IFEM/doc/jerk_matrix.tex
2019-01-17 10:46:41 +01:00

100 lines
12 KiB
TeX

\documentclass[twoside, 11pt, a4paper]{article}
\usepackage[utf8]{inputenc}
\usepackage{amsmath,amsfonts,amssymb,graphicx,parskip}
\usepackage{mathpazo}
\usepackage{color}
\usepackage[margin=1in]{geometry}
%\usepackage{fourierx} % eller lmodern
% for debug utskrift
\newcommand{\debug}[1]{\texttt{#1}}
% for ingen utskrift av kommentarer/debug
%\newcommand{\debug}[1]{}
\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\erfc}{erfc}
\DeclareMathOperator{\eps}{\epsilon}
\newcommand{\dee}{\mathrm{d}}
\begin{document}
Jacobian:
\[
\begin{split}
\frac{\partial u}{\partial x} &= \frac{\partial u}{\partial\xi}\frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial\eta}\frac{\partial \eta}{\partial x} \\
\frac{\partial u}{\partial y} &= \frac{\partial u}{\partial\xi}\frac{\partial \xi}{\partial y} + \frac{\partial u}{\partial\eta}\frac{\partial \eta}{\partial y}
\end{split}
\]
Hessian:
\[
\begin{split}
\frac{\partial^2 u}{\partial x^2} &= \frac{\partial}{\partial\xi}\left(\frac{\partial u}{\partial\xi}\frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial\eta}\frac{\partial \eta}{\partial x}\right)\frac{\partial\xi}{\partial x} \\
&+ \frac{\partial}{\partial\eta}\left(\frac{\partial u}{\partial\xi}\frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial\eta}\frac{\partial \eta}{\partial x}\right)\frac{\partial\eta}{\partial x} \\
&= \left(\frac{\partial^2u}{\partial\xi^2}\frac{\partial\xi}{\partial x}+\frac{\partial u}{\partial\xi}\frac{\partial^2\xi}{\partial x\partial\xi} + \frac{\partial^2u}{\partial\xi\partial\eta}\frac{\partial\eta}{\partial x}+\frac{\partial u}{\partial\eta}\frac{\partial^2\eta}{\partial x\partial\xi}\right)\frac{\partial\xi}{\partial x} \\
&+\left(\frac{\partial^2 u}{\partial\xi\partial\eta}\frac{\partial\xi}{\partial x} + \frac{\partial u}{\partial \xi}\frac{\partial^2\xi}{\partial\xi\partial\eta} + \frac{\partial^2 u}{\partial\eta^2}\frac{\partial\eta}{\partial x} + \frac{\partial u}{\partial\eta}\frac{\partial^2\eta}{\partial x\partial\eta}\right)\frac{\partial\eta}{\partial x} \\
&= \left(\frac{\partial^2u}{\partial\xi^2}\frac{\partial\xi}{\partial x}+\frac{\partial u}{\partial\xi}\frac{\partial\xi}{\partial x} + \frac{\partial^2u}{\partial\xi\partial\eta}\frac{\partial\eta}{\partial x}\right)\frac{\partial\xi}{\partial x} \\
&+\left(\frac{\partial^2 u}{\partial\xi\partial\eta}\frac{\partial\xi}{\partial x} + \frac{\partial^2 u}{\partial\eta^2}\frac{\partial\eta}{\partial x} + \frac{\partial u}{\partial\eta}\frac{\partial\eta}{\partial x}\right)\frac{\partial\eta}{\partial x} \\
&= \frac{\partial^2u}{\partial \xi^2}\left(\frac{\partial\xi}{\partial x}\right)^2 + \frac{\partial^2u}{\partial \eta^2}\left(\frac{\partial\eta}{\partial x}\right)^2 + 2 \frac{\partial^2u}{\partial\xi\partial\eta}\frac{\partial\xi}{\partial x}\frac{\partial\eta}{\partial x}
\end{split}
\]
\[
\begin{split}
