2018-06-11 15:19:05 -04:00
|
|
|
/*
|
|
|
|
|
Copyright 2013--2018 James E. McClure, Virginia Polytechnic & State University
|
2020-10-12 06:08:29 -04:00
|
|
|
Copyright Equnior ASA
|
2018-06-11 15:19:05 -04:00
|
|
|
|
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
|
(at your option) any later version.
|
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
*/
|
2017-09-18 05:55:34 -04:00
|
|
|
#include <stdio.h>
|
|
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
extern "C" void ScaLBL_D3Q19_Pack(int q, int *list, int start, int count,
|
|
|
|
|
double *sendbuf, double *dist, int N) {
|
|
|
|
|
//....................................................................................
|
|
|
|
|
// Pack distribution q into the send buffer for the listed lattice sites
|
|
|
|
|
// dist may be even or odd distributions stored by stream layout
|
|
|
|
|
//....................................................................................
|
|
|
|
|
int idx, n;
|
|
|
|
|
for (idx = 0; idx < count; idx++) {
|
|
|
|
|
n = list[idx];
|
|
|
|
|
sendbuf[start + idx] = dist[q * N + n];
|
|
|
|
|
}
|
2013-08-26 15:12:25 -04:00
|
|
|
}
|
|
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
extern "C" void ScaLBL_D3Q19_Unpack(int q, int *list, int start, int count,
|
|
|
|
|
double *recvbuf, double *dist, int N) {
|
|
|
|
|
//....................................................................................
|
|
|
|
|
// Unack distribution from the recv buffer
|
|
|
|
|
// Distribution q matche Cqx, Cqy, Cqz
|
|
|
|
|
// swap rule means that the distributions in recvbuf are OPPOSITE of q
|
|
|
|
|
// dist may be even or odd distributions stored by stream layout
|
|
|
|
|
//....................................................................................
|
|
|
|
|
int n, idx;
|
|
|
|
|
for (idx = 0; idx < count; idx++) {
|
|
|
|
|
// Get the value from the list -- note that n is the index is from the send (non-local) process
|
|
|
|
|
n = list[start + idx];
|
|
|
|
|
// unpack the distribution to the proper location
|
|
|
|
|
if (!(n < 0))
|
|
|
|
|
dist[q * N + n] = recvbuf[start + idx];
|
|
|
|
|
//dist[q*N+n] = recvbuf[start+idx];
|
|
|
|
|
}
|
2017-09-18 05:55:34 -04:00
|
|
|
}
|
|
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
extern "C" void ScaLBL_D3Q19_AA_Init(double *f_even, double *f_odd, int Np) {
|
|
|
|
|
int n;
|
|
|
|
|
for (n = 0; n < Np; n++) {
|
|
|
|
|
f_even[n] = 0.3333333333333333;
|
|
|
|
|
f_odd[n] = 0.055555555555555555; //double(100*n)+1.f;
|
|
|
|
|
f_even[Np + n] = 0.055555555555555555; //double(100*n)+2.f;
|
|
|
|
|
f_odd[Np + n] = 0.055555555555555555; //double(100*n)+3.f;
|
|
|
|
|
f_even[2 * Np + n] = 0.055555555555555555; //double(100*n)+4.f;
|
|
|
|
|
f_odd[2 * Np + n] = 0.055555555555555555; //double(100*n)+5.f;
|
|
|
|
|
f_even[3 * Np + n] = 0.055555555555555555; //double(100*n)+6.f;
|
|
|
|
|
f_odd[3 * Np + n] = 0.0277777777777778; //double(100*n)+7.f;
|
|
|
|
|
f_even[4 * Np + n] = 0.0277777777777778; //double(100*n)+8.f;
|
|
|
|
|
f_odd[4 * Np + n] = 0.0277777777777778; //double(100*n)+9.f;
|
|
|
|
|
f_even[5 * Np + n] = 0.0277777777777778; //double(100*n)+10.f;
|
|
|
|
|
f_odd[5 * Np + n] = 0.0277777777777778; //double(100*n)+11.f;
|
|
|
|
|
f_even[6 * Np + n] = 0.0277777777777778; //double(100*n)+12.f;
|
|
|
|
|
f_odd[6 * Np + n] = 0.0277777777777778; //double(100*n)+13.f;
|
|
|
|
|
f_even[7 * Np + n] = 0.0277777777777778; //double(100*n)+14.f;
|
|
|
|
|
f_odd[7 * Np + n] = 0.0277777777777778; //double(100*n)+15.f;
|
|
|
|
|
f_even[8 * Np + n] = 0.0277777777777778; //double(100*n)+16.f;
|
|
|
|
|
f_odd[8 * Np + n] = 0.0277777777777778; //double(100*n)+17.f;
|
|
|
|
|
f_even[9 * Np + n] = 0.0277777777777778; //double(100*n)+18.f;
|
|
|
|
|
}
|
2018-01-24 10:08:43 -05:00
|
|
|
}
|
2014-01-27 11:43:24 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
extern "C" void ScaLBL_D3Q19_Init(double *dist, int Np) {
|
|
|
|
|
int n;
|
|
|
|
|
for (n = 0; n < Np; n++) {
|
|
|
|
|
dist[n] = 0.3333333333333333;
|
|
|
|
|
dist[Np + n] = 0.055555555555555555; //double(100*n)+1.f;
|
|
|
|
|
dist[2 * Np + n] = 0.055555555555555555; //double(100*n)+2.f;
|
|
|
|
|
dist[3 * Np + n] = 0.055555555555555555; //double(100*n)+3.f;
|
|
|
|
|
dist[4 * Np + n] = 0.055555555555555555; //double(100*n)+4.f;
|
|
|
|
|
dist[5 * Np + n] = 0.055555555555555555; //double(100*n)+5.f;
|
|
|
|
|
dist[6 * Np + n] = 0.055555555555555555; //double(100*n)+6.f;
|
|
|
|
|
dist[7 * Np + n] = 0.0277777777777778; //double(100*n)+7.f;
|
|
|
|
|
dist[8 * Np + n] = 0.0277777777777778; //double(100*n)+8.f;
|
|
|
|
|
dist[9 * Np + n] = 0.0277777777777778; //double(100*n)+9.f;
|
|
|
|
|
dist[10 * Np + n] = 0.0277777777777778; //double(100*n)+10.f;
|
|
|
|
|
dist[11 * Np + n] = 0.0277777777777778; //double(100*n)+11.f;
|
|
|
|
|
dist[12 * Np + n] = 0.0277777777777778; //double(100*n)+12.f;
|
|
|
|
|
dist[13 * Np + n] = 0.0277777777777778; //double(100*n)+13.f;
|
|
|
|
|
dist[14 * Np + n] = 0.0277777777777778; //double(100*n)+14.f;
|
|
|
|
|
dist[15 * Np + n] = 0.0277777777777778; //double(100*n)+15.f;
|
|
|
|
|
dist[16 * Np + n] = 0.0277777777777778; //double(100*n)+16.f;
|
|
|
|
|
dist[17 * Np + n] = 0.0277777777777778; //double(100*n)+17.f;
|
|
|
|
|
dist[18 * Np + n] = 0.0277777777777778; //double(100*n)+18.f;
|
|
|
|
|
}
|
2014-01-27 11:43:24 -05:00
|
|
|
}
|
|
|
|
|
|
2013-08-26 15:12:25 -04:00
|
|
|
//*************************************************************************
|
2021-11-08 22:58:37 +01:00
|
|
|
extern "C" void ScaLBL_D3Q19_Swap(char *ID, double *disteven, double *distodd,
|
|
|
|
|
int Nx, int Ny, int Nz) {
|
|
|
|
|
int i, j, k, n, nn, N;
|
|
|
|
|
// distributions
|
|
|
|
|
double f1, f2, f3, f4, f5, f6, f7, f8, f9;
|
|
|
|
|
double f10, f11, f12, f13, f14, f15, f16, f17, f18;
|
|
|
|
|
|
|
|
|
|
N = Nx * Ny * Nz;
|
|
|
|
|
|
|
|
|
|
for (n = 0; n < N; n++) {
|
|
|
|
|
//.......Back out the 3-D indices for node n..............
|
|
|
|
|
k = n / (Nx * Ny);
|
|
|
|
|
j = (n - Nx * Ny * k) / Nx;
|
|
|
|
|
i = n - Nx * Ny * k - Nx * j;
|
|
|
|
|
|
|
|
|
|
if (ID[n] > 0) {
|
|
|
|
|
//........................................................................
|
|
|
|
|
// Retrieve even distributions from the local node (swap convention)
|
|
|
|
|
// f0 = disteven[n]; // Does not particupate in streaming
|
|
|
|
|
f1 = distodd[n];
|
|
|
|
|
f3 = distodd[N + n];
|
|
|
|
|
f5 = distodd[2 * N + n];
|
|
|
|
|
f7 = distodd[3 * N + n];
|
|
|
|
|
f9 = distodd[4 * N + n];
|
|
|
|
|
f11 = distodd[5 * N + n];
|
|
|
|
|
f13 = distodd[6 * N + n];
|
|
|
|
|
f15 = distodd[7 * N + n];
|
|
|
|
|
f17 = distodd[8 * N + n];
|
|
|
|
|
//........................................................................
|
|
|
|
|
|
|
|
|
|
//........................................................................
|
|
|
|
|
// Retrieve odd distributions from neighboring nodes (swap convention)
|
|
|
|
|
//........................................................................
|
|
|
|
|
nn = n + 1; // neighbor index (pull convention)
|
|
|
|
|
if (!(i + 1 < Nx))
|
|
|
|
|
nn -= Nx; // periodic BC along the x-boundary
|
|
|
|
|
//if (i+1<Nx){
|
|
|
|
|
f2 = disteven[N + nn]; // pull neighbor for distribution 2
|
|
|
|
|
if (f2 > 0) {
|
|
|
|
|
distodd[n] = f2;
|
|
|
|
|
disteven[N + nn] = f1;
|
|
|
|
|
}
|
|
|
|
|
//}
|
|
|
|
|
//........................................................................
|
|
|
|
|
nn = n + Nx; // neighbor index (pull convention)
|
|
|
|
|
if (!(j + 1 < Ny))
|
|
|
|
|
nn -= Nx * Ny; // Perioidic BC along the y-boundary
|
|
|
|
|
//if (j+1<Ny){
|
|
|
|
|
f4 = disteven[2 * N + nn]; // pull neighbor for distribution 4
|
|
|
|
|
if (f4 > 0) {
|
|
|
|
|
distodd[N + n] = f4;
|
|
|
|
|
disteven[2 * N + nn] = f3;
|
|
|
|
|
// }
|
|
|
|
|
}
|
|
|
|
|
//........................................................................
|
|
|
|
|
nn = n + Nx * Ny; // neighbor index (pull convention)
|
|
|
|
|
if (!(k + 1 < Nz))
|
|
|
|
|
nn -= Nx * Ny * Nz; // Perioidic BC along the z-boundary
|
|
|
|
|
//if (k+1<Nz){
|
|
|
|
|
f6 = disteven[3 * N + nn]; // pull neighbor for distribution 6
|
|
|
|
|
if (f6 > 0) {
|
|
|
|
|
distodd[2 * N + n] = f6;
|
|
|
|
|
disteven[3 * N + nn] = f5;
|
|
|
|
|
// }
|
|
|
|
|
}
|
|
|
|
|
//........................................................................
|
|
|
|
|
nn = n + Nx + 1; // neighbor index (pull convention)
|
|
|
|
|
if (!(i + 1 < Nx))
|
|
|
|
|
nn -= Nx; // periodic BC along the x-boundary
|
|
|
|
|
if (!(j + 1 < Ny))
|
|
|
|
|
nn -= Nx * Ny; // Perioidic BC along the y-boundary
|
|
|
|
|
//if ((i+1<Nx) && (j+1<Ny)){
|
|
|
|
|
f8 = disteven[4 * N + nn]; // pull neighbor for distribution 8
|
|
|
|
|
if (f8 > 0) {
|
|
|
|
|
distodd[3 * N + n] = f8;
|
|
|
|
|
disteven[4 * N + nn] = f7;
|
|
|
|
|
// }
|
|
|
|
|
}
|
|
|
|
|
//........................................................................
|
|
|
|
|
nn = n - Nx + 1; // neighbor index (pull convention)
|
|
|
|
|
if (!(i + 1 < Nx))
|
|
|
|
|
nn -= Nx; // periodic BC along the x-boundary
|
|
|
|
|
if (j - 1 < 0)
|
|
|
|
|
nn += Nx * Ny; // Perioidic BC along the y-boundary
|
|
|
|
|
//if (!(i-1<0) && (j+1<Ny)){
|
|
|
|
|
f10 = disteven[5 * N + nn]; // pull neighbor for distribution 9
|
|
|
|
|
if (f10 > 0) {
|
|
|
|
|
distodd[4 * N + n] = f10;
|
|
|
|
|
disteven[5 * N + nn] = f9;
|
|
|
|
|
// }
|
|
|
|
|
}
|
|
|
|
|
//........................................................................
