 5
|
||||
@ -317,8 +317,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.76817 (f,u)+(t,u) = 3.126440415
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 101.7
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 55.8367 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 31.6482 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 38.6961
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 31.4606 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 38.5312
|
||||
step=27 time=27
|
||||
Primary solution summary: L2-norm : 0.0427419
|
||||
Max X-displacement : 0.0747914 node 5
|
||||
@ -328,8 +328,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.83442 (f,u)+(t,u) = 3.365092736
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 105.532
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 57.9409 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 32.8259 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 40.1404
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 32.6436 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 39.98
|
||||
step=28 time=28
|
||||
Primary solution summary: L2-norm : 0.0442794
|
||||
Max X-displacement : 0.077572 node 5
|
||||
@ -339,8 +339,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.90058 (f,u)+(t,u) = 3.612209613
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 109.358
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 60.0417 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 34.0036 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 41.5846
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 33.8261 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 41.4284
|
||||
step=29 time=29
|
||||
Primary solution summary: L2-norm : 0.0458142
|
||||
Max X-displacement : 0.0803529 node 5
|
||||
@ -350,8 +350,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.96667 (f,u)+(t,u) = 3.867774216
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 113.179
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 62.1393 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 35.1813 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 43.0287
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 35.0085 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 42.8764
|
||||
step=30 time=30
|
||||
Primary solution summary: L2-norm : 0.0473464
|
||||
Max X-displacement : 0.0831338 node 5
|
||||
@ -361,8 +361,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.03268 (f,u)+(t,u) = 4.131771375
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 116.994
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 64.2334 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 36.3592 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 44.4729
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 36.1907 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 44.3244
|
||||
step=31 time=31
|
||||
Primary solution summary: L2-norm : 0.048876
|
||||
Max X-displacement : 0.0859147 node 5
|
||||
@ -372,8 +372,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.09862 (f,u)+(t,u) = 4.404187518
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 120.803
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 66.3242 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 37.5374 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 45.9174
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 37.373 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 45.7725
|
||||
step=32 time=32
|
||||
Primary solution summary: L2-norm : 0.0504029
|
||||
Max X-displacement : 0.0886955 node 5
|
||||
@ -383,8 +383,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.16449 (f,u)+(t,u) = 4.685010611
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 124.607
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 68.4116 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 38.716 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 47.3623
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 38.5556 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 47.2207
|
||||
step=33 time=33
|
||||
Primary solution summary: L2-norm : 0.0519273
|
||||
Max X-displacement : 0.091476 node 5
|
||||
@ -394,8 +394,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.2303 (f,u)+(t,u) = 4.974230108
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 128.406
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 70.4957 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 39.8951 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 48.8078
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 39.7384 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 48.6694
|
||||
step=34 time=34
|
||||
Primary solution summary: L2-norm : 0.053449
|
||||
Max X-displacement : 0.0942561 node 5
|
||||
@ -405,8 +405,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.29605 (f,u)+(t,u) = 5.271836897
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 132.199
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 72.5763 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 41.0748 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 50.2539
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 40.9217 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 50.1187
|
||||
step=35 time=35
|
||||
Primary solution summary: L2-norm : 0.0549681
|
||||
Max X-displacement : 0.0970357 node 5
|
||||
@ -416,8 +416,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.36174 (f,u)+(t,u) = 5.577823256
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 135.986
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 74.6534 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 42.2553 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 51.7009
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 42.1056 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 51.5687
|
||||
step=36 time=36
|
||||
Primary solution summary: L2-norm : 0.0564845
|
||||
Max X-displacement : 0.0998145 node 5
|
||||
@ -427,8 +427,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.42738 (f,u)+(t,u) = 5.892182818
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 139.768
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 76.7271 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 43.4366 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 53.1489
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 43.2902 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 53.0195
|
||||
step=37 time=37
|
||||
Primary solution summary: L2-norm : 0.0579983
|
||||
Max X-displacement : 0.102593 node 5
|
||||
@ -438,8 +438,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.49297 (f,u)+(t,u) = 6.214910527
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 143.545
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 78.7973 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 44.6189 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 54.598
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 44.4757 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 54.4713
|
||||
step=38 time=38
|
||||
