2017-09-18 05:55:34 -04:00
|
|
|
#include <stdio.h>
|
|
|
|
|
|
2016-11-23 17:03:12 -05:00
|
|
|
extern "C" void ScaLBL_D3Q19_Pack(int q, int *list, int start, int count, double *sendbuf, double *dist, int N){
|
2013-08-26 15:12:25 -04:00
|
|
|
//....................................................................................
|
|
|
|
|
// Pack distribution q into the send buffer for the listed lattice sites
|
|
|
|
|
// dist may be even or odd distributions stored by stream layout
|
|
|
|
|
//....................................................................................
|
|
|
|
|
int idx,n;
|
|
|
|
|
for (idx=0; idx<count; idx++){
|
|
|
|
|
n = list[idx];
|
|
|
|
|
sendbuf[start+idx] = dist[q*N+n];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2017-09-18 05:55:34 -04:00
|
|
|
/*extern "C" void ScaLBL_D3Q19_Unpack(int q, int Cqx, int Cqy, int Cqz, int *list, int start, int count,
|
2013-08-26 15:12:25 -04:00
|
|
|
double *recvbuf, double *dist, int Nx, int Ny, int Nz){
|
|
|
|
|
//....................................................................................
|
|
|
|
|
// Unack distribution from the recv buffer
|
|
|
|
|
// Distribution q matche Cqx, Cqy, Cqz
|
|
|
|
|
// swap rule means that the distributions in recvbuf are OPPOSITE of q
|
|
|
|
|
// dist may be even or odd distributions stored by stream layout
|
|
|
|
|
//....................................................................................
|
|
|
|
|
int i,j,k,n,nn,idx;
|
|
|
|
|
int N = Nx*Ny*Nz;
|
|
|
|
|
for (idx=0; idx<count; idx++){
|
|
|
|
|
// Get the value from the list -- note that n is the index is from the send (non-local) process
|
|
|
|
|
n = list[idx];
|
|
|
|
|
// Get the 3-D indices
|
|
|
|
|
k = n/(Nx*Ny);
|
|
|
|
|
j = (n-Nx*Ny*k)/Nx;
|
2016-07-25 10:34:50 -04:00
|
|
|
i = n-Nx*Ny*k-Nx*j;
|
2013-08-26 15:12:25 -04:00
|
|
|
// Streaming for the non-local distribution
|
|
|
|
|
i += Cqx;
|
|
|
|
|
j += Cqy;
|
|
|
|
|
k += Cqz;
|
2017-09-18 05:55:34 -04:00
|
|
|
|
2013-08-26 15:12:25 -04:00
|
|
|
nn = k*Nx*Ny+j*Nx+i;
|
2017-09-18 05:55:34 -04:00
|
|
|
|
2013-08-26 15:12:25 -04:00
|
|
|
// unpack the distribution to the proper location
|
2014-08-16 09:40:09 -04:00
|
|
|
dist[q*N+nn] = recvbuf[start+idx];
|
2013-08-26 15:12:25 -04:00
|
|
|
}
|
2017-09-18 05:55:34 -04:00
|
|
|
}*/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extern "C" void ScaLBL_D3Q19_Unpack(int q, int *list, int start, int count,
|
2018-01-24 10:08:43 -05:00
|
|
|
double *recvbuf, double *dist, int N){
|
2017-09-18 05:55:34 -04:00
|
|
|
//....................................................................................
|
|
|
|
|
// Unack distribution from the recv buffer
|
|
|
|
|
// Distribution q matche Cqx, Cqy, Cqz
|
|
|
|
|
// swap rule means that the distributions in recvbuf are OPPOSITE of q
|
|
|
|
|
// dist may be even or odd distributions stored by stream layout
|
|
|
|
|
//....................................................................................
|
|
|
|
|
int n,idx;
|
|
|
|
|
for (idx=0; idx<count; idx++){
|
|
|
|
|
// Get the value from the list -- note that n is the index is from the send (non-local) process
|
|
|
|
|
n = list[start+idx];
|
|
|
|
|
// unpack the distribution to the proper location
|
|
|
|
|
if (!(n<0)) dist[q*N+n] = recvbuf[start+idx];
|
|
|
|
|
//dist[q*N+n] = recvbuf[start+idx];
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
extern "C" void ScaLBL_D3Q19_MapRecv(int q, int Cqx, int Cqy, int Cqz, int *list, int start, int count,
|
|
|
|
|
int *d3q19_recvlist, int Nx, int Ny, int Nz){
|
|
|
|
|
//....................................................................................