|
|
|
|
|
nn = n + Nx * Ny + 1; // neighbor index (pull convention)
|
|
|
|
|
if (!(i + 1 < Nx))
|
|
|
|
|
nn -= Nx; // periodic BC along the x-boundary
|
|
|
|
|
if (!(k + 1 < Nz))
|
|
|
|
|
nn -= Nx * Ny * Nz; // Perioidic BC along the z-boundary
|
|
|
|
|
//if ( !(i-1<0) && !(k-1<0)){
|
|
|
|
|
f12 = disteven[6 * N + nn]; // pull distribution 11
|
|
|
|
|
if (f12 > 0) {
|
|
|
|
|
distodd[5 * N + n] = f12;
|
|
|
|
|
disteven[6 * N + nn] = f11;
|
|
|
|
|
// }
|
|
|
|
|
}
|
|
|
|
|
//........................................................................
|
|
|
|
|
nn = n - Nx * Ny + 1; // neighbor index (pull convention)
|
|
|
|
|
if (!(i + 1 < Nx))
|
|
|
|
|
nn -= Nx; // periodic BC along the x-boundary
|
|
|
|
|
if (k - 1 < 0)
|
|
|
|
|
nn += Nx * Ny * Nz; // Perioidic BC along the z-boundary
|
|
|
|
|
//if (!(i-1<0) && (k+1<Nz)){
|
|
|
|
|
f14 = disteven[7 * N + nn]; // pull neighbor for distribution 13
|
|
|
|
|
if (f14 > 0) {
|
|
|
|
|
distodd[6 * N + n] = f14;
|
|
|
|
|
disteven[7 * N + nn] = f13;
|
|
|
|
|
// }
|
|
|
|
|
}
|
|
|
|
|
//........................................................................
|
|
|
|
|
nn = n + Nx * Ny + Nx; // neighbor index (pull convention)
|
|
|
|
|
if (!(j + 1 < Ny))
|
|
|
|
|
nn -= Nx * Ny; // Perioidic BC along the y-boundary
|
|
|
|
|
if (!(k + 1 < Nz))
|
|
|
|
|
nn -= Nx * Ny * Nz; // Perioidic BC along the z-boundary
|
|
|
|
|
//if (!(j-1<0) && !(k-1<0)){
|
|
|
|
|
f16 = disteven[8 * N + nn]; // pull neighbor for distribution 15
|
|
|
|
|
if (f16 > 0) {
|
|
|
|
|
distodd[7 * N + n] = f16;
|
|
|
|
|
disteven[8 * N + nn] = f15;
|
|
|
|
|
// }
|
|
|
|
|
}
|
|
|
|
|
//........................................................................
|
|
|
|
|
nn = n - Nx * Ny + Nx; // neighbor index (pull convention)
|
|
|
|
|
if (!(j + 1 < Ny))
|
|
|
|
|
nn -= Nx * Ny; // Perioidic BC along the y-boundary
|
|
|
|
|
if (k - 1 < 0)
|
|
|
|
|
nn += Nx * Ny * Nz; // Perioidic BC along the z-boundary
|
|
|
|
|
//if (!(j-1<0) && (k+1<Nz)){
|
|
|
|
|
f18 = disteven[9 * N + nn]; // pull neighbor for distribution 17
|
|
|
|
|
if (f18 > 0) {
|
|
|
|
|
distodd[8 * N + n] = f18;
|
|
|
|
|
disteven[9 * N + nn] = f17;
|
|
|
|
|
// }
|
|
|
|
|
}
|
|
|
|
|
//........................................................................
|
|
|
|
|
}
|
|
|
|
|
}
|
2013-08-26 15:12:25 -04:00
|
|
|
}
|
2015-06-15 21:37:07 -04:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
extern "C" void ScaLBL_D3Q19_Swap_Compact(int *neighborList, double *disteven,
|
|
|
|
|
double *distodd, int Np) {
|
|
|
|
|
int q, n, nn;
|
|
|
|
|
double f1, f2;
|
|
|
|
|
for (q = 0; q < 9; q++) {
|
|
|
|
|
for (n = 0; n < Np; n++) {
|
|
|
|
|
nn = neighborList[q * Np + n];
|
|
|
|
|
if (!(nn < 0)) {
|
|
|
|
|
f1 = distodd[q * Np + n];
|
|
|
|
|
f2 = disteven[(q + 1) * Np + nn];
|
|
|
|
|
disteven[(q + 1) * Np + nn] = f1;
|
|
|
|
|
distodd[q * Np + n] = f2;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
2017-09-18 05:55:34 -04:00
|
|
|
}
|
|
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
extern "C" double ScaLBL_D3Q19_Flux_BC_z(double *disteven, double *distodd,
|
|
|
|
|
double flux, int Nx, int Ny, int Nz) {
|
|
|
|
|
// Note that this routine assumes the distributions are stored "opposite"
|
|
|
|
|
// odd distributions in disteven and even distributions in distodd.
|
|
|
|
|
int n, N;
|
|
|
|
|
// distributions
|
|
|
|
|
double din = 0.f;
|
|
|
|
|
N = Nx * Ny * Nz;
|
|
|
|
|
|
|
|
|
|
double A = 1.f * double(Nx * Ny);
|
|
|
|
|
double sum = 0.f;
|
|
|
|
|
for (n = Nx * Ny; n < 2 * Nx * Ny; n++) {
|
|
|
|
|
|
|
|
|
|
//........................................................................
|
|
|
|
|
// Read distributions from "opposite" memory convention
|
|
|
|
|
//........................................................................
|
|
|
|
|
//........................................................................
|
|
|
|
|
double f1 = distodd[n];
|
|
|
|
|
double f3 = distodd[N + n];
|
|
|
|
|
//double f5 = distodd[2*N+n];
|
|
|
|
|
double f7 = distodd[3 * N + n];
|
|
|
|
|
double f9 = distodd[4 * N + n];
|
|
|
|
|
//double f11 = distodd[5*N+n];
|
|
|
|
|
double f13 = distodd[6 * N + n];
|
|
|
|
|
//double f15 = distodd[7*N+n];
|
|
|
|
|
double f17 = distodd[8 * N + n];
|
|
|
|
|
//........................................................................
|
|
|
|
|
double f0 = disteven[n];
|
|
|
|
|
double f2 = disteven[N + n];
|
|
|
|
|
double f4 = disteven[2 * N + n];
|
|
|
|
|
double f6 = disteven[3 * N + n];
|
|
|
|
|
double f8 = disteven[4 * N + n];
|
|
|
|
|
double f10 = disteven[5 * N + n];
|
|
|
|
|
double f12 = disteven[6 * N + n];
|
|
|
|
|
//double f14 = disteven[7*N+n];
|
|
|
|
|
double f16 = disteven[8 * N + n];
|
|
|
|
|
//double f18 = disteven[9*N+n];
|
|
|
|
|
//...................................................
|
|
|
|
|
|
|
|
|
|
// Determine the outlet flow velocity
|
|
|
|
|
//sum += 1.0 - (f0+f4+f3+f2+f1+f8+f7+f9+ f10 + 2*(f5+ f15+f18+f11+f14))/din;
|
|
|
|
|
//sum += (f0+f4+f3+f2+f1+f8+f7+f9+ f10 + 2*(f5+f15+f18+f11+f14));
|
|
|
|
|
sum += (f0 + f1 + f2 + f3 + f4 + f7 + f8 + f9 + f10 +
|
|
|
|
|
2 * (f6 + f12 + f13 + f16 + f17));
|
|
|
|
|
}
|
|
|
|
|
din = sum / (A * (1.0 - flux));
|
|
|
|
|
return din;
|
2017-09-18 05:55:34 -04:00
|
|
|
}
|
|
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
extern "C" double ScaLBL_D3Q19_AAodd_Flux_BC_z(int *d_neighborList, int *list,
|
|
|
|
|
double *dist, double flux,
|
|
|
|
|
double area, int count, int Np) {
|
|
|
|
|
int idx, n;
|
|
|
|
|
int nread;
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
// distributions
|
|
|
|
|
double factor = 1.f / (area);
|
|
|
|
|
double sum = 0.f;
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
for (idx = 0; idx < count; idx++) {
|
|
|
|
|
n = list[idx];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
double f0 = dist[n];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = d_neighborList[n];
|
|
|
|
|
double f1 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = d_neighborList[n + 2 * Np];
|
|
|
|
|
double f3 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = d_neighborList[n + 6 * Np];
|
|
|
|
|
double f7 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = d_neighborList[n + 8 * Np];
|
|
|
|
|
double f9 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = d_neighborList[n + 12 * Np];
|
|
|
|
|
double f13 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = d_neighborList[n + 16 * Np];
|
|
|
|
|
double f17 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = d_neighborList[n + Np];
|
|
|
|
|
double f2 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = d_neighborList[n + 3 * Np];
|
|
|
|
|
double f4 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = d_neighborList[n + 5 * Np];
|
|
|
|
|
double f6 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = d_neighborList[n + 7 * Np];
|
|
|
|
|
double f8 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = d_neighborList[n + 9 * Np];
|
|
|
|
|
double f10 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = d_neighborList[n + 11 * Np];
|
|
|
|
|
double f12 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = d_neighborList[n + 15 * Np];
|
|
|
|
|
double f16 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
sum += factor * (f0 + f1 + f2 + f3 + f4 + f7 + f8 + f9 + f10 +
|
|
|
|
|
2 * (f6 + f12 + f13 + f16 + f17));
|
|
|
|
|
}
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
return sum;
|
2017-09-18 05:55:34 -04:00
|
|
|
}
|
|
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
extern "C" double ScaLBL_D3Q19_AAeven_Flux_BC_z(int *list, double *dist,
|
|
|
|
|
double flux, double area,
|
|
|
|
|
int count, int Np) {
|
|
|
|
|
int idx, n;
|
|
|
|
|
// distributions
|
|
|
|
|
double factor = 1.f / (area);
|
|
|
|
|
double sum = 0.f;
|
|
|
|
|
|
|
|
|
|
for (idx = 0; idx < count; idx++) {
|
|
|
|
|
n = list[idx];
|
|
|
|
|
double f0 = dist[n];
|
|
|
|
|
double f1 = dist[2 * Np + n];
|
|
|
|
|
double f2 = dist[1 * Np + n];
|
|
|
|
|
double f3 = dist[4 * Np + n];
|
|
|
|
|
double f4 = dist[3 * Np + n];
|
|
|
|
|
double f6 = dist[5 * Np + n];
|
|
|
|
|
double f7 = dist[8 * Np + n];
|
|
|
|
|
double f8 = dist[7 * Np + n];
|
|
|
|
|
double f9 = dist[10 * Np + n];
|
|
|
|
|
double f10 = dist[9 * Np + n];
|
|
|
|
|
double f12 = dist[11 * Np + n];
|
|
|
|
|
double f13 = dist[14 * Np + n];
|
|
|
|
|
double f16 = dist[15 * Np + n];
|
|
|
|
|
double f17 = dist[18 * Np + n];
|
|
|
|
|
sum += factor * (f0 + f1 + f2 + f3 + f4 + f7 + f8 + f9 + f10 +
|
|
|
|
|
2 * (f6 + f12 + f13 + f16 + f17));
|
|
|
|
|
}
|
|
|
|
|
return sum;
|
2020-04-03 09:30:55 -04:00
|
|
|
}
|
|
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
extern "C" double ScaLBL_D3Q19_Flux_BC_Z(double *disteven, double *distodd,
|
|
|
|
|
double flux, int Nx, int Ny, int Nz,
|
|
|
|
|
int outlet) {
|
|
|
|
|
// Note that this routine assumes the distributions are stored "opposite"
|
|
|
|
|
// odd distributions in disteven and even distributions in distodd.
|
|
|
|
|
int n, N;
|
|
|
|
|
// distributions
|
|
|
|
|
double dout = 0.f;
|
|
|
|
|
|
|
|
|
|
N = Nx * Ny * Nz;
|
|
|
|
|
|
|
|
|
|
// Loop over the boundary - threadblocks delineated by start...finish
|
|
|
|
|
double A = 1.f * double(Nx * Ny);
|
|
|
|
|
double sum = 0.f;
|
|
|
|
|
for (n = outlet; n < N - Nx * Ny; n++) {
|
|
|
|
|
|
|
|
|
|
//........................................................................
|
|
|
|
|
// Read distributions from "opposite" memory convention
|
|
|
|
|
//........................................................................
|
|
|
|
|
double f1 = distodd[n];
|
|
|
|
|
double f3 = distodd[N + n];
|
|
|
|
|
double f5 = distodd[2 * N + n];
|
|
|
|
|
double f7 = distodd[3 * N + n];
|
|
|
|
|
double f9 = distodd[4 * N + n];
|
|
|
|
|
double f11 = distodd[5 * N + n];
|
|
|
|
|
//double f13 = distodd[6*N+n];
|
|
|
|
|
double f15 = distodd[7 * N + n];
|
|
|
|
|
//double f17 = distodd[8*N+n];
|
|
|
|
|
//........................................................................