Primary solution summary: L2-norm : 0.0595094
|
||||
Max X-displacement : 0.10537 node 5
|
||||
@ -449,8 +449,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.55852 (f,u)+(t,u) = 6.546002614
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 147.316
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 80.8641 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 45.8022 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 56.0484
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 45.662 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 55.9244
|
||||
step=39 time=39
|
||||
Primary solution summary: L2-norm : 0.0610179
|
||||
Max X-displacement : 0.108146 node 5
|
||||
@ -460,8 +460,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.62402 (f,u)+(t,u) = 6.885456569
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 151.082
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 82.9273 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 46.9868 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 57.5002
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 46.8495 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 57.3787
|
||||
step=40 time=40
|
||||
Primary solution summary: L2-norm : 0.0625236
|
||||
Max X-displacement : 0.11092 node 5
|
||||
@ -471,8 +471,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.68947 (f,u)+(t,u) = 7.233271122
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 154.842
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 84.987 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 48.1726 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 58.9536
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 48.0381 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 58.8345
|
||||
step=41 time=41
|
||||
Primary solution summary: L2-norm : 0.0640265
|
||||
Max X-displacement : 0.113693 node 5
|
||||
@ -482,8 +482,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.75489 (f,u)+(t,u) = 7.589446225
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 158.597
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 87.0431 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 49.3599 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 60.4086
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 49.2281 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 60.2918
|
||||
step=42 time=42
|
||||
Primary solution summary: L2-norm : 0.0655266
|
||||
Max X-displacement : 0.116465 node 5
|
||||
@ -493,8 +493,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.82028 (f,u)+(t,u) = 7.953983051
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 162.346
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 89.0957 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 50.5486 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 61.8654
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 50.4194 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 61.7509
|
||||
step=43 time=43
|
||||
Primary solution summary: L2-norm : 0.067024
|
||||
Max X-displacement : 0.119234 node 5
|
||||
@ -504,8 +504,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.88563 (f,u)+(t,u) = 8.326883986
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 166.09
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 91.1447 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 51.739 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 63.3242
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 51.6123 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 63.2119
|
||||
step=44 time=44
|
||||
Primary solution summary: L2-norm : 0.0685184
|
||||
Max X-displacement : 0.122002 node 5
|
||||
@ -515,8 +515,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.95096 (f,u)+(t,u) = 8.70815264
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 169.829
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 93.1901 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 52.9311 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 64.7851
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 52.8069 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 64.6749
|
||||
step=45 time=45
|
||||
Primary solution summary: L2-norm : 0.0700099
|
||||
Max X-displacement : 0.124767 node 5
|
||||
@ -526,8 +526,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.01625 (f,u)+(t,u) = 9.097793862
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 173.562
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 95.2319 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 54.125 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 66.2481
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 54.0031 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 66.1401
|
||||
step=46 time=46
|
||||
Primary solution summary: L2-norm : 0.0714984
|
||||
Max X-displacement : 0.127531 node 5
|
||||
@ -537,8 +537,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.08153 (f,u)+(t,u) = 9.495813767
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 177.289
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 97.27 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 55.3208 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 67.7135
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 55.2013 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 67.6075
|
||||
step=47 time=47
|
||||
Primary solution summary: L2-norm : 0.072984
|
||||
Max X-displacement : 0.130291 node 5
|
||||
@ -548,8 +548,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.14678 (f,u)+(t,u) = 9.902219775
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 181.012
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 99.3046 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 56.5187 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 69.1814
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 56.4014 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 69.0773
|
||||
step=48 time=48
|
||||
Primary solution summary: L2-norm : 0.0744664
|
||||
Max X-displacement : 0.133049 node 5
|
||||
@ -559,8 +559,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.21201 (f,u)+(t,u) = 10.31702067
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 184.729
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 101.335 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 57.7188 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 70.6519
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 57.6036 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 70.5497
|
||||
step=49 time=49
|
||||
Primary solution summary: L2-norm : 0.0759458
|
||||
Max X-displacement : 0.135805 node 5
|
||||
@ -570,8 +570,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.27723 (f,u)+(t,u) = 10.74022668
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 188.441
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 103.363 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 58.9211 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 72.1252
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 58.808 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 72.0248