|
|
|
|
|
// Map the recieve distributions to
|
|
|
|
|
// Distribution q matche Cqx, Cqy, Cqz
|
|
|
|
|
// swap rule means that the distributions in recvbuf are OPPOSITE of q
|
|
|
|
|
// dist may be even or odd distributions stored by stream layout
|
|
|
|
|
//....................................................................................
|
|
|
|
|
|
|
|
|
|
int i,j,k,n,nn,idx;
|
|
|
|
|
int N = Nx*Ny*Nz;
|
|
|
|
|
for (idx=0; idx<count; idx++){
|
|
|
|
|
// Get the value from the list -- note that n is the index is from the send (non-local) process
|
|
|
|
|
n = list[idx];
|
|
|
|
|
// Get the 3-D indices
|
|
|
|
|
k = n/(Nx*Ny);
|
|
|
|
|
j = (n-Nx*Ny*k)/Nx;
|
|
|
|
|
i = n-Nx*Ny*k-Nx*j;
|
|
|
|
|
// Streaming for the non-local distribution
|
|
|
|
|
i += Cqx;
|
|
|
|
|
j += Cqy;
|
|
|
|
|
k += Cqz;
|
|
|
|
|
// compute 1D index for the neighbor and save
|
|
|
|
|
nn = k*Nx*Ny+j*Nx+i;
|
|
|
|
|
d3q19_recvlist[start+idx] = nn;
|
|
|
|
|
}
|
2013-08-26 15:12:25 -04:00
|
|
|
}
|
|
|
|
|
|
2018-01-24 10:08:43 -05:00
|
|
|
*/
|
|
|
|
|
extern "C" void ScaLBL_D3Q19_AA_Init(double *f_even, double *f_odd, int Np)
|
2014-01-27 11:43:24 -05:00
|
|
|
{
|
2018-01-24 10:08:43 -05:00
|
|
|
int n;
|
|
|
|
|
for (n=0; n<Np; n++){
|
|
|
|
|
f_even[n] = 0.3333333333333333;
|
|
|
|
|
f_odd[n] = 0.055555555555555555; //double(100*n)+1.f;
|
|
|
|
|
f_even[Np+n] = 0.055555555555555555; //double(100*n)+2.f;
|
|
|
|
|
f_odd[Np+n] = 0.055555555555555555; //double(100*n)+3.f;
|
|
|
|
|
f_even[2*Np+n] = 0.055555555555555555; //double(100*n)+4.f;
|
|
|
|
|
f_odd[2*Np+n] = 0.055555555555555555; //double(100*n)+5.f;
|
|
|
|
|
f_even[3*Np+n] = 0.055555555555555555; //double(100*n)+6.f;
|
|
|
|
|
f_odd[3*Np+n] = 0.0277777777777778; //double(100*n)+7.f;
|
|
|
|
|
f_even[4*Np+n] = 0.0277777777777778; //double(100*n)+8.f;
|
|
|
|
|
f_odd[4*Np+n] = 0.0277777777777778; //double(100*n)+9.f;
|
|
|
|
|
f_even[5*Np+n] = 0.0277777777777778; //double(100*n)+10.f;
|
|
|
|
|
f_odd[5*Np+n] = 0.0277777777777778; //double(100*n)+11.f;
|
|
|
|
|
f_even[6*Np+n] = 0.0277777777777778; //double(100*n)+12.f;
|
|
|
|
|
f_odd[6*Np+n] = 0.0277777777777778; //double(100*n)+13.f;
|
|
|
|
|
f_even[7*Np+n] = 0.0277777777777778; //double(100*n)+14.f;
|
|
|
|
|
f_odd[7*Np+n] = 0.0277777777777778; //double(100*n)+15.f;
|
|
|
|
|
f_even[8*Np+n] = 0.0277777777777778; //double(100*n)+16.f;
|
|
|
|
|
f_odd[8*Np+n] = 0.0277777777777778; //double(100*n)+17.f;
|
|
|
|
|
f_even[9*Np+n] = 0.0277777777777778; //double(100*n)+18.f;
|
2014-01-27 11:43:24 -05:00
|
|
|
|
2018-01-24 10:08:43 -05:00
|
|
|
}
|
|
|
|
|
}
|
2014-01-27 11:43:24 -05:00
|
|
|
|
2018-01-24 10:08:43 -05:00
|
|
|
extern "C" void ScaLBL_D3Q19_Init(double *dist, int Np)
|
|
|
|
|
{
|
|
|
|
|
int n;
|
|
|
|
|
for (n=0; n<Np; n++){
|
|
|
|
|
dist[n] = 0.3333333333333333;
|
|
|
|
|
