Files
LBPM/hip/Ion.cu

653 lines
24 KiB
Plaintext
Raw Normal View History

2021-02-12 10:23:19 -05:00
#include <stdio.h>
#include <math.h>
#include "hip/hip_runtime.h"
#define NBLOCKS 1024
#define NTHREADS 256
2022-03-21 19:53:05 -04:00
__global__ void dvc_ScaLBL_D3Q7_Membrane_AssignLinkCoef(int *membrane, int *Map, double *Distance, double *Psi, double *coef,
double Threshold, double MassFractionIn, double MassFractionOut, double ThresholdMassFractionIn, double ThresholdMassFractionOut,
int memLinks, int Nx, int Ny, int Nz, int Np){
int link,iq,ip,nq,np,nqm,npm;
double aq, ap, membranePotential;
/* Interior Links */
int S = memLinks/NBLOCKS/NTHREADS + 1;
for (int s=0; s<S; s++){
//........Get 1-D index for this thread....................
link = S*blockIdx.x*blockDim.x + s*blockDim.x + threadIdx.x;
if (link < memLinks) {
// inside //outside
aq = MassFractionIn; ap = MassFractionOut;
iq = membrane[2*link]; ip = membrane[2*link+1];
nq = iq%Np; np = ip%Np;
nqm = Map[nq]; npm = Map[np]; // strided layout
/* membrane potential for this link */
membranePotential = Psi[nqm] - Psi[npm];
if (membranePotential > Threshold){
aq = ThresholdMassFractionIn; ap = ThresholdMassFractionOut;
}
/* Save the mass transfer coefficients */
coef[2*link] = aq; coef[2*link+1] = ap;
}
}
}
__global__ void dvc_ScaLBL_D3Q7_Membrane_AssignLinkCoef_halo(
const int Cqx, const int Cqy, int const Cqz,
int *Map, double *Distance, double *Psi, double Threshold,
double MassFractionIn, double MassFractionOut, double ThresholdMassFractionIn, double ThresholdMassFractionOut,
int *d3q7_recvlist, int *d3q7_linkList, double *coef, int start, int nlinks, int count,
const int N, const int Nx, const int Ny, const int Nz) {
//....................................................................................
// Unack distribution from the recv buffer
// Distribution q matche Cqx, Cqy, Cqz
// swap rule means that the distributions in recvbuf are OPPOSITE of q
// dist may be even or odd distributions stored by stream layout
//....................................................................................
int n, idx, link, nqm, npm, i, j, k;
double distanceLocal, distanceNonlocal;
double psiLocal, psiNonlocal, membranePotential;
double ap,aq; // coefficient
/* second enforce custom rule for membrane links */
int S = (count-nlinks)/NBLOCKS/NTHREADS + 1;
for (int s=0; s<S; s++){
//........Get 1-D index for this thread....................
link = S*blockIdx.x*blockDim.x + s*blockDim.x + threadIdx.x + nlinks;
if (link < count) {
// get the index for the recv list (deal with reordering of links)
idx = d3q7_linkList[link]; // THINK start NEEDS TO BE HERE
// get the distribution index
n = d3q7_recvlist[start+idx];
// get the index in strided layout
nqm = Map[n];
distanceLocal = Distance[nqm];
psiLocal = Psi[nqm];
// Get the 3-D indices from the send process
k = nqm/(Nx*Ny); j = (nqm-Nx*Ny*k)/Nx; i = nqm-Nx*Ny*k-Nx*j;
// Streaming link the non-local distribution
i -= Cqx; j -= Cqy; k -= Cqz;
npm = k*Nx*Ny + j*Nx + i;
distanceNonlocal = Distance[npm];
psiNonlocal = Psi[npm];
membranePotential = psiLocal - psiNonlocal;
aq = MassFractionIn;
ap = MassFractionOut;
/* link is inside membrane */
if (distanceLocal > 0.0){
if (membranePotential < Threshold*(-1.0)){
ap = MassFractionIn;
aq = MassFractionOut;
}
else {
ap = ThresholdMassFractionIn;
aq = ThresholdMassFractionOut;
}
}
else if (membranePotential > Threshold){
aq = ThresholdMassFractionIn;
ap = ThresholdMassFractionOut;
}
// update link based on mass transfer coefficients
coef[2*(link-nlinks)] = aq;
coef[2*(link-nlinks)+1] = ap;
}
}
}
__global__ void dvc_ScaLBL_D3Q7_Membrane_Unpack(int q,
int *d3q7_recvlist, int *d3q7_linkList, int start, int nlinks, int count,
double *recvbuf, double *dist, int N, double *coef) {
//....................................................................................