|
||||
step=50 time=50
|
||||
Primary solution summary: L2-norm : 0.0774219
|
||||
Max X-displacement : 0.138557 node 5
|
||||
@ -581,8 +581,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.34243 (f,u)+(t,u) = 11.17184957
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 192.147
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 105.386 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 60.1258 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 73.6014
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 60.0148 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 73.5028
|
||||
step=51 time=51
|
||||
Primary solution summary: L2-norm : 0.0788949
|
||||
Max X-displacement : 0.141306 node 5
|
||||
@ -592,8 +592,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.40762 (f,u)+(t,u) = 11.61190283
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 195.848
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 107.406 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 61.333 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 75.0805
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 61.2239 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 74.9837
|
||||
step=52 time=52
|
||||
Primary solution summary: L2-norm : 0.0803645
|
||||
Max X-displacement : 0.144052 node 5
|
||||
@ -603,8 +603,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.47281 (f,u)+(t,u) = 12.06040186
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 199.544
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 109.422 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 62.5428 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 76.5629
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 62.4357 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 76.4678
|
||||
step=53 time=53
|
||||
Primary solution summary: L2-norm : 0.0818309
|
||||
Max X-displacement : 0.146794 node 5
|
||||
@ -614,8 +614,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.53799 (f,u)+(t,u) = 12.51736432
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 203.235
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 111.435 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 63.7553 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 78.0486
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 63.6501 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 77.9552
|
||||
step=54 time=54
|
||||
Primary solution summary: L2-norm : 0.083294
|
||||
Max X-displacement : 0.149533 node 5
|
||||
@ -625,8 +625,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.60317 (f,u)+(t,u) = 12.98281069
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 206.92
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 113.443 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 64.9708 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 79.5378
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 64.8674 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 79.446
|
||||
step=55 time=55
|
||||
Primary solution summary: L2-norm : 0.0847538
|
||||
Max X-displacement : 0.152269 node 5
|
||||
@ -636,8 +636,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.66835 (f,u)+(t,u) = 13.45676508
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 210.601
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 115.449 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 66.1892 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 81.0308
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 66.0877 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 80.9405
|
||||
step=56 time=56
|
||||
Primary solution summary: L2-norm : 0.0862104
|
||||
Max X-displacement : 0.155001 node 5
|
||||
@ -647,8 +647,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.73353 (f,u)+(t,u) = 13.9392569
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 214.276
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 117.45 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 67.4109 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 82.5276
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 67.3111 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 82.4389
|
||||
step=57 time=57
|
||||
Primary solution summary: L2-norm : 0.087664
|
||||
Max X-displacement : 0.157731 node 5
|
||||
@ -658,8 +658,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.79873 (f,u)+(t,u) = 14.43032393
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 217.947
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 119.448 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 68.636 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 84.0286
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 68.5379 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 83.9414
|
||||
step=58 time=58
|
||||
Primary solution summary: L2-norm : 0.0891148
|
||||
Max X-displacement : 0.160457 node 5
|
||||
@ -669,8 +669,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.86394 (f,u)+(t,u) = 14.93001899
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 221.613
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 121.443 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 69.8649 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 85.5342
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 69.7684 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 85.4485
|
||||
step=59 time=59
|
||||
Primary solution summary: L2-norm : 0.0905636
|
||||
Max X-displacement : 0.163183 node 5
|
||||
@ -680,8 +680,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.92918 (f,u)+(t,u) = 15.43842576
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 225.276
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 123.434 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 71.0979 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 87.0449
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 71.0031 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 86.9607
|
||||
step=60 time=60
|
||||
Primary solution summary: L2-norm : 0.0920118
|
||||
Max X-displacement : 0.16591 node 5
|
||||
@ -691,8 +691,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 3.99446 (f,u)+(t,u) = 15.95570149
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 228.935
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 125.422 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 72.3361 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 88.5619
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 72.2429 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 88.4791
|
||||
step=61 time=61
|
||||
Primary solution summary: L2-norm : 0.0934622
|
||||
Max X-displacement : 0.168645 node 5
|
||||
@ -702,8 +702,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 4.05983 (f,u)+(t,u) = 16.48221193
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 232.593
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 127.408 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 73.5814 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 90.0876
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 73.4898 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 90.0062