|
|
|
|
|
double f0 = disteven[n];
|
|
|
|
|
double f2 = disteven[N + n];
|
|
|
|
|
double f4 = disteven[2 * N + n];
|
|
|
|
|
//double f6 = disteven[3*N+n];
|
|
|
|
|
double f8 = disteven[4 * N + n];
|
|
|
|
|
double f10 = disteven[5 * N + n];
|
|
|
|
|
//double f12 = disteven[6*N+n];
|
|
|
|
|
double f14 = disteven[7 * N + n];
|
|
|
|
|
//double f16 = disteven[8*N+n];
|
|
|
|
|
double f18 = disteven[9 * N + n];
|
|
|
|
|
|
|
|
|
|
sum += (f0 + f1 + f2 + f3 + f4 + f7 + f8 + f9 + f10 +
|
|
|
|
|
2 * (f5 + f11 + f14 + f15 + f18));
|
|
|
|
|
}
|
|
|
|
|
dout = sum / (A * (1.0 + flux));
|
|
|
|
|
return dout;
|
2020-04-03 09:30:55 -04:00
|
|
|
}
|
|
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
extern "C" void ScaLBL_D3Q19_Reflection_BC_z(int *list, double *dist, int count,
|
|
|
|
|
int Np) {
|
|
|
|
|
for (int idx = 0; idx < count; idx++) {
|
|
|
|
|
int n = list[idx];
|
|
|
|
|
|
|
|
|
|
double f5 = 0.111111111111111111111111 - dist[6 * Np + n];
|
|
|
|
|
double f11 = 0.05555555555555555555556 - dist[12 * Np + n];
|
|
|
|
|
double f14 = 0.05555555555555555555556 - dist[13 * Np + n];
|
|
|
|
|
double f15 = 0.05555555555555555555556 - dist[16 * Np + n];
|
|
|
|
|
double f18 = 0.05555555555555555555556 - dist[17 * Np + n];
|
|
|
|
|
|
|
|
|
|
dist[6 * Np + n] = f5;
|
|
|
|
|
dist[12 * Np + n] = f11;
|
|
|
|
|
dist[13 * Np + n] = f14;
|
|
|
|
|
dist[16 * Np + n] = f15;
|
|
|
|
|
dist[17 * Np + n] = f18;
|
|
|
|
|
}
|
2018-01-24 10:08:43 -05:00
|
|
|
}
|
2017-09-18 05:55:34 -04:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
extern "C" void ScaLBL_D3Q19_Reflection_BC_Z(int *list, double *dist, int count,
|
|
|
|
|
int Np) {
|
|
|
|
|
for (int idx = 0; idx < count; idx++) {
|
|
|
|
|
int n = list[idx];
|
|
|
|
|
|
|
|
|
|
double f6 = 0.111111111111111111111111 - dist[5 * Np + n];
|
|
|
|
|
double f12 = 0.05555555555555555555556 - dist[11 * Np + n];
|
|
|
|
|
double f13 = 0.05555555555555555555556 - dist[14 * Np + n];
|
|
|
|
|
double f16 = 0.05555555555555555555556 - dist[15 * Np + n];
|
|
|
|
|
double f17 = 0.05555555555555555555556 - dist[18 * Np + n];
|
|
|
|
|
|
|
|
|
|
dist[5 * Np + n] = f6;
|
|
|
|
|
dist[11 * Np + n] = f12;
|
|
|
|
|
dist[14 * Np + n] = f13;
|
|
|
|
|
dist[15 * Np + n] = f16;
|
|
|
|
|
dist[18 * Np + n] = f17;
|
|
|
|
|
}
|
2018-01-24 10:08:43 -05:00
|
|
|
}
|
|
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
extern "C" void ScaLBL_D3Q19_AAeven_Pressure_BC_z(int *list, double *dist,
|
|
|
|
|
double din, int count,
|
|
|
|
|
int Np) {
|
|
|
|
|
// distributions
|
|
|
|
|
double ux, uy, uz, Cyz, Cxz;
|
|
|
|
|
ux = uy = 0.0;
|
|
|
|
|
for (int idx = 0; idx < count; idx++) {
|
|
|
|
|
int n = list[idx];
|
|
|
|
|
double f0 = dist[n];
|
|
|
|
|
double f1 = dist[2 * Np + n];
|
|
|
|
|
double f2 = dist[1 * Np + n];
|
|
|
|
|
double f3 = dist[4 * Np + n];
|
|
|
|
|
double f4 = dist[3 * Np + n];
|
|
|
|
|
double f6 = dist[5 * Np + n];
|
|
|
|
|
double f7 = dist[8 * Np + n];
|
|
|
|
|
double f8 = dist[7 * Np + n];
|
|
|
|
|
double f9 = dist[10 * Np + n];
|
|
|
|
|
double f10 = dist[9 * Np + n];
|
|
|
|
|
double f12 = dist[11 * Np + n];
|
|
|
|
|
double f13 = dist[14 * Np + n];
|
|
|
|
|
double f16 = dist[15 * Np + n];
|
|
|
|
|
double f17 = dist[18 * Np + n];
|
|
|
|
|
//...................................................
|
|
|
|
|
// Determine the inlet flow velocity
|
|
|
|
|
//ux = (f1-f2+f7-f8+f9-f10+f11-f12+f13-f14);
|
|
|
|
|
//uy = (f3-f4+f7-f8-f9+f10+f15-f16+f17-f18);
|
|
|
|
|
uz = din - (f0 + f1 + f2 + f3 + f4 + f7 + f8 + f9 + f10 +
|
|
|
|
|
2 * (f6 + f12 + f13 + f16 + f17));
|
|
|
|
|
|
|
|
|
|
Cxz = 0.5 * (f1 + f7 + f9 - f2 - f10 - f8) - 0.3333333333333333 * ux;
|
|
|
|
|
Cyz = 0.5 * (f3 + f7 + f10 - f4 - f9 - f8) - 0.3333333333333333 * uy;
|
|
|
|
|
|
|
|
|
|
double f5 = f6 + 0.33333333333333338 * uz;
|
|
|
|
|
double f11 = f12 + 0.16666666666666678 * (uz + ux) - Cxz;
|
|
|
|
|
double f14 = f13 + 0.16666666666666678 * (uz - ux) + Cxz;
|
|
|
|
|
double f15 = f16 + 0.16666666666666678 * (uy + uz) - Cyz;
|
|
|
|
|
double f18 = f17 + 0.16666666666666678 * (uz - uy) + Cyz;
|
|
|
|
|
|
|
|
|
|
dist[6 * Np + n] = f5;
|
|
|
|
|
dist[12 * Np + n] = f11;
|
|
|
|
|
dist[13 * Np + n] = f14;
|
|
|
|
|
dist[16 * Np + n] = f15;
|
|
|
|
|
dist[17 * Np + n] = f18;
|
|
|
|
|
}
|
2018-01-24 10:08:43 -05:00
|
|
|
}
|
|
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
extern "C" void ScaLBL_D3Q19_AAeven_Pressure_BC_Z(int *list, double *dist,
|
|
|
|
|
double dout, int count,
|
|
|
|
|
int Np) {
|
|
|
|
|
// distributions
|
|
|
|
|
double ux, uy, uz, Cyz, Cxz;
|
|
|
|
|
ux = uy = 0.0;
|
|
|
|
|
for (int idx = 0; idx < count; idx++) {
|
|
|
|
|
int n = list[idx];
|
|
|
|
|
//........................................................................
|
|
|
|
|
// Read distributions
|
|
|
|
|
//........................................................................
|
|
|
|
|
double f0 = dist[n];
|
|
|
|
|
double f1 = dist[2 * Np + n];
|
|
|
|
|
double f2 = dist[1 * Np + n];
|
|
|
|
|
double f3 = dist[4 * Np + n];
|
|
|
|
|
double f4 = dist[3 * Np + n];
|
|
|
|
|
double f5 = dist[6 * Np + n];
|
|
|
|
|
double f7 = dist[8 * Np + n];
|
|
|
|
|
double f8 = dist[7 * Np + n];
|
|
|
|
|
double f9 = dist[10 * Np + n];
|
|
|
|
|
double f10 = dist[9 * Np + n];
|
|
|
|
|
double f11 = dist[12 * Np + n];
|
|
|
|
|
double f14 = dist[13 * Np + n];
|
|
|
|
|
double f15 = dist[16 * Np + n];
|
|
|
|
|
double f18 = dist[17 * Np + n];
|
|
|
|
|
|
|
|
|
|
// Determine the outlet flow velocity
|
|
|
|
|
//ux = f1-f2+f7-f8+f9-f10+f11-f12+f13-f14;
|
|
|
|
|
//uy = f3-f4+f7-f8-f9+f10+f15-f16+f17-f18;
|
|
|
|
|
uz = -dout + (f0 + f1 + f2 + f3 + f4 + f7 + f8 + f9 + f10 +
|
|
|
|
|
2 * (f5 + f11 + f14 + f15 + f18));
|
|
|
|
|
|
|
|
|
|
Cxz = 0.5 * (f1 + f7 + f9 - f2 - f10 - f8) - 0.3333333333333333 * ux;
|
|
|
|
|
Cyz = 0.5 * (f3 + f7 + f10 - f4 - f9 - f8) - 0.3333333333333333 * uy;
|
|
|
|
|
|
|
|
|
|
double f6 = f5 - 0.33333333333333338 * uz;
|
|
|
|
|
double f12 = f11 - 0.16666666666666678 * (uz + ux) + Cxz;
|
|
|
|
|
double f13 = f14 - 0.16666666666666678 * (uz - ux) - Cxz;
|
|
|
|
|
double f16 = f15 - 0.16666666666666678 * (uy + uz) + Cyz;
|
|
|
|
|
double f17 = f18 - 0.16666666666666678 * (uz - uy) - Cyz;
|
|
|
|
|
|
|
|
|
|
dist[5 * Np + n] = f6;
|
|
|
|
|
dist[11 * Np + n] = f12;
|
|
|
|
|
dist[14 * Np + n] = f13;
|
|
|
|
|
dist[15 * Np + n] = f16;
|
|
|
|
|
dist[18 * Np + n] = f17;
|
|
|
|
|
//...................................................
|
|
|
|
|
}
|
2018-01-24 10:08:43 -05:00
|
|
|
}
|
|
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
extern "C" void ScaLBL_D3Q19_AAodd_Pressure_BC_z(int *d_neighborList, int *list,
|
|
|
|
|
double *dist, double din,
|
|
|
|
|
int count, int Np) {
|
|
|
|
|
int nread;
|
|
|
|
|
int nr5, nr11, nr14, nr15, nr18;
|
|
|
|
|
// distributions
|
|
|
|
|
double ux, uy, uz, Cyz, Cxz;
|
|
|
|
|
ux = uy = 0.0;
|
|
|
|
|
|
|
|
|
|
for (int idx = 0; idx < count; idx++) {
|
|
|
|
|
int n = list[idx];
|
|
|
|
|
double f0 = dist[n];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n];
|
|
|
|
|
double f1 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n + 2 * Np];
|
|
|
|
|
double f3 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n + 6 * Np];
|
|
|
|
|
double f7 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n + 8 * Np];
|
|
|
|
|
double f9 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n + 12 * Np];
|
|
|
|
|
double f13 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n + 16 * Np];
|
|
|
|
|
double f17 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n + Np];
|
|
|
|
|
double f2 = dist[nread];
|
2015-07-18 16:01:14 -04:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = d_neighborList[n + 3 * Np];
|
|
|
|
|
double f4 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n + 5 * Np];
|
|
|
|
|
double f6 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n + 7 * Np];
|
|
|
|
|
double f8 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n + 9 * Np];
|
|
|
|
|
double f10 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n + 11 * Np];
|
|
|
|
|
double f12 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n + 15 * Np];
|
|
|
|
|
double f16 = dist[nread];
|
|
|
|
|
|
|
|
|
|
// Unknown distributions
|
|
|
|
|
nr5 = d_neighborList[n + 4 * Np];
|
|
|
|
|
nr11 = d_neighborList[n + 10 * Np];
|
|
|
|
|
nr15 = d_neighborList[n + 14 * Np];
|
|
|
|
|
nr14 = d_neighborList[n + 13 * Np];
|
|
|
|
|
nr18 = d_neighborList[n + 17 * Np];
|
|
|
|
|
|
|
|
|
|
//...................................................
|
|
|
|
|
// Determine the inlet flow velocity
|
|
|
|
|
//ux = (f1-f2+f7-f8+f9-f10+f11-f12+f13-f14);
|
|
|
|
|
//uy = (f3-f4+f7-f8-f9+f10+f15-f16+f17-f18);
|
|
|
|
|
uz = din - (f0 + f1 + f2 + f3 + f4 + f7 + f8 + f9 + f10 +
|
|
|
|
|
2 * (f6 + f12 + f13 + f16 + f17));
|
|
|
|
|
|
|
|
|
|
Cxz = 0.5 * (f1 + f7 + f9 - f2 - f10 - f8) - 0.3333333333333333 * ux;
|
|
|
|
|
Cyz = 0.5 * (f3 + f7 + f10 - f4 - f9 - f8) - 0.3333333333333333 * uy;
|
|
|
|
|
|
|
|
|
|
double f5 = f6 + 0.33333333333333338 * uz;
|
|
|
|
|
double f11 = f12 + 0.16666666666666678 * (uz + ux) - Cxz;
|
|
|
|
|
double f14 = f13 + 0.16666666666666678 * (uz - ux) + Cxz;
|
|
|
|
|
double f15 = f16 + 0.16666666666666678 * (uy + uz) - Cyz;
|
|
|
|
|
double f18 = f17 + 0.16666666666666678 * (uz - uy) + Cyz;
|
|
|
|
|
|
|
|
|
|
dist[nr5] = f5;
|
|
|
|
|
dist[nr11] = f11;
|
|
|
|
|
dist[nr14] = f14;
|
|
|
|
|
dist[nr15] = f15;
|
|
|
|
|
dist[nr18] = f18;
|
|
|
|
|
}
|
2015-07-18 16:01:14 -04:00
|
|
|
}
|
|
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
extern "C" void ScaLBL_D3Q19_AAodd_Pressure_BC_Z(int *d_neighborList, int *list,
|
|
|
|
|
double *dist, double dout,
|
|
|
|
|
int count, int Np) {
|
|
|
|
|
int nread;
|
|
|
|
|
int nr6, nr12, nr13, nr16, nr17;
|
|
|
|
|
// distributions
|
|
|
|
|
double ux, uy, uz, Cyz, Cxz;
|
|
|
|
|
ux = uy = 0.0;
|
|
|
|
|
|
|
|
|
|
for (int idx = 0; idx < count; idx++) {
|
|
|
|
|
int n = list[idx];
|
|
|
|
|
//........................................................................