// Unack distribution from the recv buffer
// Distribution q matche Cqx, Cqy, Cqz
// swap rule means that the distributions in recvbuf are OPPOSITE of q
// dist may be even or odd distributions stored by stream layout
//....................................................................................
int n, idx, link;
double fq,fp,fqq,ap,aq; // coefficient
/* second enforce custom rule for membrane links */
int S = count/NBLOCKS/NTHREADS + 1;
for (int s=0; s<S; s++){
//........Get 1-D index for this thread....................
link = S*blockIdx.x*blockDim.x + s*blockDim.x + threadIdx.x;
/* First unpack the regular links */
if (link < nlinks) {
// get the index for the recv list (deal with reordering of links)
idx = d3q7_linkList[link];
// get the distribution index
n = d3q7_recvlist[start+idx];
if (!(n < 0)){
fp = recvbuf[start + idx];
dist[q * N + n] = fp;
}
}
else if (link < count){
/* second enforce custom rule for membrane links */
// get the index for the recv list (deal with reordering of links)
idx = d3q7_linkList[link];
// get the distribution index
n = d3q7_recvlist[start+idx];
// update link based on mass transfer coefficients
if (!(n < 0)){
aq = coef[2*(link-nlinks)];
ap = coef[2*(link-nlinks)+1];
fq = dist[q * N + n];
fp = recvbuf[start + idx];
fqq = (1-aq)*fq+ap*fp;
dist[q * N + n] = fqq;
}
}
}
}
__global__ void dvc_ScaLBL_D3Q7_Membrane_IonTransport(int *membrane, double *coef,
double *dist, double *Den, int memLinks, int Np){
int link,iq,ip,nq,np;
double aq, ap, fq, fp, fqq, fpp, Cq, Cp;
int S = memLinks/NBLOCKS/NTHREADS + 1;
for (int s=0; s<S; s++){
//........Get 1-D index for this thread....................
link = S*blockIdx.x*blockDim.x + s*blockDim.x + threadIdx.x;
if (link < memLinks){
// inside //outside
aq = coef[2*link]; ap = coef[2*link+1];
iq = membrane[2*link]; ip = membrane[2*link+1];
nq = iq%Np; np = ip%Np;
fq = dist[iq]; fp = dist[ip];
fqq = (1-aq)*fq+ap*fp; fpp = (1-ap)*fp+ap*fq;
Cq = Den[nq]; Cp = Den[np];
Cq += fqq - fq; Cp += fpp - fp;
Den[nq] = Cq; Den[np] = Cp;
dist[iq] = fqq; dist[ip] = fpp;
}
}
}
2021-02-12 10:23:19 -05:00
__global__ void dvc_ScaLBL_D3Q7_AAodd_IonConcentration(int *neighborList, double *dist, double *Den, int start, int finish, int Np){
int n,nread;
double fq,Ci;
int S = Np/NBLOCKS/NTHREADS + 1;
for (int s=0; s<S; s++){
//........Get 1-D index for this thread....................
n = S*blockIdx.x*blockDim.x + s*blockDim.x + threadIdx.x + start;
if (n<finish) {
// q=0
fq = dist[n];
Ci = fq;
// q=1
nread = neighborList[n];
fq = dist[nread];
Ci += fq;
// q=2
nread = neighborList[n+Np];
fq = dist[nread];
Ci += fq;
// q=3
nread = neighborList[n+2*Np];
fq = dist[nread];
Ci += fq;
// q=4
nread = neighborList[n+3*Np];
fq = dist[nread];
Ci += fq;
// q=5
nread = neighborList[n+4*Np];
fq = dist[nread];
Ci += fq;
// q=6
nread = neighborList[n+5*Np];
fq = dist[nread];
Ci += fq;
Den[n]=Ci;
}
}
}
__global__ void dvc_ScaLBL_D3Q7_AAeven_IonConcentration(double *dist, double *Den, int start, int finish, int Np){
int n;
double fq,Ci;
int S = Np/NBLOCKS/NTHREADS + 1;
for (int s=0; s<S; s++){
//........Get 1-D index for this thread....................