|
||||
step=62 time=62
|
||||
Primary solution summary: L2-norm : 0.0949222
|
||||
Max X-displacement : 0.1714 node 5
|
||||
@ -713,8 +713,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 4.12542 (f,u)+(t,u) = 17.01905023
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 236.254
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 129.394 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 74.8396 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 91.6291
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 74.7496 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 91.5491
|
||||
step=63 time=63
|
||||
Primary solution summary: L2-norm : 0.0964112
|
||||
Max X-displacement : 0.174216 node 5
|
||||
@ -724,8 +724,8 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 4.19173 (f,u)+(t,u) = 17.57058695
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 239.933
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 131.384 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 76.1329 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 93.2136
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 76.0445 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 93.1351
|
||||
step=64 time=64
|
||||
Primary solution summary: L2-norm : 0.0980007
|
||||
Max X-displacement : 0.177252 node 5
|
||||
@ -735,6 +735,6 @@ Number of unknowns 377
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 4.26203 (f,u)+(t,u) = 18.16489655
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 243.701
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 133.395 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 77.5973 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 95.0078
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 77.5109 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 94.931
|
||||
step=65 time=65
|
||||
|
@ -1,4 +1,4 @@
|
||||
FBlock-h9x5-Q2Q1.inp -2Dpstrain -mixed -nGauss 3 -lagrange
|
||||
FBlock-h9x5-Q2Q1.inp -2D -mixed -nGauss 3 -lagrange
|
||||
|
||||
Input file: FBlock-h9x5-Q2Q1.inp
|
||||
Equation solver: 2
|
||||
@ -44,8 +44,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.0721893 (f,u)+(t,u) = 0.005211294974
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 3.99563
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 2.18295 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 2.9035 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 3.06895
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 1.29201 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 1.58239
|
||||
step=2 time=2
|
||||
Primary solution summary: L2-norm : 0.00327561
|
||||
Max X-displacement : 0.00551929 node 5
|
||||
@ -55,8 +55,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.144337 (f,u)+(t,u) = 0.02083315296
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 7.98301
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 4.36102 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 3.74412 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 4.19156
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 2.58319 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 3.16375
|
||||
step=3 time=3
|
||||
Primary solution summary: L2-norm : 0.00490777
|
||||
Max X-displacement : 0.00827938 node 5
|
||||
@ -66,8 +66,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.216485 (f,u)+(t,u) = 0.04686573163
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 11.962
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 6.53389 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 4.77544 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 5.52984
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 3.87472 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 4.74554
|
||||
step=4 time=4
|
||||
Primary solution summary: L2-norm : 0.00653691
|
||||
Max X-displacement : 0.0110398 node 15
|
||||
@ -77,8 +77,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.288684 (f,u)+(t,u) = 0.08333817153
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 15.9322
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 8.70111 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 5.90598 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 6.96791
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 5.16804 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 6.32953
|
||||
step=5 time=5
|
||||
Primary solution summary: L2-norm : 0.00816371
|
||||
Max X-displacement : 0.0138005 node 15
|
||||
@ -88,8 +88,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.360994 (f,u)+(t,u) = 0.1303167663
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 19.8935
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 10.8621 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 7.09283 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 8.45987
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 6.46491 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 7.91787
|
||||
step=6 time=6
|
||||
Primary solution summary: L2-norm : 0.00978903
|
||||
Max X-displacement : 0.0165616 node 15
|
||||
@ -99,8 +99,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.433494 (f,u)+(t,u) = 0.1879169601
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 23.8452
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 13.0161 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 8.3164 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 9.98692
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 7.76758 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 9.51331
|
||||
step=7 time=7
|
||||
Primary solution summary: L2-norm : 0.0114139
|
||||
Max X-displacement : 0.0193231 node 5
|
||||
@ -110,8 +110,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.506281 (f,u)+(t,u) = 0.2563209378
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 27.7867
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 15.1622 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 9.56811 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 11.5418
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 9.07895 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 11.1194
|
||||
step=8 time=8
|
||||
Primary solution summary: L2-norm : 0.0130398
|
||||
Max X-displacement : 0.022085 node 5
|
||||
@ -121,8 +121,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.579485 (f,u)+(t,u) = 0.3358031425
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 31.7171
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 17.2989 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 10.8452 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 13.1234
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 10.4028 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 12.7408
|
||||
step=9 time=9
|
||||
Primary solution summary: L2-norm : 0.0146686
|
||||
Max X-displacement : 0.0248476 node 15
|
||||
@ -132,8 +132,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.653273 (f,u)+(t,u) = 0.4267662192
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 35.635