dist[Np+n] = 0.055555555555555555; //double(100*n)+1.f;
|
|
|
|
|
dist[2*Np+n] = 0.055555555555555555; //double(100*n)+2.f;
|
|
|
|
|
dist[3*Np+n] = 0.055555555555555555; //double(100*n)+3.f;
|
|
|
|
|
dist[4*Np+n] = 0.055555555555555555; //double(100*n)+4.f;
|
|
|
|
|
dist[5*Np+n] = 0.055555555555555555; //double(100*n)+5.f;
|
|
|
|
|
dist[6*Np+n] = 0.055555555555555555; //double(100*n)+6.f;
|
|
|
|
|
dist[7*Np+n] = 0.0277777777777778; //double(100*n)+7.f;
|
|
|
|
|
dist[8*Np+n] = 0.0277777777777778; //double(100*n)+8.f;
|
|
|
|
|
dist[9*Np+n] = 0.0277777777777778; //double(100*n)+9.f;
|
|
|
|
|
dist[10*Np+n] = 0.0277777777777778; //double(100*n)+10.f;
|
|
|
|
|
dist[11*Np+n] = 0.0277777777777778; //double(100*n)+11.f;
|
|
|
|
|
dist[12*Np+n] = 0.0277777777777778; //double(100*n)+12.f;
|
|
|
|
|
dist[13*Np+n] = 0.0277777777777778; //double(100*n)+13.f;
|
|
|
|
|
dist[14*Np+n] = 0.0277777777777778; //double(100*n)+14.f;
|
|
|
|
|
dist[15*Np+n] = 0.0277777777777778; //double(100*n)+15.f;
|
|
|
|
|
dist[16*Np+n] = 0.0277777777777778; //double(100*n)+16.f;
|
|
|
|
|
dist[17*Np+n] = 0.0277777777777778; //double(100*n)+17.f;
|
|
|
|
|
dist[18*Np+n] = 0.0277777777777778; //double(100*n)+18.f;
|
2014-01-27 11:43:24 -05:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2013-08-26 15:12:25 -04:00
|
|
|
//*************************************************************************
|
2016-11-23 17:03:12 -05:00
|
|
|
extern "C" void ScaLBL_D3Q19_Swap(char *ID, double *disteven, double *distodd, int Nx, int Ny, int Nz)
|
2013-08-26 15:12:25 -04:00
|
|
|
{
|
2014-02-13 22:57:44 -05:00
|
|
|
int i,j,k,n,nn,N;
|
2013-08-26 15:12:25 -04:00
|
|
|
// distributions
|
|
|
|
|
double f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
|
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2013-08-26 15:12:25 -04:00
|
|
|
N = Nx*Ny*Nz;
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2013-08-26 15:12:25 -04:00
|
|
|
for (n=0; n<N; n++){
|
|
|
|
|
//.......Back out the 3-D indices for node n..............
|
2014-02-13 22:57:44 -05:00
|
|
|
k = n/(Nx*Ny);
|
|
|
|
|
j = (n-Nx*Ny*k)/Nx;
|
2016-07-25 11:09:05 -04:00
|
|
|
i = n-Nx*Ny*k-Nx*j;
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2013-08-26 15:12:25 -04:00
|
|
|
if (ID[n] > 0){
|
|
|
|
|
//........................................................................
|
|
|
|
|
// Retrieve even distributions from the local node (swap convention)
|
|
|
|
|
// f0 = disteven[n]; // Does not particupate in streaming
|
|
|
|
|
f1 = distodd[n];
|
|
|
|
|
f3 = distodd[N+n];
|
|
|
|
|
f5 = distodd[2*N+n];
|
|
|
|
|
f7 = distodd[3*N+n];
|
|
|
|
|
f9 = distodd[4*N+n];
|
|
|
|
|
f11 = distodd[5*N+n];
|
|
|
|
|
f13 = distodd[6*N+n];
|
|
|
|
|
f15 = distodd[7*N+n];
|
|
|
|
|
f17 = distodd[8*N+n];
|
|
|
|
|
//........................................................................