|
|
|
|
|
// Read distributions
|
|
|
|
|
//........................................................................
|
|
|
|
|
double f0 = dist[n];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n];
|
|
|
|
|
double f1 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n + 2 * Np];
|
|
|
|
|
double f3 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n + 4 * Np];
|
|
|
|
|
double f5 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n + 6 * Np];
|
|
|
|
|
double f7 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n + 8 * Np];
|
|
|
|
|
double f9 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n + 10 * Np];
|
|
|
|
|
double f11 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n + 14 * Np];
|
|
|
|
|
double f15 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n + Np];
|
|
|
|
|
double f2 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n + 3 * Np];
|
|
|
|
|
double f4 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n + 7 * Np];
|
|
|
|
|
double f8 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n + 9 * Np];
|
|
|
|
|
double f10 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n + 13 * Np];
|
|
|
|
|
double f14 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n + 17 * Np];
|
|
|
|
|
double f18 = dist[nread];
|
|
|
|
|
|
|
|
|
|
// unknown distributions
|
|
|
|
|
nr6 = d_neighborList[n + 5 * Np];
|
|
|
|
|
nr12 = d_neighborList[n + 11 * Np];
|
|
|
|
|
nr16 = d_neighborList[n + 15 * Np];
|
|
|
|
|
nr17 = d_neighborList[n + 16 * Np];
|
|
|
|
|
nr13 = d_neighborList[n + 12 * Np];
|
|
|
|
|
|
|
|
|
|
// Determine the inlet flow velocity
|
|
|
|
|
//ux = f1-f2+f7-f8+f9-f10+f11-f12+f13-f14;
|
|
|
|
|
//uy = f3-f4+f7-f8-f9+f10+f15-f16+f17-f18;
|
|
|
|
|
uz = -dout + (f0 + f1 + f2 + f3 + f4 + f7 + f8 + f9 + f10 +
|
|
|
|
|
2 * (f5 + f11 + f14 + f15 + f18));
|
|
|
|
|
|
|
|
|
|
Cxz = 0.5 * (f1 + f7 + f9 - f2 - f10 - f8) - 0.3333333333333333 * ux;
|
|
|
|
|
Cyz = 0.5 * (f3 + f7 + f10 - f4 - f9 - f8) - 0.3333333333333333 * uy;
|
|
|
|
|
|
|
|
|
|
double f6 = f5 - 0.33333333333333338 * uz;
|
|
|
|
|
double f12 = f11 - 0.16666666666666678 * (uz + ux) + Cxz;
|
|
|
|
|
double f13 = f14 - 0.16666666666666678 * (uz - ux) - Cxz;
|
|
|
|
|
double f16 = f15 - 0.16666666666666678 * (uy + uz) + Cyz;
|
|
|
|
|
double f17 = f18 - 0.16666666666666678 * (uz - uy) - Cyz;
|
|
|
|
|
|
|
|
|
|
//........Store in "opposite" memory location..........
|
|
|
|
|
dist[nr6] = f6;
|
|
|
|
|
dist[nr12] = f12;
|
|
|
|
|
dist[nr13] = f13;
|
|
|
|
|
dist[nr16] = f16;
|
|
|
|
|
dist[nr17] = f17;
|
|
|
|
|
//...................................................
|
|
|
|
|
}
|
2015-06-15 21:37:07 -04:00
|
|
|
}
|
|
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
extern "C" void ScaLBL_D3Q19_Velocity_BC_z(double *disteven, double *distodd,
|
|
|
|
|
double uz, int Nx, int Ny, int Nz) {
|
|
|
|
|
int n, N;
|
|
|
|
|
// distributions
|
|
|
|
|
double f0, f1, f2, f3, f4, f5, f6, f7, f8, f9;
|
|
|
|
|
double f10, f11, f12, f13, f14, f15, f16, f17, f18;
|
|
|
|
|
double din;
|
|
|
|
|
|
|
|
|
|
N = Nx * Ny * Nz;
|
|
|
|
|
|
|
|
|
|
for (n = Nx * Ny; n < 2 * Nx * Ny; n++) {
|
|
|
|
|
|
|
|
|
|
//........................................................................
|
|
|
|
|
// Read distributions from "opposite" memory convention
|
|
|
|
|
//........................................................................
|
|
|
|
|
//........................................................................
|
|
|
|
|
f1 = distodd[n];
|
|
|
|
|
f3 = distodd[N + n];
|
|
|
|
|
f5 = distodd[2 * N + n];
|
|
|
|
|
f7 = distodd[3 * N + n];
|
|
|
|
|
f9 = distodd[4 * N + n];
|
|
|
|
|
f11 = distodd[5 * N + n];
|
|
|
|
|
f13 = distodd[6 * N + n];
|
|
|
|
|
f15 = distodd[7 * N + n];
|
|
|
|
|
f17 = distodd[8 * N + n];
|
|
|
|
|
//........................................................................
|
|
|
|
|
f0 = disteven[n];
|
|
|
|
|
f2 = disteven[N + n];
|
|
|
|
|
f4 = disteven[2 * N + n];
|
|
|
|
|
f6 = disteven[3 * N + n];
|
|
|
|
|
f8 = disteven[4 * N + n];
|
|
|
|
|
f10 = disteven[5 * N + n];
|
|
|
|
|
f12 = disteven[6 * N + n];
|
|
|
|
|
f14 = disteven[7 * N + n];
|
|
|
|
|
f16 = disteven[8 * N + n];
|
|
|
|
|
f18 = disteven[9 * N + n];
|
|
|
|
|
//...................................................
|
|
|
|
|
|
|
|
|
|
// Determine the outlet flow velocity
|
|
|
|
|
// uz = 1.0 - (f0+f4+f3+f2+f1+f8+f7+f9+f10 +
|
|
|
|
|
// 2*(f5+f15+f18+f11+f14))/din;
|
|
|
|
|
din = (f0 + f4 + f3 + f2 + f1 + f8 + f7 + f9 + f10 +
|
|
|
|
|
2 * (f5 + f15 + f18 + f11 + f14)) /
|
|
|
|
|
(1.0 - uz);
|
|
|
|
|
// Set the unknown distributions:
|
|
|
|
|
f6 = f5 + 0.3333333333333333 * din * uz;
|
|
|
|
|
f16 = f15 + 0.1666666666666667 * din * uz;
|
|
|
|
|
f17 = f16 + f4 - f3 - f15 + f18 + f8 - f7 + f9 - f10;
|
|
|
|
|
f12 = (din * uz + f5 + f15 + f18 + f11 + f14 - f6 - f16 - f17 - f2 +
|
|
|
|
|
f1 - f14 + f11 - f8 + f7 + f9 - f10) *
|
|
|
|
|
0.5;
|
|
|
|
|
f13 = din * uz + f5 + f15 + f18 + f11 + f14 - f6 - f16 - f17 - f12;
|
|
|
|
|
|
|
|
|
|
//........Store in "opposite" memory location..........
|
|
|
|
|
disteven[3 * N + n] = f6;
|
|
|
|
|
disteven[6 * N + n] = f12;
|
|
|
|
|
distodd[6 * N + n] = f13;
|
|
|
|
|
disteven[8 * N + n] = f16;
|
|
|
|
|
distodd[8 * N + n] = f17;
|
|
|
|
|
//...................................................
|
|
|
|
|
}
|
2015-06-15 21:37:07 -04:00
|
|
|
}
|
|
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
extern "C" void ScaLBL_D3Q19_Velocity_BC_Z(double *disteven, double *distodd,
|
|
|
|
|
double uz, int Nx, int Ny, int Nz,
|
|
|
|
|
int outlet) {
|
|
|
|
|
int n, N;
|
|
|
|
|
// distributions
|
|
|
|
|
double f0, f1, f2, f3, f4, f5, f6, f7, f8, f9;
|
|
|
|
|
double f10, f11, f12, f13, f14, f15, f16, f17, f18;
|
|
|
|
|
double dout;
|
|
|
|
|
|
|
|
|
|
N = Nx * Ny * Nz;
|
|
|
|
|
|
|
|
|
|
// Loop over the boundary - threadblocks delineated by start...finish
|
|
|
|
|
for (n = outlet; n < N - Nx * Ny; n++) {
|
|
|
|
|
//........................................................................
|
|
|
|
|
// Read distributions from "opposite" memory convention
|
|
|
|
|
//........................................................................
|
|
|
|
|
f1 = distodd[n];
|
|
|
|
|
f3 = distodd[N + n];
|
|
|
|
|
f5 = distodd[2 * N + n];
|
|
|
|
|
f7 = distodd[3 * N + n];
|
|
|
|
|
f9 = distodd[4 * N + n];
|
|
|
|
|
f11 = distodd[5 * N + n];
|
|
|
|
|
f13 = distodd[6 * N + n];
|
|
|
|
|
f15 = distodd[7 * N + n];
|
|
|
|
|
f17 = distodd[8 * N + n];
|
|
|
|
|
//........................................................................
|
|
|
|
|
f0 = disteven[n];
|
|
|
|
|
f2 = disteven[N + n];
|
|
|
|
|
f4 = disteven[2 * N + n];
|
|
|
|
|
f6 = disteven[3 * N + n];
|
|
|
|
|
f8 = disteven[4 * N + n];
|
|
|
|
|
f10 = disteven[5 * N + n];
|
|
|
|
|
f12 = disteven[6 * N + n];
|
|
|
|
|
f14 = disteven[7 * N + n];
|
|
|
|
|
f16 = disteven[8 * N + n];
|
|
|
|
|
f18 = disteven[9 * N + n];
|
|
|
|
|
//uz = -1.0 + (f0+f4+f3+f2+f1+f8+f7+f9+f10 + 2*(f6+f16+f17+f12+f13))/dout;
|
|
|
|
|
dout = (f0 + f4 + f3 + f2 + f1 + f8 + f7 + f9 + f10 +
|
|
|
|
|
2 * (f6 + f16 + f17 + f12 + f13)) /
|
|
|
|
|
(1.0 + uz);
|
|
|
|
|
f5 = f6 - 0.33333333333333338 * dout * uz;
|
|
|
|
|
f15 = f16 - 0.16666666666666678 * dout * uz;
|
|
|
|
|
f18 = f15 - f4 + f3 - f16 + f17 - f8 + f7 - f9 + f10;
|
|
|
|
|
f11 = (-dout * uz + f6 + f16 + f17 + f12 + f13 - f5 - f15 - f18 + f2 -
|
|
|
|
|
f1 - f13 + f12 + f8 - f7 - f9 + f10) *
|
|
|
|
|
0.5;
|
|
|
|
|
f14 = -dout * uz + f6 + f16 + f17 + f12 + f13 - f5 - f15 - f18 - f11;
|
|
|
|
|
//........Store in "opposite" memory location..........
|
|
|
|
|
distodd[2 * N + n] = f5;
|
|
|
|
|
distodd[5 * N + n] = f11;
|
|
|
|
|
disteven[7 * N + n] = f14;
|
|
|
|
|
distodd[7 * N + n] = f15;
|
|
|
|
|
disteven[9 * N + n] = f18;
|
|
|
|
|
//...................................................
|
|
|
|
|
}
|
2018-01-24 10:08:43 -05:00
|
|
|
}
|
|
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
extern "C" void ScaLBL_D3Q19_Momentum(double *dist, double *vel, int Np) {
|
|
|
|
|
int n;
|
|
|
|
|
int N = Np;
|
|
|
|
|
// distributions
|
|
|
|
|
double f1, f2, f3, f4, f5, f6, f7, f8, f9;
|
|
|
|
|
double f10, f11, f12, f13, f14, f15, f16, f17, f18;
|
|
|
|
|
double vx, vy, vz;
|
|
|
|
|
|
|
|
|
|
for (n = 0; n < N; n++) {
|
|
|
|
|
//........................................................................
|
|
|
|
|
// Registers to store the distributions
|
|
|
|
|
//........................................................................
|
|
|
|
|
f2 = dist[2 * N + n];
|
|
|
|
|
f4 = dist[4 * N + n];
|
|
|
|
|
f6 = dist[6 * N + n];
|
|
|
|
|
f8 = dist[8 * N + n];
|
|
|
|
|
f10 = dist[10 * N + n];
|
|
|
|
|
f12 = dist[12 * N + n];
|
|
|
|
|
f14 = dist[14 * N + n];
|
|
|
|
|
f16 = dist[16 * N + n];
|
|
|
|
|
f18 = dist[18 * N + n];
|
|
|
|
|
//........................................................................
|
|
|
|
|
f1 = dist[N + n];
|
|
|
|
|
f3 = dist[3 * N + n];
|
|
|
|
|
f5 = dist[5 * N + n];
|
|
|
|
|
f7 = dist[7 * N + n];
|
|
|
|
|
f9 = dist[9 * N + n];
|
|
|
|
|
f11 = dist[11 * N + n];
|
|
|
|
|
f13 = dist[13 * N + n];
|
|
|
|
|
f15 = dist[15 * N + n];
|
|
|
|
|
f17 = dist[17 * N + n];
|
|
|
|
|
//.................Compute the velocity...................................