n = S*blockIdx.x*blockDim.x + s*blockDim.x + threadIdx.x + start;
if (n<finish) {
// q=0
fq = dist[n];
Ci = fq;
// q=1
fq = dist[2*Np+n];
Ci += fq;
// q=2
fq = dist[1*Np+n];
Ci += fq;
// q=3
fq = dist[4*Np+n];
Ci += fq;
// q=4
fq = dist[3*Np+n];
Ci += fq;
// q=5
fq = dist[6*Np+n];
Ci += fq;
// q=6
fq = dist[5*Np+n];
Ci += fq;
Den[n]=Ci;
}
}
}
__global__ void dvc_ScaLBL_D3Q7_AAodd_Ion(int *neighborList, double *dist, double *Den, double *FluxDiffusive, double *FluxAdvective, double *FluxElectrical, double *Velocity, double *ElectricField,
2021-02-12 10:23:19 -05:00
double Di, int zi, double rlx, double Vt, int start, int finish, int Np){
int n;
double Ci;
double ux,uy,uz;
double uEPx,uEPy,uEPz;//electrochemical induced velocity
double Ex,Ey,Ez;//electrical field
double flux_diffusive_x,flux_diffusive_y,flux_diffusive_z;
2021-02-12 10:23:19 -05:00
double f0,f1,f2,f3,f4,f5,f6;
int nr1,nr2,nr3,nr4,nr5,nr6;
int S = Np/NBLOCKS/NTHREADS + 1;
for (int s=0; s<S; s++){
//........Get 1-D index for this thread....................
n = S*blockIdx.x*blockDim.x + s*blockDim.x + threadIdx.x + start;
if (n<finish) {
//Load data
Ci=Den[n];
Ex=ElectricField[n+0*Np];
Ey=ElectricField[n+1*Np];
Ez=ElectricField[n+2*Np];
ux=Velocity[n+0*Np];
uy=Velocity[n+1*Np];
uz=Velocity[n+2*Np];
uEPx=zi*Di/Vt*Ex;
uEPy=zi*Di/Vt*Ey;
uEPz=zi*Di/Vt*Ez;
// q=0
f0 = dist[n];
// q=1
nr1 = neighborList[n]; // neighbor 2 ( > 10Np => odd part of dist)
f1 = dist[nr1]; // reading the f1 data into register fq
// q=2
nr2 = neighborList[n+Np]; // neighbor 1 ( < 10Np => even part of dist)
f2 = dist[nr2]; // reading the f2 data into register fq
// q=3
nr3 = neighborList[n+2*Np]; // neighbor 4
f3 = dist[nr3];
// q=4
nr4 = neighborList[n+3*Np]; // neighbor 3
f4 = dist[nr4];
// q=5
nr5 = neighborList[n+4*Np];
f5 = dist[nr5];
// q=6
nr6 = neighborList[n+5*Np];
f6 = dist[nr6];
// compute diffusive flux
flux_diffusive_x = (1.0-0.5*rlx)*((f1-f2)-ux*Ci);
flux_diffusive_y = (1.0-0.5*rlx)*((f3-f4)-uy*Ci);
flux_diffusive_z = (1.0-0.5*rlx)*((f5-f6)-uz*Ci);
FluxDiffusive[n+0*Np] = flux_diffusive_x;
FluxDiffusive[n+1*Np] = flux_diffusive_y;
FluxDiffusive[n+2*Np] = flux_diffusive_z;
FluxAdvective[n+0*Np] = ux*Ci;
FluxAdvective[n+1*Np] = uy*Ci;
FluxAdvective[n+2*Np] = uz*Ci;
FluxElectrical[n+0*Np] = uEPx*Ci;