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 19.4244 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 12.1489 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 14.7341
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 11.7443 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 14.3838
|
||||
step=10 time=10
|
||||
Primary solution summary: L2-norm : 0.0163025
|
||||
Max X-displacement : 0.0276112 node 5
|
||||
@ -143,8 +143,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.727866 (f,u)+(t,u) = 0.5297882945
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 39.5386
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 21.5362 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 13.4831 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 16.3801
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 13.1101 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 16.0565
|
||||
step=11 time=11
|
||||
Primary solution summary: L2-norm : 0.0179446
|
||||
Max X-displacement : 0.0303766 node 15
|
||||
@ -154,8 +154,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.80354 (f,u)+(t,u) = 0.6456760529
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 43.4257
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 23.6311 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 14.8549 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 18.0703
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 14.5087 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 17.7695
|
||||
step=12 time=12
|
||||
Primary solution summary: L2-norm : 0.0195983
|
||||
Max X-displacement : 0.0334686 node 203
|
||||
@ -165,8 +165,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.880626 (f,u)+(t,u) = 0.7755019232
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 47.2934
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 25.7051 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 16.2731 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 19.816
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 15.9504 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 19.5352
|
||||
step=13 time=13
|
||||
Primary solution summary: L2-norm : 0.0212668
|
||||
Max X-displacement : 0.0386784 node 203
|
||||
@ -176,8 +176,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 0.959467 (f,u)+(t,u) = 0.9205774315
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 51.1386
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 27.7537 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 17.7476 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 21.6297
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 17.4458 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 21.3666
|
||||
step=14 time=14
|
||||
Primary solution summary: L2-norm : 0.0229521
|
||||
Max X-displacement : 0.0443377 node 203
|
||||
@ -187,8 +187,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.04034 (f,u)+(t,u) = 1.08230132
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 54.9585
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 29.7731 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 19.2861 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 23.521
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 19.0031 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 23.2739
|
||||
step=15 time=15
|
||||
Primary solution summary: L2-norm : 0.0246538
|
||||
Max X-displacement : 0.050305 node 203
|
||||
@ -198,8 +198,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.12333 (f,u)+(t,u) = 1.261875827
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 58.7521
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 31.7617 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 20.8909 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 25.4928
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 20.625 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 25.2603
|
||||
step=16 time=16
|
||||
Primary solution summary: L2-norm : 0.0263684
|
||||
Max X-displacement : 0.0564012 node 203
|
||||
@ -209,8 +209,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.20831 (f,u)+(t,u) = 1.460018437
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 62.5206
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 33.7207 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 22.5567 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 27.5388
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 22.3065 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 27.3197
|
||||
step=17 time=17
|
||||
Primary solution summary: L2-norm : 0.0280901
|
||||
Max X-displacement : 0.0624652 node 203
|
||||
@ -220,8 +220,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.29494 (f,u)+(t,u) = 1.676862309
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 66.2671
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 35.6538 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 24.2726 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 29.6455
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 24.0366 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 29.4387
|
||||
step=18 time=18
|
||||
Primary solution summary: L2-norm : 0.029813
|
||||
Max X-displacement : 0.0683938 node 203
|
||||
@ -231,8 +231,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.38279 (f,u)+(t,u) = 1.912097182
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 69.9954
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 37.566 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 26.0251 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 31.7966
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 25.802 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 31.6008
|
||||
step=19 time=19
|
||||
Primary solution summary: L2-norm : 0.0315321
|
||||
Max X-displacement : 0.074145 node 203
|
||||
@ -242,8 +242,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.47147 (f,u)+(t,u) = 2.165213005
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 73.709
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 39.4621 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 27.8022 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 33.9774
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 27.5908 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 33.7917
|
||||
step=20 time=20
|
||||
Primary solution summary: L2-norm : 0.033244
|
||||
Max X-displacement : 0.0797205 node 203
|
||||
@ -253,8 +253,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.56067 (f,u)+(t,u) = 2.435694719
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 77.4105
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 41.3456 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 29.5951 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 36.177
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 29.3943 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 36.0005
|
||||
step=21 time=21
|
||||
Primary solution summary: L2-norm : 0.0349464
|
||||
Max X-displacement : 0.0851453 node 203
|
||||
@ -264,8 +264,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.65019 (f,u)+(t,u) = 2.723122956