|
|
|
|
|
vx = f1 - f2 + f7 - f8 + f9 - f10 + f11 - f12 + f13 - f14;
|
|
|
|
|
vy = f3 - f4 + f7 - f8 - f9 + f10 + f15 - f16 + f17 - f18;
|
|
|
|
|
vz = f5 - f6 + f11 - f12 - f13 + f14 + f15 - f16 - f17 + f18;
|
|
|
|
|
//..................Write the velocity.....................................
|
|
|
|
|
vel[n] = vx;
|
|
|
|
|
vel[N + n] = vy;
|
|
|
|
|
vel[2 * N + n] = vz;
|
|
|
|
|
//........................................................................
|
|
|
|
|
}
|
2018-01-24 10:08:43 -05:00
|
|
|
}
|
|
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
extern "C" void ScaLBL_D3Q19_Pressure(double *dist, double *Pressure, int N) {
|
|
|
|
|
for (int n = 0; n < N; n++) {
|
|
|
|
|
//........................................................................
|
|
|
|
|
// Registers to store the distributions
|
|
|
|
|
//........................................................................
|
|
|
|
|
double f0 = dist[n];
|
|
|
|
|
double f2 = dist[2 * N + n];
|
|
|
|
|
double f4 = dist[4 * N + n];
|
|
|
|
|
double f6 = dist[6 * N + n];
|
|
|
|
|
double f8 = dist[8 * N + n];
|
|
|
|
|
double f10 = dist[10 * N + n];
|
|
|
|
|
double f12 = dist[12 * N + n];
|
|
|
|
|
double f14 = dist[14 * N + n];
|
|
|
|
|
double f16 = dist[16 * N + n];
|
|
|
|
|
double f18 = dist[18 * N + n];
|
|
|
|
|
//........................................................................
|
|
|
|
|
double f1 = dist[N + n];
|
|
|
|
|
double f3 = dist[3 * N + n];
|
|
|
|
|
double f5 = dist[5 * N + n];
|
|
|
|
|
double f7 = dist[7 * N + n];
|
|
|
|
|
double f9 = dist[9 * N + n];
|
|
|
|
|
double f11 = dist[11 * N + n];
|
|
|
|
|
double f13 = dist[13 * N + n];
|
|
|
|
|
double f15 = dist[15 * N + n];
|
|
|
|
|
double f17 = dist[17 * N + n];
|
|
|
|
|
//.................Compute the velocity...................................
|
|
|
|
|
Pressure[n] = 0.3333333333333333 *
|
|
|
|
|
(f0 + f2 + f1 + f4 + f3 + f6 + f5 + f8 + f7 + f10 + f9 +
|
|
|
|
|
f12 + f11 + f14 + f13 + f16 + f15 + f18 + f17);
|
|
|
|
|
}
|
2018-01-24 10:08:43 -05:00
|
|
|
}
|
|
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
extern "C" void ScaLBL_D3Q19_AAeven_MRT(double *dist, int start, int finish,
|
|
|
|
|
int Np, double rlx_setA,
|
|
|
|
|
double rlx_setB, double Fx, double Fy,
|
|
|
|
|
double Fz) {
|
|
|
|
|
// conserved momemnts
|
|
|
|
|
double rho, jx, jy, jz;
|
|
|
|
|
// non-conserved moments
|
|
|
|
|
double m1, m2, m4, m6, m8, m9, m10, m11, m12, m13, m14, m15, m16, m17, m18;
|
|
|
|
|
|
|
|
|
|
constexpr double mrt_V1 = 0.05263157894736842;
|
|
|
|
|
constexpr double mrt_V2 = 0.012531328320802;
|
|
|
|
|
constexpr double mrt_V3 = 0.04761904761904762;
|
|
|
|
|
constexpr double mrt_V4 = 0.004594820384294068;
|
|
|
|
|
constexpr double mrt_V5 = 0.01587301587301587;
|
|
|
|
|
constexpr double mrt_V6 = 0.0555555555555555555555555;
|
|
|
|
|
constexpr double mrt_V7 = 0.02777777777777778;
|
|
|
|
|
constexpr double mrt_V8 = 0.08333333333333333;
|
|
|
|
|
constexpr double mrt_V9 = 0.003341687552213868;
|
|
|
|
|
constexpr double mrt_V10 = 0.003968253968253968;
|
|
|
|
|
constexpr double mrt_V11 = 0.01388888888888889;
|
|
|
|
|
constexpr double mrt_V12 = 0.04166666666666666;
|
|
|
|
|
|
|
|
|
|
for (int n = start; n < finish; n++) {
|
|
|
|
|
// q=0
|
|
|
|
|
double fq = dist[n];
|
|
|
|
|
rho = fq;
|
|
|
|
|
m1 = -30.0 * fq;
|
|
|
|
|
m2 = 12.0 * fq;
|
|
|
|
|
|
|
|
|
|
// q=1
|
|
|
|
|
fq = dist[2 * Np + n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 -= 11.0 * fq;
|
|
|
|
|
m2 -= 4.0 * fq;
|
|
|
|
|
jx = fq;
|
|
|
|
|
m4 = -4.0 * fq;
|
|
|
|
|
m9 = 2.0 * fq;
|
|
|
|
|
m10 = -4.0 * fq;
|
|
|
|
|
|
|
|
|
|
// f2 = dist[10*Np+n];
|
|
|
|
|
fq = dist[1 * Np + n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 -= 11.0 * (fq);
|
|
|
|
|
m2 -= 4.0 * (fq);
|
|
|
|
|
jx -= fq;
|
|
|
|
|
m4 += 4.0 * (fq);
|
|
|
|
|
m9 += 2.0 * (fq);
|
|
|
|
|
m10 -= 4.0 * (fq);
|
|
|
|
|
|
|
|
|
|
// q=3
|
|
|
|
|
fq = dist[4 * Np + n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 -= 11.0 * fq;
|
|
|
|
|
m2 -= 4.0 * fq;
|
|
|
|
|
jy = fq;
|
|
|
|
|
m6 = -4.0 * fq;
|
|
|
|
|
m9 -= fq;
|
|
|
|
|
m10 += 2.0 * fq;
|
|
|
|
|
m11 = fq;
|
|
|
|
|
m12 = -2.0 * fq;
|
|
|
|
|
|
|
|
|
|
// q = 4
|
|
|
|
|
fq = dist[3 * Np + n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 -= 11.0 * fq;
|
|
|
|
|
m2 -= 4.0 * fq;
|
|
|
|
|
jy -= fq;
|
|
|
|
|
m6 += 4.0 * fq;
|
|
|
|
|
m9 -= fq;
|
|
|
|
|
m10 += 2.0 * fq;
|
|
|
|
|
m11 += fq;
|
|
|
|
|
m12 -= 2.0 * fq;
|
|
|
|
|
|
|
|
|
|
// q=5
|
|
|
|
|
fq = dist[6 * Np + n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 -= 11.0 * fq;
|
|
|
|
|
m2 -= 4.0 * fq;
|
|
|
|
|
jz = fq;
|
|
|
|
|
m8 = -4.0 * fq;
|
|
|
|
|
m9 -= fq;
|
|
|
|
|
m10 += 2.0 * fq;
|
|
|
|
|
m11 -= fq;
|
|
|
|
|
m12 += 2.0 * fq;
|
|
|
|
|
|
|
|
|
|
// q = 6
|
|
|
|
|
fq = dist[5 * Np + n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 -= 11.0 * fq;
|
|
|
|
|
m2 -= 4.0 * fq;
|
|
|
|
|
jz -= fq;
|
|
|
|
|
m8 += 4.0 * fq;
|
|
|
|
|
m9 -= fq;
|
|
|
|
|
m10 += 2.0 * fq;
|
|
|
|
|
m11 -= fq;
|
|
|
|
|
m12 += 2.0 * fq;
|
|
|
|
|
|
|
|
|
|
// q=7
|
|
|
|
|
fq = dist[8 * Np + n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0 * fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx += fq;
|
|
|
|
|
m4 += fq;
|
|
|
|
|
jy += fq;
|
|
|
|
|
m6 += fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 += fq;
|
|
|
|
|
m12 += fq;
|
|
|
|
|
m13 = fq;
|
|
|
|
|
m16 = fq;
|
|
|
|
|
m17 = -fq;
|
|
|
|
|
|
|
|
|
|
// q = 8
|
|
|
|
|
fq = dist[7 * Np + n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0 * fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx -= fq;
|
|
|
|
|
m4 -= fq;
|
|
|
|
|
jy -= fq;
|
|
|
|
|
m6 -= fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 += fq;
|
|
|
|
|
m12 += fq;
|
|
|
|
|
m13 += fq;
|
|
|
|
|
m16 -= fq;
|
|
|
|
|
m17 += fq;
|
|
|
|
|
|
|
|
|
|
// q=9
|
|
|
|
|
fq = dist[10 * Np + n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0 * fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx += fq;
|
|
|
|
|
m4 += fq;
|
|
|
|
|
jy -= fq;
|
|
|
|
|
m6 -= fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 += fq;
|
|
|
|
|
m12 += fq;
|
|
|
|
|
m13 -= fq;
|
|
|
|
|
m16 += fq;
|
|
|
|
|
m17 += fq;
|
|
|
|
|
|
|
|
|
|
// q = 10
|
|
|
|
|
fq = dist[9 * Np + n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0 * fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx -= fq;
|
|
|
|
|
m4 -= fq;
|
|
|
|
|
jy += fq;
|
|
|
|
|
m6 += fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 += fq;
|
|
|
|
|
m12 += fq;
|
|
|
|
|
m13 -= fq;
|
|
|
|
|
m16 -= fq;
|
|
|
|
|
m17 -= fq;
|
|
|
|
|
|
|
|
|
|
// q=11
|
|
|
|
|
fq = dist[12 * Np + n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0 * fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx += fq;
|
|
|
|
|
m4 += fq;
|
|
|
|
|
jz += fq;
|
|
|
|
|
m8 += fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 -= fq;
|
|
|
|
|
m12 -= fq;
|
|
|
|
|
m15 = fq;
|
|
|
|
|
m16 -= fq;
|
|
|
|
|
m18 = fq;
|
|
|
|
|
|
|
|
|
|
// q=12
|
|
|
|
|
fq = dist[11 * Np + n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0 * fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx -= fq;
|
|
|
|
|
m4 -= fq;
|
|
|
|
|
jz -= fq;
|
|
|
|
|
m8 -= fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 -= fq;
|
|
|
|
|
m12 -= fq;
|
|
|
|
|
m15 += fq;
|
|
|
|
|
m16 += fq;
|
|
|
|
|
m18 -= fq;
|
|
|
|
|
|
|
|
|
|
// q=13
|
|
|
|
|
fq = dist[14 * Np + n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0 * fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx += fq;
|
|
|
|
|
m4 += fq;
|
|
|
|
|
jz -= fq;
|
|
|
|
|
m8 -= fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 -= fq;
|
|
|
|
|
m12 -= fq;
|
|
|
|
|
m15 -= fq;
|
|
|
|
|
m16 -= fq;
|
|
|
|
|
m18 -= fq;
|
|
|
|
|
|
|
|
|
|
// q=14
|
|
|
|
|
fq = dist[13 * Np + n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0 * fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx -= fq;
|
|
|
|
|
m4 -= fq;
|
|
|
|
|
jz += fq;
|
|
|
|
|
m8 += fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 -= fq;
|
|
|
|
|
m12 -= fq;
|
|
|
|
|
m15 -= fq;
|
|
|
|
|
m16 += fq;
|
|
|
|
|
m18 += fq;
|
|
|
|
|
|
|
|
|
|
// q=15
|
|
|
|
|
fq = dist[16 * Np + n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0 * fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jy += fq;
|
|
|
|
|
m6 += fq;
|
|
|
|
|
jz += fq;
|
|
|
|
|
m8 += fq;
|
|
|
|
|
m9 -= 2.0 * fq;
|
|
|
|
|
m10 -= 2.0 * fq;
|
|
|
|
|
m14 = fq;
|
|
|
|
|
m17 += fq;
|
|
|
|
|
m18 -= fq;
|
|
|
|
|
|
|
|
|
|
// q=16
|
|
|
|
|
fq = dist[15 * Np + n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0 * fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jy -= fq;
|
|
|
|
|
m6 -= fq;
|
|
|
|
|
jz -= fq;
|
|
|
|
|
m8 -= fq;
|
|
|
|
|
m9 -= 2.0 * fq;
|
|
|
|
|
m10 -= 2.0 * fq;
|
|
|
|
|
m14 += fq;
|
|
|
|
|
m17 -= fq;
|
|
|
|
|
m18 += fq;
|
|
|
|
|
|
|
|
|
|
// q=17
|
|
|
|
|
fq = dist[18 * Np + n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0 * fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jy += fq;
|
|
|
|
|
m6 += fq;
|
|
|
|
|
jz -= fq;
|
|
|
|
|
m8 -= fq;
|
|
|
|
|
m9 -= 2.0 * fq;
|
|
|
|
|
m10 -= 2.0 * fq;
|
|
|
|
|
m14 -= fq;
|
|
|
|
|
m17 += fq;
|
|
|
|
|
m18 += fq;
|
|
|
|
|
|
|
|
|
|
// q=18
|
|
|
|
|
fq = dist[17 * Np + n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0 * fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jy -= fq;
|
|
|
|
|
m6 -= fq;
|
|
|
|
|
jz += fq;
|
|
|
|
|
m8 += fq;
|
|
|
|
|
m9 -= 2.0 * fq;
|
|
|
|
|
m10 -= 2.0 * fq;
|
|
|
|
|
m14 -= fq;
|
|
|
|
|
m17 -= fq;
|
|
|
|
|
m18 -= fq;
|
|
|
|
|
|
|
|
|
|
//........................................................................