FluxElectrical[n+1*Np] = uEPy*Ci;
FluxElectrical[n+2*Np] = uEPz*Ci;
2021-02-12 10:23:19 -05:00
// q=0
dist[n] = f0*(1.0-rlx)+rlx*0.25*Ci;
//dist[n] = f0*(1.0-rlx)+rlx*0.25*Ci*(1.0 - 2.0*((ux+uEPx)*(ux+uEPx) + (uy+uEPy)*(uy+uEPy) + (uz+uEPz)*(uz+uEPz)));
// q = 1
dist[nr2] = f1*(1.0-rlx) + rlx*0.125*Ci*(1.0+4.0*(ux+uEPx));
//dist[nr2] = f1*(1.0-rlx) + rlx*0.125*Ci*(1.0+4.0*(ux+uEPx)+8.0*(ux+uEPx)*(ux+uEPx)- 2.0*((ux+uEPx)*(ux+uEPx) + (uy+uEPy)*(uy+uEPy) + (uz+uEPz)*(uz+uEPz)));
// q=2
dist[nr1] = f2*(1.0-rlx) + rlx*0.125*Ci*(1.0-4.0*(ux+uEPx));
//dist[nr1] = f2*(1.0-rlx) + rlx*0.125*Ci*(1.0-4.0*(ux+uEPx)+8.0*(ux+uEPx)*(ux+uEPx)- 2.0*((ux+uEPx)*(ux+uEPx) + (uy+uEPy)*(uy+uEPy) + (uz+uEPz)*(uz+uEPz)));
// q = 3
dist[nr4] = f3*(1.0-rlx) + rlx*0.125*Ci*(1.0+4.0*(uy+uEPy));
//dist[nr4] = f3*(1.0-rlx) + rlx*0.125*Ci*(1.0+4.0*(uy+uEPy)+8.0*(uy+uEPy)*(uy+uEPy)- 2.0*((ux+uEPx)*(ux+uEPx) + (uy+uEPy)*(uy+uEPy) + (uz+uEPz)*(uz+uEPz)));
// q = 4
dist[nr3] = f4*(1.0-rlx) + rlx*0.125*Ci*(1.0-4.0*(uy+uEPy));
//dist[nr3] = f4*(1.0-rlx) + rlx*0.125*Ci*(1.0-4.0*(uy+uEPy)+8.0*(uy+uEPy)*(uy+uEPy)- 2.0*((ux+uEPx)*(ux+uEPx) + (uy+uEPy)*(uy+uEPy) + (uz+uEPz)*(uz+uEPz)));
// q = 5
dist[nr6] = f5*(1.0-rlx) + rlx*0.125*Ci*(1.0+4.0*(uz+uEPz));
//dist[nr6] = f5*(1.0-rlx) + rlx*0.125*Ci*(1.0+4.0*(uz+uEPz)+8.0*(uz+uEPz)*(uz+uEPz)- 2.0*((ux+uEPx)*(ux+uEPx) + (uy+uEPy)*(uy+uEPy) + (uz+uEPz)*(uz+uEPz)));
// q = 6
dist[nr5] = f6*(1.0-rlx) + rlx*0.125*Ci*(1.0-4.0*(uz+uEPz));
//dist[nr5] = f6*(1.0-rlx) + rlx*0.125*Ci*(1.0-4.0*(uz+uEPz)+8.0*(uz+uEPz)*(uz+uEPz)- 2.0*((ux+uEPx)*(ux+uEPx) + (uy+uEPy)*(uy+uEPy) + (uz+uEPz)*(uz+uEPz)));
}
}
}
__global__ void dvc_ScaLBL_D3Q7_AAeven_Ion(double *dist, double *Den, double *FluxDiffusive, double *FluxAdvective, double *FluxElectrical, double *Velocity, double *ElectricField,
2021-02-12 10:23:19 -05:00
double Di, int zi, double rlx, double Vt, int start, int finish, int Np){
int n;
double Ci;
double ux,uy,uz;
double uEPx,uEPy,uEPz;//electrochemical induced velocity
double Ex,Ey,Ez;//electrical field
double flux_diffusive_x,flux_diffusive_y,flux_diffusive_z;
2021-02-12 10:23:19 -05:00
double f0,f1,f2,f3,f4,f5,f6;
int S = Np/NBLOCKS/NTHREADS + 1;
for (int s=0; s<S; s++){
//........Get 1-D index for this thread....................