\frac{\partial^2 u}{\partial y^2} &= \frac{\partial}{\partial\xi}\left(\frac{\partial u}{\partial\xi}\frac{\partial \xi}{\partial y} + \frac{\partial u}{\partial\eta}\frac{\partial \eta}{\partial y}\right)\frac{\partial\xi}{\partial y} \\
&+ \frac{\partial}{\partial\eta}\left(\frac{\partial u}{\partial\xi}\frac{\partial \xi}{\partial y} + \frac{\partial u}{\partial\eta}\frac{\partial \eta}{\partial y}\right)\frac{\partial\eta}{\partial y} \\
&= \left(\frac{\partial^2u}{\partial\xi^2}\frac{\partial\xi}{\partial y} + \frac{\partial u}{\partial\xi}\frac{\partial^2\xi}{\partial\xi\partial y} + \frac{\partial^2u}{\partial\xi\partial\eta}\frac{\partial\eta}{\partial y}+\frac{\partial u}{\partial\eta}\frac{\partial^2\eta}{\partial\xi\partial y}\right)\frac{\partial\xi}{\partial y} \\
&+\left(\frac{\partial^2u}{\partial\xi\partial\eta}\frac{\partial\xi}{\partial y} + \frac{\partial u}{\partial\xi}\frac{\partial^2\xi}{\partial \eta\partial y} + \frac{\partial^2 u}{\partial\eta^2}\frac{\partial\eta}{\partial y} + \frac{\partial u}{\partial\eta}\frac{\partial^2\eta}{\partial\eta\partial y}\right)\frac{\partial\eta}{\partial y} \\
&= \frac{\partial^2 u}{\partial\xi^2}\left(\frac{\partial\xi}{\partial y}\right)^2 + \frac{\partial^2u}{\partial\eta^2}\left(\frac{\partial\eta}{\partial y}\right)^2 + 2\frac{\partial^2u}{\partial\xi\partial\eta}\frac{\partial\xi}{\partial y}\frac{\partial\eta}{\partial y}
\end{split}
\]
\newpage
\[
\begin{split}
\frac{\partial^2 u}{\partial x\partial y} &= \frac{\partial}{\partial\xi}\left(\frac{\partial u}{\partial\xi}\frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial\eta}\frac{\partial \eta}{\partial x}\right)\frac{\partial\xi}{\partial y} \\
&+ \frac{\partial}{\partial\eta}\left(\frac{\partial u}{\partial\xi}\frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial\eta}\frac{\partial \eta}{\partial x}\right)\frac{\partial\eta}{\partial y} \\
&= \left(\frac{\partial^2u}{\partial\xi^2}\frac{\partial\xi}{\partial x} + \frac{\partial u}{\partial \xi}\frac{\partial^2\xi}{\partial\xi\partial x} + \frac{\partial^2u}{\partial\xi\partial\eta}\frac{\partial\eta}{\partial x} + \frac{\partial u}{\partial\eta}\frac{\partial^2\eta}{\partial\xi\partial x}\right)\frac{\partial\xi}{\partial y} \\
&+ \left(\frac{\partial^2u}{\partial\xi\partial\eta}\frac{\partial\xi}{\partial x}+\frac{\partial u}{\partial\xi}\frac{\partial^2\xi}{\partial\eta\partial x} + \frac{\partial^2u}{\partial\eta^2}\frac{\partial\eta}{\partial x} + \frac{\partial u}{\partial\eta}\frac{\partial^2\eta}{\partial\eta\partial x}\right)\frac{\partial\eta}{\partial y} \\
&= \frac{\partial^2u}{\partial\xi^2}\frac{\partial\xi}{\partial x}\frac{\partial\xi}{\partial y} + \frac{\partial^2u}{\partial\xi\partial\eta}\frac{\partial\eta}{\partial x}\frac{\partial\xi}{\partial y}
+ \frac{\partial^2u}{\partial\eta^2}\frac{\partial\xi}{\partial x}\frac{\partial \eta}{\partial y} + \frac{\partial^2 u}{\partial \xi\partial\eta}\frac{\partial\xi}{\partial x}\frac{\partial\eta}{\partial y}
\end{split}
\]