|
|
|
|
|
// READ THE DISTRIBUTIONS
|
|
|
|
|
// (read from opposite array due to previous swap operation)
|
|
|
|
|
//........................................................................
|
|
|
|
|
|
|
|
|
|
//..............incorporate external force................................................
|
|
|
|
|
//..............carry out relaxation process...............................................
|
|
|
|
|
m1 = m1 +
|
|
|
|
|
rlx_setA *
|
|
|
|
|
((19 * (jx * jx + jy * jy + jz * jz) / rho - 11 * rho) - m1);
|
|
|
|
|
m2 = m2 +
|
|
|
|
|
rlx_setA *
|
|
|
|
|
((3 * rho - 5.5 * (jx * jx + jy * jy + jz * jz) / rho) - m2);
|
|
|
|
|
m4 = m4 + rlx_setB * ((-0.6666666666666666 * jx) - m4);
|
|
|
|
|
m6 = m6 + rlx_setB * ((-0.6666666666666666 * jy) - m6);
|
|
|
|
|
m8 = m8 + rlx_setB * ((-0.6666666666666666 * jz) - m8);
|
|
|
|
|
m9 = m9 + rlx_setA * (((2 * jx * jx - jy * jy - jz * jz) / rho) - m9);
|
|
|
|
|
m10 =
|
|
|
|
|
m10 +
|
|
|
|
|
rlx_setA * (-0.5 * ((2 * jx * jx - jy * jy - jz * jz) / rho) - m10);
|
|
|
|
|
m11 = m11 + rlx_setA * (((jy * jy - jz * jz) / rho) - m11);
|
|
|
|
|
m12 = m12 + rlx_setA * (-0.5 * ((jy * jy - jz * jz) / rho) - m12);
|
|
|
|
|
m13 = m13 + rlx_setA * ((jx * jy / rho) - m13);
|
|
|
|
|
m14 = m14 + rlx_setA * ((jy * jz / rho) - m14);
|
|
|
|
|
m15 = m15 + rlx_setA * ((jx * jz / rho) - m15);
|
|
|
|
|
m16 = m16 + rlx_setB * (-m16);
|
|
|
|
|
m17 = m17 + rlx_setB * (-m17);
|
|
|
|
|
m18 = m18 + rlx_setB * (-m18);
|
|
|
|
|
//.......................................................................................................
|
|
|
|
|
//.................inverse transformation......................................................
|
|
|
|
|
|
|
|
|
|
// q=0
|
|
|
|
|
fq = mrt_V1 * rho - mrt_V2 * m1 + mrt_V3 * m2;
|
|
|
|
|
dist[n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 1
|
|
|
|
|
fq = mrt_V1 * rho - mrt_V4 * m1 - mrt_V5 * m2 + 0.1 * (jx - m4) +
|
|
|
|
|
mrt_V6 * (m9 - m10) + 0.16666666 * Fx;
|
|
|
|
|
dist[1 * Np + n] = fq;
|
|
|
|
|
|
|
|
|
|
// q=2
|
|
|
|
|
fq = mrt_V1 * rho - mrt_V4 * m1 - mrt_V5 * m2 + 0.1 * (m4 - jx) +
|
|
|
|
|
mrt_V6 * (m9 - m10) - 0.16666666 * Fx;
|
|
|
|
|
dist[2 * Np + n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 3
|
|
|
|
|
fq = mrt_V1 * rho - mrt_V4 * m1 - mrt_V5 * m2 + 0.1 * (jy - m6) +
|
|
|
|
|
mrt_V7 * (m10 - m9) + mrt_V8 * (m11 - m12) + 0.16666666 * Fy;
|
|
|
|
|
dist[3 * Np + n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 4
|
|
|
|
|
fq = mrt_V1 * rho - mrt_V4 * m1 - mrt_V5 * m2 + 0.1 * (m6 - jy) +
|
|
|
|
|
mrt_V7 * (m10 - m9) + mrt_V8 * (m11 - m12) - 0.16666666 * Fy;
|
|
|
|
|
dist[4 * Np + n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 5
|
|
|
|
|
fq = mrt_V1 * rho - mrt_V4 * m1 - mrt_V5 * m2 + 0.1 * (jz - m8) +
|
|
|
|
|
mrt_V7 * (m10 - m9) + mrt_V8 * (m12 - m11) + 0.16666666 * Fz;
|
|
|
|
|
dist[5 * Np + n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 6
|
|
|
|
|
fq = mrt_V1 * rho - mrt_V4 * m1 - mrt_V5 * m2 + 0.1 * (m8 - jz) +
|
|
|
|
|
mrt_V7 * (m10 - m9) + mrt_V8 * (m12 - m11) - 0.16666666 * Fz;
|
|
|
|
|
dist[6 * Np + n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 7
|
|
|
|
|
fq = mrt_V1 * rho + mrt_V9 * m1 + mrt_V10 * m2 + 0.1 * (jx + jy) +
|
|
|
|
|
0.025 * (m4 + m6) + mrt_V7 * m9 + mrt_V11 * m10 + mrt_V8 * m11 +
|
|
|
|
|
mrt_V12 * m12 + 0.25 * m13 + 0.125 * (m16 - m17) +
|
|
|
|
|
0.08333333333 * (Fx + Fy);
|
|
|
|
|
dist[7 * Np + n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 8
|
|
|
|
|
fq = mrt_V1 * rho + mrt_V9 * m1 + mrt_V10 * m2 - 0.1 * (jx + jy) -
|
|
|
|
|
0.025 * (m4 + m6) + mrt_V7 * m9 + mrt_V11 * m10 + mrt_V8 * m11 +
|
|
|
|
|
mrt_V12 * m12 + 0.25 * m13 + 0.125 * (m17 - m16) -
|
|
|
|
|
0.08333333333 * (Fx + Fy);
|
|
|
|
|
dist[8 * Np + n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 9
|
|
|
|
|
fq = mrt_V1 * rho + mrt_V9 * m1 + mrt_V10 * m2 + 0.1 * (jx - jy) +
|
|
|
|
|
0.025 * (m4 - m6) + mrt_V7 * m9 + mrt_V11 * m10 + mrt_V8 * m11 +
|
|
|
|
|
mrt_V12 * m12 - 0.25 * m13 + 0.125 * (m16 + m17) +
|
|
|
|
|
0.08333333333 * (Fx - Fy);
|
|
|
|
|
dist[9 * Np + n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 10
|
|
|
|
|
fq = mrt_V1 * rho + mrt_V9 * m1 + mrt_V10 * m2 + 0.1 * (jy - jx) +
|
|
|
|
|
0.025 * (m6 - m4) + mrt_V7 * m9 + mrt_V11 * m10 + mrt_V8 * m11 +
|
|
|
|
|
mrt_V12 * m12 - 0.25 * m13 - 0.125 * (m16 + m17) -
|
|
|
|
|
0.08333333333 * (Fx - Fy);
|
|
|
|
|
dist[10 * Np + n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 11
|
|
|
|
|
fq = mrt_V1 * rho + mrt_V9 * m1 + mrt_V10 * m2 + 0.1 * (jx + jz) +
|
|
|
|
|
0.025 * (m4 + m8) + mrt_V7 * m9 + mrt_V11 * m10 - mrt_V8 * m11 -
|
|
|
|
|
mrt_V12 * m12 + 0.25 * m15 + 0.125 * (m18 - m16) +
|
|
|
|
|
0.08333333333 * (Fx + Fz);
|
|
|
|
|
dist[11 * Np + n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 12
|
|
|
|
|
fq = mrt_V1 * rho + mrt_V9 * m1 + mrt_V10 * m2 - 0.1 * (jx + jz) -
|
|
|
|
|
0.025 * (m4 + m8) + mrt_V7 * m9 + mrt_V11 * m10 - mrt_V8 * m11 -
|
|
|
|
|
mrt_V12 * m12 + 0.25 * m15 + 0.125 * (m16 - m18) -
|
|
|
|
|
0.08333333333 * (Fx + Fz);
|
|
|
|
|
dist[12 * Np + n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 13
|
|
|
|
|
fq = mrt_V1 * rho + mrt_V9 * m1 + mrt_V10 * m2 + 0.1 * (jx - jz) +
|
|
|
|
|
0.025 * (m4 - m8) + mrt_V7 * m9 + mrt_V11 * m10 - mrt_V8 * m11 -
|
|
|
|
|
mrt_V12 * m12 - 0.25 * m15 - 0.125 * (m16 + m18) +
|
|
|
|
|
0.08333333333 * (Fx - Fz);
|
|
|
|
|
dist[13 * Np + n] = fq;
|
|
|
|
|
|
|
|
|
|
// q= 14
|
|
|
|
|
fq = mrt_V1 * rho + mrt_V9 * m1 + mrt_V10 * m2 + 0.1 * (jz - jx) +
|
|
|
|
|
0.025 * (m8 - m4) + mrt_V7 * m9 + mrt_V11 * m10 - mrt_V8 * m11 -
|
|
|
|
|
mrt_V12 * m12 - 0.25 * m15 + 0.125 * (m16 + m18) -
|
|
|
|
|
0.08333333333 * (Fx - Fz);
|
|
|
|
|
|
|
|
|
|
dist[14 * Np + n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 15
|
|
|
|
|
fq = mrt_V1 * rho + mrt_V9 * m1 + mrt_V10 * m2 + 0.1 * (jy + jz) +
|
|
|
|
|
0.025 * (m6 + m8) - mrt_V6 * m9 - mrt_V7 * m10 + 0.25 * m14 +
|
|
|
|
|
0.125 * (m17 - m18) + 0.08333333333 * (Fy + Fz);
|
|
|
|
|
dist[15 * Np + n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 16
|
|
|
|
|
fq = mrt_V1 * rho + mrt_V9 * m1 + mrt_V10 * m2 - 0.1 * (jy + jz) -
|
|
|
|
|
0.025 * (m6 + m8) - mrt_V6 * m9 - mrt_V7 * m10 + 0.25 * m14 +
|
|
|
|
|
0.125 * (m18 - m17) - 0.08333333333 * (Fy + Fz);
|
|
|
|
|
dist[16 * Np + n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 17
|
|
|
|
|
fq = mrt_V1 * rho + mrt_V9 * m1 + mrt_V10 * m2 + 0.1 * (jy - jz) +
|
|
|
|
|
0.025 * (m6 - m8) - mrt_V6 * m9 - mrt_V7 * m10 - 0.25 * m14 +
|
|
|
|
|
0.125 * (m17 + m18) + 0.08333333333 * (Fy - Fz);
|
|
|
|
|
dist[17 * Np + n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 18
|
|
|
|
|
fq = mrt_V1 * rho + mrt_V9 * m1 + mrt_V10 * m2 + 0.1 * (jz - jy) +
|
|
|
|
|
0.025 * (m8 - m6) - mrt_V6 * m9 - mrt_V7 * m10 - 0.25 * m14 -
|
|
|
|
|
0.125 * (m17 + m18) - 0.08333333333 * (Fy - Fz);
|
|
|
|
|
dist[18 * Np + n] = fq;
|
|
|
|
|
|
|
|
|
|
//........................................................................