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 81.1016
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 43.2189 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 31.3978 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 38.3884
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 31.2066 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 38.2201
|
||||
step=22 time=22
|
||||
Primary solution summary: L2-norm : 0.0366385
|
||||
Max X-displacement : 0.0904552 node 203
|
||||
@ -275,8 +275,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.73989 (f,u)+(t,u) = 3.027209138
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 84.7834
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 45.0836 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 33.2072 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 40.6075
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 33.0247 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 40.4469
|
||||
step=23 time=23
|
||||
Primary solution summary: L2-norm : 0.03832
|
||||
Max X-displacement : 0.0956904 node 203
|
||||
@ -286,8 +286,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.8297 (f,u)+(t,u) = 3.347804151
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 88.4563
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 46.9402 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 35.0219 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 42.833
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 34.8475 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 42.6793
|
||||
step=24 time=24
|
||||
Primary solution summary: L2-norm : 0.0399912
|
||||
Max X-displacement : 0.100894 node 203
|
||||
@ -297,8 +297,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 1.91961 (f,u)+(t,u) = 3.684906526
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 92.1207
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 48.7891 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 36.8425 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 45.0653
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 36.6755 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 44.9181
|
||||
step=25 time=25
|
||||
Primary solution summary: L2-norm : 0.0416528
|
||||
Max X-displacement : 0.106115 node 203
|
||||
@ -308,8 +308,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.00965 (f,u)+(t,u) = 4.038685423
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 95.7772
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 50.6301 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 38.6705 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 47.3067
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 38.5104 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 47.1654
|
||||
step=26 time=26
|
||||
Primary solution summary: L2-norm : 0.043306
|
||||
Max X-displacement : 0.111409 node 203
|
||||
@ -319,8 +319,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.09989 (f,u)+(t,u) = 4.409532376
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 99.4262
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 52.4626 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 40.5094 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 49.5611
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 40.3557 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 49.4254
|
||||
step=27 time=27
|
||||
Primary solution summary: L2-norm : 0.0449524
|
||||
Max X-displacement : 0.11685 node 203
|
||||
@ -330,8 +330,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.19047 (f,u)+(t,u) = 4.798165745
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 103.069
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 54.2858 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 42.3646 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 51.8354
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 42.217 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 51.7051
|
||||
step=28 time=28
|
||||
Primary solution summary: L2-norm : 0.0465946
|
||||
Max X-displacement : 0.122544 node 203
|
||||
@ -341,8 +341,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.28163 (f,u)+(t,u) = 5.205843502
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 106.706
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 56.0982 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 44.2451 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 54.1406
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 44.1034 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 54.0154
|
||||
step=29 time=29
|
||||
Primary solution summary: L2-norm : 0.0482367
|
||||
Max X-displacement : 0.128658 node 203
|
||||
@ -352,8 +352,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.37378 (f,u)+(t,u) = 5.634836657
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 110.341
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 57.8975 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 46.1664 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 56.4957
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 46.0305 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 56.3756
|
||||
step=30 time=30
|
||||
Primary solution summary: L2-norm : 0.0498864
|
||||
Max X-displacement : 0.1355 node 203
|
||||
@ -363,8 +363,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.46773 (f,u)+(t,u) = 6.089675887
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 113.981
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 59.6792 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 48.159 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 58.9381
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 48.0289 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 58.8231
|
||||
step=31 time=31
|
||||
Primary solution summary: L2-norm : 0.0515628
|
||||
Max X-displacement : 0.143813 node 203
|
||||
@ -374,8 +374,8 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.56547 (f,u)+(t,u) = 6.581627107
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 117.641
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 61.4328 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 50.299 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 61.561
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 50.175 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 61.4516
|
||||
step=32 time=32
|
||||
Primary solution summary: L2-norm : 0.0533651
|
||||
Max X-displacement : 0.157218 node 203
|
||||
@ -385,6 +385,6 @@ Number of unknowns 497
|
||||
External energy: ((f,u^h)+(t,u^h))^0.5 : 2.67699 (f,u)+(t,u) = 7.166287043
|
||||
Stress norm, L2: (sigma^h,sigma^h)^0.5 : 121.416
|
||||
Pressure norm, L2: (p^h,p^h)^0.5 : 63.1084 (p^h = trace(sigma^h)/3)
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 52.9715 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 64.8369
|
||||
Deviatoric stress norm: (s^d,s^d)^0.5 : 52.8559 (s^d = sigma^h - p^h\*I)
|
||||
Stress norm, von Mises: vm(sigma^h) : 64.735
|
||||
step=33 time=33
|
||||
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user