n = S*blockIdx.x*blockDim.x + s*blockDim.x + threadIdx.x + start;
if (n<finish) {
//Load data
Ci=Den[n];
Ex=ElectricField[n+0*Np];
Ey=ElectricField[n+1*Np];
Ez=ElectricField[n+2*Np];
ux=Velocity[n+0*Np];
uy=Velocity[n+1*Np];
uz=Velocity[n+2*Np];
uEPx=zi*Di/Vt*Ex;
uEPy=zi*Di/Vt*Ey;
uEPz=zi*Di/Vt*Ez;
f0 = dist[n];
f1 = dist[2*Np+n];
f2 = dist[1*Np+n];
f3 = dist[4*Np+n];
f4 = dist[3*Np+n];
f5 = dist[6*Np+n];
f6 = dist[5*Np+n];
// compute diffusive flux
flux_diffusive_x = (1.0-0.5*rlx)*((f1-f2)-ux*Ci);
flux_diffusive_y = (1.0-0.5*rlx)*((f3-f4)-uy*Ci);
flux_diffusive_z = (1.0-0.5*rlx)*((f5-f6)-uz*Ci);
FluxDiffusive[n+0*Np] = flux_diffusive_x;
FluxDiffusive[n+1*Np] = flux_diffusive_y;
FluxDiffusive[n+2*Np] = flux_diffusive_z;
FluxAdvective[n+0*Np] = ux*Ci;
FluxAdvective[n+1*Np] = uy*Ci;
FluxAdvective[n+2*Np] = uz*Ci;
FluxElectrical[n+0*Np] = uEPx*Ci;
FluxElectrical[n+1*Np] = uEPy*Ci;
FluxElectrical[n+2*Np] = uEPz*Ci;
2021-02-12 10:23:19 -05:00
// q=0
dist[n] = f0*(1.0-rlx)+rlx*0.25*Ci;
//dist[n] = f0*(1.0-rlx)+rlx*0.25*Ci*(1.0 - 2.0*((ux+uEPx)*(ux+uEPx) + (uy+uEPy)*(uy+uEPy) + (uz+uEPz)*(uz+uEPz)));
// q = 1
dist[1*Np+n] = f1*(1.0-rlx) + rlx*0.125*Ci*(1.0+4.0*(ux+uEPx));
//dist[1*Np+n] = f1*(1.0-rlx) + rlx*0.125*Ci*(1.0+4.0*(ux+uEPx)+8.0*(ux+uEPx)*(ux+uEPx)- 2.0*((ux+uEPx)*(ux+uEPx) + (uy+uEPy)*(uy+uEPy) + (uz+uEPz)*(uz+uEPz)));
// q=2
dist[2*Np+n] = f2*(1.0-rlx) + rlx*0.125*Ci*(1.0-4.0*(ux+uEPx));
//dist[2*Np+n] = f2*(1.0-rlx) + rlx*0.125*Ci*(1.0-4.0*(ux+uEPx)+8.0*(ux+uEPx)*(ux+uEPx)- 2.0*((ux+uEPx)*(ux+uEPx) + (uy+uEPy)*(uy+uEPy) + (uz+uEPz)*(uz+uEPz)));
// q = 3
dist[3*Np+n] = f3*(1.0-rlx) + rlx*0.125*Ci*(1.0+4.0*(uy+uEPy));
//dist[3*Np+n] = f3*(1.0-rlx) + rlx*0.125*Ci*(1.0+4.0*(uy+uEPy)+8.0*(uy+uEPy)*(uy+uEPy)- 2.0*((ux+uEPx)*(ux+uEPx) + (uy+uEPy)*(uy+uEPy) + (uz+uEPz)*(uz+uEPz)));
// q = 4
dist[4*Np+n] = f4*(1.0-rlx) + rlx*0.125*Ci*(1.0-4.0*(uy+uEPy));
//dist[4*Np+n] = f4*(1.0-rlx) + rlx*0.125*Ci*(1.0-4.0*(uy+uEPy)+8.0*(uy+uEPy)*(uy+uEPy)- 2.0*((ux+uEPx)*(ux+uEPx) + (uy+uEPy)*(uy+uEPy) + (uz+uEPz)*(uz+uEPz)));