|
|
|
|
|
}
|
|
|
|
|
}
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
extern "C" void ScaLBL_D3Q19_AAodd_MRT(int *neighborList, double *dist,
|
|
|
|
|
int start, int finish, int Np,
|
|
|
|
|
double rlx_setA, double rlx_setB,
|
|
|
|
|
double Fx, double Fy, double Fz) {
|
|
|
|
|
// conserved momemnts
|
|
|
|
|
double rho, jx, jy, jz;
|
|
|
|
|
// non-conserved moments
|
|
|
|
|
double m1, m2, m4, m6, m8, m9, m10, m11, m12, m13, m14, m15, m16, m17, m18;
|
|
|
|
|
constexpr double mrt_V1 = 0.05263157894736842;
|
|
|
|
|
constexpr double mrt_V2 = 0.012531328320802;
|
|
|
|
|
constexpr double mrt_V3 = 0.04761904761904762;
|
|
|
|
|
constexpr double mrt_V4 = 0.004594820384294068;
|
|
|
|
|
constexpr double mrt_V5 = 0.01587301587301587;
|
|
|
|
|
constexpr double mrt_V6 = 0.0555555555555555555555555;
|
|
|
|
|
constexpr double mrt_V7 = 0.02777777777777778;
|
|
|
|
|
constexpr double mrt_V8 = 0.08333333333333333;
|
|
|
|
|
constexpr double mrt_V9 = 0.003341687552213868;
|
|
|
|
|
constexpr double mrt_V10 = 0.003968253968253968;
|
|
|
|
|
constexpr double mrt_V11 = 0.01388888888888889;
|
|
|
|
|
constexpr double mrt_V12 = 0.04166666666666666;
|
|
|
|
|
|
|
|
|
|
int nread;
|
|
|
|
|
for (int n = start; n < finish; n++) {
|
|
|
|
|
// q=0
|
|
|
|
|
double fq = dist[n];
|
|
|
|
|
rho = fq;
|
|
|
|
|
m1 = -30.0 * fq;
|
|
|
|
|
m2 = 12.0 * fq;
|
|
|
|
|
|
|
|
|
|
// q=1
|
|
|
|
|
nread = neighborList[n]; // neighbor 2 ( > 10Np => odd part of dist)
|
|
|
|
|
fq = dist[nread]; // reading the f1 data into register fq
|
|
|
|
|
//fp = dist[10*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 -= 11.0 * fq;
|
|
|
|
|
m2 -= 4.0 * fq;
|
|
|
|
|
jx = fq;
|
|
|
|
|
m4 = -4.0 * fq;
|
|
|
|
|
m9 = 2.0 * fq;
|
|
|
|
|
m10 = -4.0 * fq;
|
|
|
|
|
|
|
|
|
|
// f2 = dist[10*Np+n];
|
|
|
|
|
nread =
|
|
|
|
|
neighborList[n + Np]; // neighbor 1 ( < 10Np => even part of dist)
|
|
|
|
|
fq = dist[nread]; // reading the f2 data into register fq
|
|
|
|
|
//fq = dist[Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 -= 11.0 * (fq);
|
|
|
|
|
m2 -= 4.0 * (fq);
|
|
|
|
|
jx -= fq;
|
|
|
|
|
m4 += 4.0 * (fq);
|
|
|
|
|
m9 += 2.0 * (fq);
|
|
|
|
|
m10 -= 4.0 * (fq);
|
|
|
|
|
|
|
|
|
|
// q=3
|
|
|
|
|
nread = neighborList[n + 2 * Np]; // neighbor 4
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[11*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 -= 11.0 * fq;
|
|
|
|
|
m2 -= 4.0 * fq;
|
|
|
|
|
jy = fq;
|
|
|
|
|
m6 = -4.0 * fq;
|
|
|
|
|
m9 -= fq;
|
|
|
|
|
m10 += 2.0 * fq;
|
|
|
|
|
m11 = fq;
|
|
|
|
|
m12 = -2.0 * fq;
|
|
|
|
|
|
|
|
|
|
// q = 4
|
|
|
|
|
nread = neighborList[n + 3 * Np]; // neighbor 3
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[2*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 -= 11.0 * fq;
|
|
|
|
|
m2 -= 4.0 * fq;
|
|
|
|
|
jy -= fq;
|
|
|
|
|
m6 += 4.0 * fq;
|
|
|
|
|
m9 -= fq;
|
|
|
|
|
m10 += 2.0 * fq;
|
|
|
|
|
m11 += fq;
|
|
|
|
|
m12 -= 2.0 * fq;
|
|
|
|
|
|
|
|
|
|
// q=5
|
|
|
|
|
nread = neighborList[n + 4 * Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[12*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 -= 11.0 * fq;
|
|
|
|
|
m2 -= 4.0 * fq;
|
|
|
|
|
jz = fq;
|
|
|
|
|
m8 = -4.0 * fq;
|
|
|
|
|
m9 -= fq;
|
|
|
|
|
m10 += 2.0 * fq;
|
|
|
|
|
m11 -= fq;
|
|
|
|
|
m12 += 2.0 * fq;
|
|
|
|
|
|
|
|
|
|
// q = 6
|
|
|
|
|
nread = neighborList[n + 5 * Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[3*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 -= 11.0 * fq;
|
|
|
|
|
m2 -= 4.0 * fq;
|
|
|
|
|
jz -= fq;
|
|
|
|
|
m8 += 4.0 * fq;
|
|
|
|
|
m9 -= fq;
|
|
|
|
|
m10 += 2.0 * fq;
|
|
|
|
|
m11 -= fq;
|
|
|
|
|
m12 += 2.0 * fq;
|
|
|
|
|
|
|
|
|
|
// q=7
|
|
|
|
|
nread = neighborList[n + 6 * Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[13*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0 * fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx += fq;
|
|
|
|
|
m4 += fq;
|
|
|
|
|
jy += fq;
|
|
|
|
|
m6 += fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 += fq;
|
|
|
|
|
m12 += fq;
|
|
|
|
|
m13 = fq;
|
|
|
|
|
m16 = fq;
|
|
|
|
|
m17 = -fq;
|
|
|
|
|
|
|
|
|
|
// q = 8
|
|
|
|
|
nread = neighborList[n + 7 * Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[4*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0 * fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx -= fq;
|
|
|
|
|
m4 -= fq;
|
|
|
|
|
jy -= fq;
|
|
|
|
|
m6 -= fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 += fq;
|
|
|
|
|
m12 += fq;
|
|
|
|
|
m13 += fq;
|
|
|
|
|
m16 -= fq;
|
|
|
|
|
m17 += fq;
|
|
|
|
|
|
|
|
|
|
// q=9
|
|
|
|
|
nread = neighborList[n + 8 * Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[14*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0 * fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx += fq;
|
|
|
|
|
m4 += fq;
|
|
|
|
|
jy -= fq;
|
|
|
|
|
m6 -= fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 += fq;
|
|
|
|
|
m12 += fq;
|
|
|
|
|
m13 -= fq;
|
|
|
|
|
m16 += fq;
|
|
|
|
|
m17 += fq;
|
|
|
|
|
|
|
|
|
|
// q = 10
|
|
|
|
|
nread = neighborList[n + 9 * Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[5*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0 * fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx -= fq;
|
|
|
|
|
m4 -= fq;
|
|
|
|
|
jy += fq;
|
|
|
|
|
m6 += fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 += fq;
|
|
|
|
|
m12 += fq;
|
|
|
|
|
m13 -= fq;
|
|
|
|
|
m16 -= fq;
|
|
|
|
|
m17 -= fq;
|
|
|
|
|
|
|
|
|
|
// q=11
|
|
|
|
|
nread = neighborList[n + 10 * Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[15*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0 * fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx += fq;
|
|
|
|
|
m4 += fq;
|
|
|
|
|
jz += fq;
|
|
|
|
|
m8 += fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 -= fq;
|
|
|
|
|
m12 -= fq;
|
|
|
|
|
m15 = fq;
|
|
|
|
|
m16 -= fq;
|
|
|
|
|
m18 = fq;
|
|
|
|
|
|
|
|
|
|
// q=12
|
|
|
|
|
nread = neighborList[n + 11 * Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[6*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0 * fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx -= fq;
|
|
|
|
|
m4 -= fq;
|
|
|
|
|
jz -= fq;
|
|
|
|
|
m8 -= fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 -= fq;
|
|
|
|
|
m12 -= fq;
|
|
|
|
|
m15 += fq;
|
|
|
|
|
m16 += fq;
|
|
|
|
|
m18 -= fq;
|
|
|
|
|
|
|
|
|
|
// q=13
|
|
|
|
|
nread = neighborList[n + 12 * Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[16*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0 * fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx += fq;
|
|
|
|
|
m4 += fq;
|
|
|
|
|
jz -= fq;
|
|
|
|
|
m8 -= fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 -= fq;
|
|
|
|
|
m12 -= fq;
|
|
|
|
|
m15 -= fq;
|
|
|
|
|
m16 -= fq;
|
|
|
|
|
m18 -= fq;
|
|
|
|
|
|
|
|
|
|
// q=14
|
|
|
|
|
nread = neighborList[n + 13 * Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[7*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0 * fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx -= fq;
|
|
|
|
|
m4 -= fq;
|
|
|
|
|
jz += fq;
|
|
|
|
|
m8 += fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 -= fq;
|
|
|
|
|
m12 -= fq;
|
|
|
|
|
m15 -= fq;
|
|
|
|
|
m16 += fq;
|
|
|
|
|
m18 += fq;
|
|
|
|
|
|
|
|
|
|
// q=15
|
|
|
|
|
nread = neighborList[n + 14 * Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[17*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0 * fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jy += fq;
|
|
|
|
|
m6 += fq;
|
|
|
|
|
jz += fq;
|
|
|
|
|
m8 += fq;
|
|
|
|
|
m9 -= 2.0 * fq;
|
|
|
|
|
m10 -= 2.0 * fq;
|
|
|
|
|
m14 = fq;
|
|
|
|
|
m17 += fq;
|
|
|
|
|
m18 -= fq;
|
|
|
|
|
|
|
|
|
|
// q=16
|
|
|
|
|
nread = neighborList[n + 15 * Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[8*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0 * fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jy -= fq;
|
|
|
|
|
m6 -= fq;
|
|
|
|
|
jz -= fq;
|
|
|
|
|
m8 -= fq;
|
|
|
|
|
m9 -= 2.0 * fq;
|
|
|
|
|
m10 -= 2.0 * fq;
|
|
|
|
|
m14 += fq;
|
|
|
|
|
m17 -= fq;
|
|
|
|
|
m18 += fq;
|
|
|
|
|
|
|
|
|
|
// q=17
|
|
|
|
|
//fq = dist[18*Np+n];
|
|
|
|
|
nread = neighborList[n + 16 * Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0 * fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jy += fq;
|
|
|
|
|
m6 += fq;
|
|
|
|
|
jz -= fq;
|
|
|
|
|
m8 -= fq;
|
|
|
|
|
m9 -= 2.0 * fq;
|
|
|
|
|
m10 -= 2.0 * fq;
|
|
|
|
|
m14 -= fq;
|
|
|
|
|
m17 += fq;
|
|
|
|
|
m18 += fq;
|
|
|
|
|
|
|
|
|
|
// q=18
|
|
|
|
|
nread = neighborList[n + 17 * Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[9*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0 * fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jy -= fq;
|
|
|
|
|
m6 -= fq;
|
|
|
|
|
jz += fq;
|
|
|
|
|
m8 += fq;
|
|
|
|
|
m9 -= 2.0 * fq;
|
|
|
|
|
m10 -= 2.0 * fq;
|
|
|
|
|
m14 -= fq;
|
|
|
|
|
m17 -= fq;
|
|
|
|
|
m18 -= fq;
|
|
|
|
|
|
|
|
|
|
//..............incorporate external force................................................
|
|
|
|
|
//..............carry out relaxation process...............................................
|
|
|
|
|
m1 = m1 +
|
|
|
|
|
rlx_setA *
|
|
|
|
|
((19 * (jx * jx + jy * jy + jz * jz) / rho - 11 * rho) - m1);
|
|
|
|
|
m2 = m2 +
|
|
|
|
|
rlx_setA *
|
|
|
|
|
((3 * rho - 5.5 * (jx * jx + jy * jy + jz * jz) / rho) - m2);
|
|
|
|
|
m4 = m4 + rlx_setB * ((-0.6666666666666666 * jx) - m4);
|
|
|
|
|
m6 = m6 + rlx_setB * ((-0.6666666666666666 * jy) - m6);
|
|
|
|
|
m8 = m8 + rlx_setB * ((-0.6666666666666666 * jz) - m8);
|
|
|
|
|
m9 = m9 + rlx_setA * (((2 * jx * jx - jy * jy - jz * jz) / rho) - m9);
|
|
|
|
|
m10 =
|
|
|
|
|
m10 +
|
|
|
|
|
rlx_setA * (-0.5 * ((2 * jx * jx - jy * jy - jz * jz) / rho) - m10);
|
|
|
|
|
m11 = m11 + rlx_setA * (((jy * jy - jz * jz) / rho) - m11);
|
|
|
|
|
m12 = m12 + rlx_setA * (-0.5 * ((jy * jy - jz * jz) / rho) - m12);
|
|
|
|
|
m13 = m13 + rlx_setA * ((jx * jy / rho) - m13);
|
|
|
|
|
m14 = m14 + rlx_setA * ((jy * jz / rho) - m14);
|
|
|
|
|
m15 = m15 + rlx_setA * ((jx * jz / rho) - m15);
|
|
|
|
|
m16 = m16 + rlx_setB * (-m16);
|
|
|
|
|
m17 = m17 + rlx_setB * (-m17);
|
|
|
|
|
m18 = m18 + rlx_setB * (-m18);
|
|
|
|
|
//.......................................................................................................
|
|
|
|
|
//.................inverse transformation......................................................