Jerk matrix:
\[
\begin{split}
\frac{\partial^3u}{\partial x^3} &= \frac{\partial}{\partial\xi}\left(\frac{\partial^2u}{\partial \xi^2}\left(\frac{\partial\xi}{\partial x}\right)^2 + \frac{\partial^2u}{\partial \eta^2}\left(\frac{\partial\eta}{\partial x}\right)^2 + 2 \frac{\partial^2u}{\partial\xi\partial\eta}\frac{\partial\xi}{\partial x}\frac{\partial\eta}{\partial x}\right)\frac{\partial\xi}{\partial x} \\
&+\frac{\partial}{\partial\eta}\left(\frac{\partial^2u}{\partial \xi^2}\left(\frac{\partial\xi}{\partial x}\right)^2 + \frac{\partial^2u}{\partial \eta^2}\left(\frac{\partial\eta}{\partial x}\right)^2 + 2 \frac{\partial^2u}{\partial\xi\partial\eta}\frac{\partial\xi}{\partial x}\frac{\partial\eta}{\partial x}\right)\frac{\partial\eta}{\partial x} \\
&= \frac{\partial^3u}{\partial\xi^3}\left(\frac{\partial\xi}{\partial x}\right)^3 + \frac{\partial^3u}{\partial \xi\partial\eta^2}\left(\frac{\partial\eta}{\partial x}\right)^2\frac{\partial\xi}{\partial x} + 2\frac{\partial^3u}{\partial\xi^2\partial\eta}\left(\frac{\partial\xi}{\partial x}\right)^2\frac{\partial\eta}{\partial x} \\
&+\frac{\partial^3u}{\partial\eta^3}\left(\frac{\partial\eta}{\partial x}\right)^3 + \frac{\partial^3u}{\partial \xi^2\partial\eta}\left(\frac{\partial\xi}{\partial x}\right)^2\frac{\partial\eta}{\partial x} + 2\frac{\partial^3u}{\partial\xi\partial\eta^2}\frac{\partial\xi}{\partial x}\left(\frac{\partial\eta}{\partial x}\right)^2
\end{split}
\]
\[
\begin{split}
\frac{\partial^3u}{\partial y^3} &= \frac{\partial}{\partial\xi}\left(\frac{\partial^2 u}{\partial\xi^2}\left(\frac{\partial\xi}{\partial y}\right)^2 + \frac{\partial^2u}{\partial\eta^2}\left(\frac{\partial\eta}{\partial y}\right)^2 + 2\frac{\partial^2u}{\partial\xi\partial\eta}\frac{\partial\xi}{\partial y}\frac{\partial\eta}{\partial y}\right)\frac{\partial\xi}{\partial y} \\
&+\frac{\partial}{\partial\eta}\left(\frac{\partial^2 u}{\partial\xi^2}\left(\frac{\partial\xi}{\partial y}\right)^2 + \frac{\partial^2u}{\partial\eta^2}\left(\frac{\partial\eta}{\partial y}\right)^2 + 2\frac{\partial^2u}{\partial\xi\partial\eta}\frac{\partial\xi}{\partial y}\frac{\partial\eta}{\partial y}\right)\frac{\partial\eta}{\partial y} \\
&= \frac{\partial^3u}{\partial\xi^3}\left(\frac{\partial\xi}{\partial y}\right)^3 + \frac{\partial u^3}{\partial\xi\partial\eta^2}\left(\frac{\partial\eta}{\partial y}\right)^2\frac{\partial\xi}{\partial y} + 2 \frac{\partial^3u}{\partial\xi^2\partial\eta}\left(\frac{\partial\xi}{\partial y}\right)^2\frac{\partial\eta}{\partial y} \\
&+ \frac{\partial^3 u}{\partial\xi^2\partial\eta}\left(\frac{\partial\xi}{\partial y}\right)^2\frac{\partial\eta}{\partial y} + \frac{\partial^3 u}{\partial\eta^3}\left(\frac{\partial \xi}{\partial y}\right)^3 + 2\frac{\partial^3u}{\partial\xi\partial\eta^2}\frac{\partial\xi}{\partial y}\left(\frac{\partial\eta}{\partial y}\right)^2
\end{split}
\]
\newpage
\[
\begin{split}