// q = 5
dist[5*Np+n] = f5*(1.0-rlx) + rlx*0.125*Ci*(1.0+4.0*(uz+uEPz));
//dist[5*Np+n] = f5*(1.0-rlx) + rlx*0.125*Ci*(1.0+4.0*(uz+uEPz)+8.0*(uz+uEPz)*(uz+uEPz)- 2.0*((ux+uEPx)*(ux+uEPx) + (uy+uEPy)*(uy+uEPy) + (uz+uEPz)*(uz+uEPz)));
// q = 6
dist[6*Np+n] = f6*(1.0-rlx) + rlx*0.125*Ci*(1.0-4.0*(uz+uEPz));
//dist[6*Np+n] = f6*(1.0-rlx) + rlx*0.125*Ci*(1.0-4.0*(uz+uEPz)+8.0*(uz+uEPz)*(uz+uEPz)- 2.0*((ux+uEPx)*(ux+uEPx) + (uy+uEPy)*(uy+uEPy) + (uz+uEPz)*(uz+uEPz)));
}
}
}
__global__ void dvc_ScaLBL_D3Q7_Ion_Init(double *dist, double *Den, double DenInit, int Np){
int n;
int S = Np/NBLOCKS/NTHREADS + 1;
for (int s=0; s<S; s++){
//........Get 1-D index for this thread....................
n = S*blockIdx.x*blockDim.x + s*blockDim.x + threadIdx.x;
if (n<Np) {
dist[0*Np+n] = 0.25*DenInit;
dist[1*Np+n] = 0.125*DenInit;
dist[2*Np+n] = 0.125*DenInit;
dist[3*Np+n] = 0.125*DenInit;
dist[4*Np+n] = 0.125*DenInit;
dist[5*Np+n] = 0.125*DenInit;
dist[6*Np+n] = 0.125*DenInit;
Den[n] = DenInit;
}
}
}
__global__ void dvc_ScaLBL_D3Q7_Ion_Init_FromFile(double *dist, double *Den, int Np){
int n;
double DenInit;
int S = Np/NBLOCKS/NTHREADS + 1;
for (int s=0; s<S; s++){
//........Get 1-D index for this thread....................
n = S*blockIdx.x*blockDim.x + s*blockDim.x + threadIdx.x;
if (n<Np) {
DenInit = Den[n];
dist[0*Np+n] = 0.25*DenInit;
dist[1*Np+n] = 0.125*DenInit;
dist[2*Np+n] = 0.125*DenInit;
dist[3*Np+n] = 0.125*DenInit;
dist[4*Np+n] = 0.125*DenInit;
dist[5*Np+n] = 0.125*DenInit;
dist[6*Np+n] = 0.125*DenInit;
}
}
}
__global__ void dvc_ScaLBL_D3Q7_Ion_ChargeDensity(double *Den, double *ChargeDensity, int IonValence, int ion_component, int start, int finish, int Np){
int n;
double Ci;//ion concentration of species i
double CD;//charge density
double CD_tmp;
double F = 96485.0;//Faraday's constant; unit[C/mol]; F=e*Na, where Na is the Avogadro constant
int S = Np/NBLOCKS/NTHREADS + 1;
for (int s=0; s<S; s++){
//........Get 1-D index for this thread....................