|
|
|
|
|
|
|
|
|
|
// q=0
|
|
|
|
|
fq = mrt_V1 * rho - mrt_V2 * m1 + mrt_V3 * m2;
|
|
|
|
|
dist[n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 1
|
|
|
|
|
fq = mrt_V1 * rho - mrt_V4 * m1 - mrt_V5 * m2 + 0.1 * (jx - m4) +
|
|
|
|
|
mrt_V6 * (m9 - m10) + 0.16666666 * Fx;
|
|
|
|
|
nread = neighborList[n + Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q=2
|
|
|
|
|
fq = mrt_V1 * rho - mrt_V4 * m1 - mrt_V5 * m2 + 0.1 * (m4 - jx) +
|
|
|
|
|
mrt_V6 * (m9 - m10) - 0.16666666 * Fx;
|
|
|
|
|
nread = neighborList[n];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 3
|
|
|
|
|
fq = mrt_V1 * rho - mrt_V4 * m1 - mrt_V5 * m2 + 0.1 * (jy - m6) +
|
|
|
|
|
mrt_V7 * (m10 - m9) + mrt_V8 * (m11 - m12) + 0.16666666 * Fy;
|
|
|
|
|
nread = neighborList[n + 3 * Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 4
|
|
|
|
|
fq = mrt_V1 * rho - mrt_V4 * m1 - mrt_V5 * m2 + 0.1 * (m6 - jy) +
|
|
|
|
|
mrt_V7 * (m10 - m9) + mrt_V8 * (m11 - m12) - 0.16666666 * Fy;
|
|
|
|
|
nread = neighborList[n + 2 * Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 5
|
|
|
|
|
fq = mrt_V1 * rho - mrt_V4 * m1 - mrt_V5 * m2 + 0.1 * (jz - m8) +
|
|
|
|
|
mrt_V7 * (m10 - m9) + mrt_V8 * (m12 - m11) + 0.16666666 * Fz;
|
|
|
|
|
nread = neighborList[n + 5 * Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 6
|
|
|
|
|
fq = mrt_V1 * rho - mrt_V4 * m1 - mrt_V5 * m2 + 0.1 * (m8 - jz) +
|
|
|
|
|
mrt_V7 * (m10 - m9) + mrt_V8 * (m12 - m11) - 0.16666666 * Fz;
|
|
|
|
|
nread = neighborList[n + 4 * Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 7
|
|
|
|
|
fq = mrt_V1 * rho + mrt_V9 * m1 + mrt_V10 * m2 + 0.1 * (jx + jy) +
|
|
|
|
|
0.025 * (m4 + m6) + mrt_V7 * m9 + mrt_V11 * m10 + mrt_V8 * m11 +
|
|
|
|
|
mrt_V12 * m12 + 0.25 * m13 + 0.125 * (m16 - m17) +
|
|
|
|
|
0.08333333333 * (Fx + Fy);
|
|
|
|
|
nread = neighborList[n + 7 * Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 8
|
|
|
|
|
fq = mrt_V1 * rho + mrt_V9 * m1 + mrt_V10 * m2 - 0.1 * (jx + jy) -
|
|
|
|
|
0.025 * (m4 + m6) + mrt_V7 * m9 + mrt_V11 * m10 + mrt_V8 * m11 +
|
|
|
|
|
mrt_V12 * m12 + 0.25 * m13 + 0.125 * (m17 - m16) -
|
|
|
|
|
0.08333333333 * (Fx + Fy);
|
|
|
|
|
nread = neighborList[n + 6 * Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 9
|
|
|
|
|
fq = mrt_V1 * rho + mrt_V9 * m1 + mrt_V10 * m2 + 0.1 * (jx - jy) +
|
|
|
|
|
0.025 * (m4 - m6) + mrt_V7 * m9 + mrt_V11 * m10 + mrt_V8 * m11 +
|
|
|
|
|
mrt_V12 * m12 - 0.25 * m13 + 0.125 * (m16 + m17) +
|
|
|
|
|
0.08333333333 * (Fx - Fy);
|
|
|
|
|
nread = neighborList[n + 9 * Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 10
|
|
|
|
|
fq = mrt_V1 * rho + mrt_V9 * m1 + mrt_V10 * m2 + 0.1 * (jy - jx) +
|
|
|
|
|
0.025 * (m6 - m4) + mrt_V7 * m9 + mrt_V11 * m10 + mrt_V8 * m11 +
|
|
|
|
|
mrt_V12 * m12 - 0.25 * m13 - 0.125 * (m16 + m17) -
|
|
|
|
|
0.08333333333 * (Fx - Fy);
|
|
|
|
|
nread = neighborList[n + 8 * Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 11
|
|
|
|
|
fq = mrt_V1 * rho + mrt_V9 * m1 + mrt_V10 * m2 + 0.1 * (jx + jz) +
|
|
|
|
|
0.025 * (m4 + m8) + mrt_V7 * m9 + mrt_V11 * m10 - mrt_V8 * m11 -
|
|
|
|
|
mrt_V12 * m12 + 0.25 * m15 + 0.125 * (m18 - m16) +
|
|
|
|
|
0.08333333333 * (Fx + Fz);
|
|
|
|
|
nread = neighborList[n + 11 * Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 12
|
|
|
|
|
fq = mrt_V1 * rho + mrt_V9 * m1 + mrt_V10 * m2 - 0.1 * (jx + jz) -
|
|
|
|
|
0.025 * (m4 + m8) + mrt_V7 * m9 + mrt_V11 * m10 - mrt_V8 * m11 -
|
|
|
|
|
mrt_V12 * m12 + 0.25 * m15 + 0.125 * (m16 - m18) -
|
|
|
|
|
0.08333333333 * (Fx + Fz);
|
|
|
|
|
nread = neighborList[n + 10 * Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 13
|
|
|
|
|
fq = mrt_V1 * rho + mrt_V9 * m1 + mrt_V10 * m2 + 0.1 * (jx - jz) +
|
|
|
|
|
0.025 * (m4 - m8) + mrt_V7 * m9 + mrt_V11 * m10 - mrt_V8 * m11 -
|
|
|
|
|
mrt_V12 * m12 - 0.25 * m15 - 0.125 * (m16 + m18) +
|
|
|
|
|
0.08333333333 * (Fx - Fz);
|
|
|
|
|
nread = neighborList[n + 13 * Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q= 14
|
|
|
|
|
fq = mrt_V1 * rho + mrt_V9 * m1 + mrt_V10 * m2 + 0.1 * (jz - jx) +
|
|
|
|
|
0.025 * (m8 - m4) + mrt_V7 * m9 + mrt_V11 * m10 - mrt_V8 * m11 -
|
|
|
|
|
mrt_V12 * m12 - 0.25 * m15 + 0.125 * (m16 + m18) -
|
|
|
|
|
0.08333333333 * (Fx - Fz);
|
|
|
|
|
nread = neighborList[n + 12 * Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 15
|
|
|
|
|
fq = mrt_V1 * rho + mrt_V9 * m1 + mrt_V10 * m2 + 0.1 * (jy + jz) +
|
|
|
|
|
0.025 * (m6 + m8) - mrt_V6 * m9 - mrt_V7 * m10 + 0.25 * m14 +
|
|
|
|
|
0.125 * (m17 - m18) + 0.08333333333 * (Fy + Fz);
|
|
|
|
|
nread = neighborList[n + 15 * Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 16
|
|
|
|
|
fq = mrt_V1 * rho + mrt_V9 * m1 + mrt_V10 * m2 - 0.1 * (jy + jz) -
|
|
|
|
|
0.025 * (m6 + m8) - mrt_V6 * m9 - mrt_V7 * m10 + 0.25 * m14 +
|
|
|
|
|
0.125 * (m18 - m17) - 0.08333333333 * (Fy + Fz);
|
|
|
|
|
nread = neighborList[n + 14 * Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 17
|
|
|
|
|
fq = mrt_V1 * rho + mrt_V9 * m1 + mrt_V10 * m2 + 0.1 * (jy - jz) +
|
|
|
|
|
0.025 * (m6 - m8) - mrt_V6 * m9 - mrt_V7 * m10 - 0.25 * m14 +
|
|
|
|
|
0.125 * (m17 + m18) + 0.08333333333 * (Fy - Fz);
|
|
|
|
|
nread = neighborList[n + 17 * Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 18
|
|
|
|
|
fq = mrt_V1 * rho + mrt_V9 * m1 + mrt_V10 * m2 + 0.1 * (jz - jy) +
|
|
|
|
|
0.025 * (m8 - m6) - mrt_V6 * m9 - mrt_V7 * m10 - 0.25 * m14 -
|
|
|
|
|
0.125 * (m17 + m18) - 0.08333333333 * (Fy - Fz);
|
|
|
|
|
nread = neighborList[n + 16 * Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
}
|
|
|
|
|
}
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
extern "C" void ScaLBL_D3Q19_AAeven_Compact(char *ID, double *dist, int Np) {
|
|
|
|
|
|
|
|
|
|
for (int n = 0; n < Np; n++) {
|
|
|
|
|
|
|
|
|
|
//........................................................................
|
|
|
|
|
// READ THE DISTRIBUTIONS
|
|
|
|
|
// (read from opposite array due to previous swap operation)
|
|
|
|
|
//........................................................................
|
|
|
|
|
// even
|
|
|
|
|
double f2 = dist[10 * Np + n];
|
|
|
|
|
double f4 = dist[11 * Np + n];
|
|
|
|
|
double f6 = dist[12 * Np + n];
|
|
|
|
|
double f8 = dist[13 * Np + n];
|
|
|
|
|
double f10 = dist[14 * Np + n];
|
|
|
|
|
double f12 = dist[15 * Np + n];
|
|
|
|
|
double f14 = dist[16 * Np + n];
|
|
|
|
|
double f16 = dist[17 * Np + n];
|
|
|
|
|
double f18 = dist[18 * Np + n];
|
|
|
|
|
|
|
|
|
|
// odd
|
|
|
|
|
double f1 = dist[Np + n];
|
|
|
|
|
double f3 = dist[2 * Np + n];
|
|
|
|
|
double f5 = dist[3 * Np + n];
|
|
|
|
|
double f7 = dist[4 * Np + n];
|
|
|
|
|
double f9 = dist[5 * Np + n];
|
|
|
|
|
double f11 = dist[6 * Np + n];
|
|
|
|
|
double f13 = dist[7 * Np + n];
|
|
|
|
|
double f15 = dist[8 * Np + n];
|
|
|
|
|
double f17 = dist[9 * Np + n];
|
|
|
|
|
|
|
|
|
|
//........................................................................
|
|
|
|
|
// WRITE THE DISTRIBUTIONS
|
|
|
|
|
// even
|
|
|
|
|
//disteven[n] = f0;
|
|
|
|
|
dist[Np + n] = f2;
|
|
|
|
|
dist[2 * Np + n] = f4;
|
|
|
|
|
dist[3 * Np + n] = f6;
|
|
|
|
|
dist[4 * Np + n] = f8;
|
|
|
|
|
dist[5 * Np + n] = f10;
|
|
|
|
|
dist[6 * Np + n] = f12;
|
|
|
|
|
dist[7 * Np + n] = f14;
|
|
|
|
|
dist[8 * Np + n] = f16;
|
|
|
|
|
dist[9 * Np + n] = f18;
|
|
|
|
|
|
|
|
|
|
// odd
|
|
|
|
|
dist[10 * Np + n] = f1;
|
|
|
|
|
dist[11 * Np + n] = f3;
|
|
|
|
|
dist[12 * Np + n] = f5;
|
|
|
|
|
dist[13 * Np + n] = f7;
|
|
|
|
|
dist[14 * Np + n] = f9;
|
|
|
|
|
dist[15 * Np + n] = f11;
|
|
|
|
|
dist[16 * Np + n] = f13;
|
|
|
|
|
dist[17 * Np + n] = f15;
|
|
|
|
|
dist[18 * Np + n] = f17;
|
|
|
|
|
//........................................................................
|
|
|
|
|
}
|
|
|
|
|
}
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
extern "C" void ScaLBL_D3Q19_AAodd_Compact(char *ID, int *neighborList,
|
|
|
|
|
double *dist, int Np) {
|
|
|
|
|
int nread;
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
for (int n = 0; n < Np; n++) {
|
|
|
|
|
//........Get 1-D index for this thread....................
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
//double f0 = dist[n];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n]; // + 0*Np
|
|
|
|
|
double f2 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 2 * Np];
|
|
|
|
|
double f4 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 4 * Np];
|
|
|
|
|
double f6 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 6 * Np];
|
|
|
|
|
double f8 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 8 * Np];
|
|
|
|
|
double f10 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 10 * Np];
|
|
|
|
|
double f12 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 12 * Np];
|
|
|
|
|
double f14 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 14 * Np];
|
|
|
|
|
double f16 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 16 * Np];
|
|
|
|
|
double f18 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + Np];
|
|
|
|
|
double f1 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 3 * Np];
|
|
|
|
|
double f3 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 5 * Np];
|
|
|
|
|
double f5 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 7 * Np];
|
|
|
|
|
double f7 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 9 * Np];
|
|
|
|
|
double f9 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 11 * Np];
|
|
|
|
|
double f11 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 13 * Np];
|
|
|
|
|
double f13 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 15 * Np];
|
|
|
|
|
double f15 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 17 * Np];
|
|
|
|
|
double f17 = dist[nread];
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n];
|
|
|
|
|
dist[nread] = f1;
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 2 * Np];
|
|
|
|
|
dist[nread] = f3;
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 4 * Np];
|
|
|
|
|
dist[nread] = f5;
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 6 * Np];
|
|
|
|
|
dist[nread] = f7;
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 8 * Np];
|
|
|
|
|
dist[nread] = f9;
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 10 * Np];
|
|
|
|
|
dist[nread] = f11;
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 12 * Np];
|
|
|
|
|
dist[nread] = f13;
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 14 * Np];
|
|
|
|
|
dist[nread] = f15;
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 16 * Np];
|
|
|
|
|
dist[nread] = f17;
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + Np];
|
|
|
|
|
dist[nread] = f2;
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 3 * Np];
|
|
|
|
|
dist[nread] = f4;
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 5 * Np];
|
|
|
|
|
dist[nread] = f6;
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 7 * Np];
|
|
|
|
|
dist[nread] = f8;
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 9 * Np];
|
|
|
|
|
dist[nread] = f10;
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 11 * Np];
|
|
|
|
|
dist[nread] = f12;
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 13 * Np];
|
|
|
|
|
dist[nread] = f14;
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 15 * Np];
|
|
|
|
|
dist[nread] = f16;
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2021-11-08 22:58:37 +01:00
|
|
|
nread = neighborList[n + 17 * Np];
|
|
|
|
|
dist[nread] = f18;
|
|
|
|
|
}
|
2018-01-24 10:08:43 -05:00
|
|
|
}
|