\frac{\partial^3u}{\partial x^2\partial y} &= \frac{\partial}{\partial\xi}\left(\frac{\partial^2u}{\partial \xi^2}\left(\frac{\partial\xi}{\partial x}\right)^2 + \frac{\partial^2u}{\partial \eta^2}\left(\frac{\partial\eta}{\partial x}\right)^2 + 2 \frac{\partial^2u}{\partial\xi\partial\eta}\frac{\partial\xi}{\partial x}\frac{\partial\eta}{\partial x}\right)\frac{\partial\xi}{\partial y} \\
&+\frac{\partial}{\partial\eta}\left(\frac{\partial^2u}{\partial \xi^2}\left(\frac{\partial\xi}{\partial x}\right)^2 + \frac{\partial^2u}{\partial \eta^2}\left(\frac{\partial\eta}{\partial x}\right)^2 + 2 \frac{\partial^2u}{\partial\xi\partial\eta}\frac{\partial\xi}{\partial x}\frac{\partial\eta}{\partial x}\right)\frac{\partial\eta}{\partial y} \\
&= \frac{\partial^3u}{\partial\xi^3}\left(\frac{\partial\xi}{\partial x}\right)^2\frac{\partial\xi}{\partial y} + \frac{\partial^3u}{\partial\xi\partial\eta^2}\left(\frac{\partial\eta}{\partial x}\right)^2\frac{\partial\xi}{\partial y} + 2\frac{\partial^3u}{\partial\xi^2\partial\eta}\frac{\partial\xi}{\partial x}\frac{\partial\xi}{\partial y}\frac{\partial\eta}{\partial x} \\
&+ \frac{\partial^3u}{\partial\xi^2\partial\eta}\left(\frac{\partial\xi}{\partial x}\right)^2\frac{\partial\eta}{\partial y}+\frac{\partial^3u}{\partial\eta^3}\left(\frac{\partial\eta}{\partial x}\right)^2\frac{\partial\eta}{\partial y} + 2\frac{\partial^3u}{\partial\xi\partial\eta^2}\frac{\partial\xi}{\partial x}\frac{\partial\eta}{\partial x}\frac{\partial\eta}{\partial y}
\end{split}
\]
\[
\begin{split}
\frac{\partial^3u}{\partial x\partial y^2} &= \frac{\partial}{\partial\xi}\left(\frac{\partial^2 u}{\partial\xi^2}\left(\frac{\partial\xi}{\partial y}\right)^2 + \frac{\partial^2u}{\partial\eta^2}\left(\frac{\partial\eta}{\partial y}\right)^2 + 2\frac{\partial^2u}{\partial\xi\partial\eta}\frac{\partial\xi}{\partial y}\frac{\partial\eta}{\partial y}\right)\frac{\partial\xi}{\partial x} \\
&+\frac{\partial}{\partial\eta}\left(\frac{\partial^2 u}{\partial\xi^2}\left(\frac{\partial\xi}{\partial y}\right)^2 + \frac{\partial^2u}{\partial\eta^2}\left(\frac{\partial\eta}{\partial y}\right)^2 + 2\frac{\partial^2u}{\partial\xi\partial\eta}\frac{\partial\xi}{\partial y}\frac{\partial\eta}{\partial y}\right)\frac{\partial\eta}{\partial x} \\
&= \frac{\partial^3u}{\partial\xi^3}\frac{\partial\xi}{\partial x}\left(\frac{\partial\xi}{\partial y}\right)^2 + \frac{\partial^3u}{\partial\xi\partial\eta^2}\frac{\partial \xi}{\partial x}\left(\frac{\partial\eta}{\partial y}\right)^2 + 2\frac{\partial^3u}{\partial\xi^2\partial\eta}\frac{\partial\xi}{\partial x}\frac{\partial\xi}{\partial y}\frac{\partial\eta}{\partial y} \\
&+ \frac{\partial^3u}{\partial\xi^2\partial\eta}\left(\frac{\partial\xi}{\partial y}\right)^2\frac{\partial\eta}{\partial x} + \frac{\partial^3u}{\partial\eta^3}\frac{\partial\eta}{\partial x}\left(\frac{\partial\eta}{\partial y}\right)^2 + 2\frac{\partial^3u}{\partial\xi\partial\eta^2}\frac{\partial\xi}{\partial y}\frac{\partial\eta}{\partial x}\frac{\partial\eta}{\partial y}
\end{split}
\]
\end{document}