n = S*blockIdx.x*blockDim.x + s*blockDim.x + threadIdx.x + start;
if (n<finish) {
Ci = Den[n+ion_component*Np];
CD = ChargeDensity[n];
CD_tmp = F*IonValence*Ci;
ChargeDensity[n] = CD*(ion_component>0) + CD_tmp;
}
}
}
extern "C" void ScaLBL_D3Q7_AAodd_IonConcentration(int *neighborList, double *dist, double *Den, int start, int finish, int Np){
//cudaProfilerStart();
dvc_ScaLBL_D3Q7_AAodd_IonConcentration<<<NBLOCKS,NTHREADS >>>(neighborList,dist,Den,start,finish,Np);
hipError_t err = hipGetLastError();
if (hipSuccess != err){
printf("hip error in ScaLBL_D3Q7_AAodd_IonConcentration: %s \n",hipGetErrorString(err));
}
//cudaProfilerStop();
}
extern "C" void ScaLBL_D3Q7_AAeven_IonConcentration(double *dist, double *Den, int start, int finish, int Np){
//cudaProfilerStart();
dvc_ScaLBL_D3Q7_AAeven_IonConcentration<<<NBLOCKS,NTHREADS >>>(dist,Den,start,finish,Np);
hipError_t err = hipGetLastError();
if (hipSuccess != err){
printf("hip error in ScaLBL_D3Q7_AAeven_IonConcentration: %s \n",hipGetErrorString(err));
}
//cudaProfilerStop();
}
extern "C" void ScaLBL_D3Q7_AAodd_Ion(int *neighborList, double *dist, double *Den, double *FluxDiffusive, double *FluxAdvective, double *FluxElectrical, double *Velocity, double *ElectricField,
2021-02-12 10:23:19 -05:00
double Di, int zi, double rlx, double Vt, int start, int finish, int Np){
//cudaProfilerStart();
dvc_ScaLBL_D3Q7_AAodd_Ion<<<NBLOCKS,NTHREADS >>>(neighborList,dist,Den,FluxDiffusive,FluxAdvective,FluxElectrical,Velocity,ElectricField,Di,zi,rlx,Vt,start,finish,Np);
2021-02-12 10:23:19 -05:00
hipError_t err = hipGetLastError();
if (hipSuccess != err){
printf("hip error in ScaLBL_D3Q7_AAodd_Ion: %s \n",hipGetErrorString(err));
}
//cudaProfilerStop();
}
extern "C" void ScaLBL_D3Q7_AAeven_Ion(double *dist, double *Den, double *FluxDiffusive, double *FluxAdvective, double *FluxElectrical, double *Velocity, double *ElectricField,
2021-02-12 10:23:19 -05:00
double Di, int zi, double rlx, double Vt, int start, int finish, int Np){
//cudaProfilerStart();
dvc_ScaLBL_D3Q7_AAeven_Ion<<<NBLOCKS,NTHREADS >>>(dist,Den,FluxDiffusive,FluxAdvective,FluxElectrical,Velocity,ElectricField,Di,zi,rlx,Vt,start,finish,Np);
2021-02-12 10:23:19 -05:00
hipError_t err = hipGetLastError();
if (hipSuccess != err){
printf("hip error in ScaLBL_D3Q7_AAeven_Ion: %s \n",hipGetErrorString(err));
}
//cudaProfilerStop();
}
extern "C" void ScaLBL_D3Q7_Ion_Init(double *dist, double *Den, double DenInit, int Np){
//cudaProfilerStart();
dvc_ScaLBL_D3Q7_Ion_Init<<<NBLOCKS,NTHREADS >>>(dist,Den,DenInit,Np);
hipError_t err = hipGetLastError();
if (hipSuccess != err){
printf("hip error in ScaLBL_D3Q7_Ion_Init: %s \n",hipGetErrorString(err));
}
//cudaProfilerStop();
}
extern "C" void ScaLBL_D3Q7_Ion_Init_FromFile(double *dist, double *Den, int Np){
//cudaProfilerStart();
dvc_ScaLBL_D3Q7_Ion_Init_FromFile<<<NBLOCKS,NTHREADS >>>(dist,Den,Np);
hipError_t err = hipGetLastError();
if (hipSuccess != err){
printf("hip error in ScaLBL_D3Q7_Ion_Init_FromFile: %s \n",hipGetErrorString(err));
}
//cudaProfilerStop();
}
extern "C" void ScaLBL_D3Q7_Ion_ChargeDensity(double *Den, double *ChargeDensity, int IonValence, int ion_component, int start, int finish, int Np){
//cudaProfilerStart();
dvc_ScaLBL_D3Q7_Ion_ChargeDensity<<<NBLOCKS,NTHREADS >>>(Den,ChargeDensity,IonValence,ion_component,start,finish,Np);
hipError_t err = hipGetLastError();
if (hipSuccess != err){
printf("hip error in ScaLBL_D3Q7_Ion_ChargeDensity: %s \n",hipGetErrorString(err));
}
//cudaProfilerStop();
}
2022-03-21 19:53:05 -04:00
extern "C" void ScaLBL_D3Q7_Membrane_AssignLinkCoef(int *membrane, int *Map, double *Distance, double *Psi, double *coef,
double Threshold, double MassFractionIn, double MassFractionOut, double ThresholdMassFractionIn, double ThresholdMassFractionOut,
int memLinks, int Nx, int Ny, int Nz, int Np){
dvc_ScaLBL_D3Q7_Membrane_AssignLinkCoef<<<NBLOCKS,NTHREADS >>>(membrane, Map, Distance, Psi, coef,
Threshold, MassFractionIn, MassFractionOut, ThresholdMassFractionIn, ThresholdMassFractionOut,
memLinks, Nx, Ny, Nz, Np);
hipError_t err = hipGetLastError();
if (hipSuccess != err){
printf("CUDA error in dvc_ScaLBL_D3Q7_Membrane_AssignLinkCoef: %s \n",hipGetErrorString(err));
}
}
extern "C" void ScaLBL_D3Q7_Membrane_AssignLinkCoef_halo(
const int Cqx, const int Cqy, int const Cqz,
int *Map, double *Distance, double *Psi, double Threshold,
double MassFractionIn, double MassFractionOut, double ThresholdMassFractionIn, double ThresholdMassFractionOut,
int *d3q7_recvlist, int *d3q7_linkList, double *coef, int start, int nlinks, int count,
const int N, const int Nx, const int Ny, const int Nz) {
dvc_ScaLBL_D3Q7_Membrane_AssignLinkCoef_halo<<<NBLOCKS,NTHREADS >>>(
Cqx, Cqy, Cqz, Map, Distance, Psi, Threshold,
MassFractionIn, MassFractionOut, ThresholdMassFractionIn, ThresholdMassFractionOut,
d3q7_recvlist, d3q7_linkList, coef, start, nlinks, count, N, Nx, Ny, Nz);
hipError_t err = hipGetLastError();
if (hipSuccess != err){
printf("CUDA error in dvc_ScaLBL_D3Q7_Membrane_AssignLinkCoef_halo: %s \n",hipGetErrorString(err));
}
}
extern "C" void ScaLBL_D3Q7_Membrane_Unpack(int q,
int *d3q7_recvlist, int *d3q7_linkList, int start, int nlinks, int count,
double *recvbuf, double *dist, int N, double *coef) {
dvc_ScaLBL_D3Q7_Membrane_Unpack<<<NBLOCKS,NTHREADS >>>(q, d3q7_recvlist, d3q7_linkList, start, nlinks, count,
recvbuf, dist, N, coef) ;
hipError_t err = hipGetLastError();
if (hipSuccess != err){
printf("CUDA error in dvc_ScaLBL_D3Q7_Membrane_Unpack: %s \n",hipGetErrorString(err));
}
}
extern "C" void ScaLBL_D3Q7_Membrane_IonTransport(int *membrane, double *coef,
double *dist, double *Den, int memLinks, int Np){
dvc_ScaLBL_D3Q7_Membrane_IonTransport<<<NBLOCKS,NTHREADS >>>(membrane, coef, dist, Den, memLinks, Np);
hipError_t err = hipGetLastError();
if (hipSuccess != err){
printf("CUDA error in dvc_ScaLBL_D3Q7_Membrane_IonTransport: %s \n",hipGetErrorString(err));
}
}