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2013-08-26 15:12:25 -04:00
|
|
|
//........................................................................
|
|
|
|
|
// Retrieve odd distributions from neighboring nodes (swap convention)
|
|
|
|
|
//........................................................................
|
|
|
|
|
nn = n+1; // neighbor index (pull convention)
|
|
|
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
|
|
|
//if (i+1<Nx){
|
|
|
|
|
f2 = disteven[N+nn]; // pull neighbor for distribution 2
|
|
|
|
|
if (f2 > 0){
|
|
|
|
|
distodd[n] = f2;
|
|
|
|
|
disteven[N+nn] = f1;
|
|
|
|
|
}
|
|
|
|
|
//}
|
|
|
|
|
//........................................................................
|
|
|
|
|
nn = n+Nx; // neighbor index (pull convention)
|
|
|
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
|
|
|
//if (j+1<Ny){
|
|
|
|
|
f4 = disteven[2*N+nn]; // pull neighbor for distribution 4
|
|
|
|
|
if (f4 > 0){
|
|
|
|
|
distodd[N+n] = f4;
|
|
|
|
|
disteven[2*N+nn] = f3;
|
|
|
|
|
// }
|
|
|
|
|
}
|
|
|
|
|
//........................................................................
|
|
|
|
|
nn = n+Nx*Ny; // neighbor index (pull convention)
|
|
|
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
|
|
|
//if (k+1<Nz){
|
|
|
|
|
f6 = disteven[3*N+nn]; // pull neighbor for distribution 6
|
|
|
|
|
if (f6 > 0){
|
|
|
|
|
distodd[2*N+n] = f6;
|
|
|
|
|
disteven[3*N+nn] = f5;
|
|
|
|
|
// }
|
|
|
|
|
}
|
|
|
|
|
//........................................................................
|
|
|
|
|
nn = n+Nx+1; // neighbor index (pull convention)
|
|
|
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
|
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
|
|
|
//if ((i+1<Nx) && (j+1<Ny)){
|
|
|
|
|
f8 = disteven[4*N+nn]; // pull neighbor for distribution 8
|
|
|
|
|
if (f8 > 0){
|
|
|
|
|
distodd[3*N+n] = f8;
|
|
|
|
|
disteven[4*N+nn] = f7;
|
|
|
|
|
// }
|
|
|
|
|
}
|
|
|
|
|
//........................................................................
|
|
|
|
|
nn = n-Nx+1; // neighbor index (pull convention)
|
|
|
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
|
|
|
if (j-1<0) nn += Nx*Ny; // Perioidic BC along the y-boundary
|
|
|
|
|
//if (!(i-1<0) && (j+1<Ny)){
|
|
|
|
|
f10 = disteven[5*N+nn]; // pull neighbor for distribution 9
|
|
|
|
|
if (f10 > 0){
|
|
|
|
|
distodd[4*N+n] = f10;
|
|
|
|
|
disteven[5*N+nn] = f9;
|
|
|
|
|
// }
|
|
|
|
|
}
|
|
|
|
|
//........................................................................
|
|
|
|
|
nn = n+Nx*Ny+1; // neighbor index (pull convention)
|
|
|
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
|
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
|
|
|
//if ( !(i-1<0) && !(k-1<0)){
|
|
|
|
|
f12 = disteven[6*N+nn]; // pull distribution 11
|
|
|
|
|
if (f12 > 0){
|
|
|
|
|
distodd[5*N+n] = f12;
|
|
|
|
|
disteven[6*N+nn] = f11;
|
|
|
|
|
// }
|
|
|
|
|
}
|
|
|
|
|
//........................................................................
|
|
|
|
|
nn = n-Nx*Ny+1; // neighbor index (pull convention)
|
|
|
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
|
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
|
|
|
//if (!(i-1<0) && (k+1<Nz)){
|
|
|
|
|
f14 = disteven[7*N+nn]; // pull neighbor for distribution 13
|
|
|
|
|
if (f14 > 0){
|
|
|
|
|
distodd[6*N+n] = f14;
|
|
|
|
|
disteven[7*N+nn] = f13;
|
|
|
|
|
// }
|
|
|
|
|
}
|
|
|
|
|
//........................................................................
|
|
|
|
|
nn = n+Nx*Ny+Nx; // neighbor index (pull convention)
|
|
|
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
|
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
|
|
|
//if (!(j-1<0) && !(k-1<0)){
|
|
|
|
|
f16 = disteven[8*N+nn]; // pull neighbor for distribution 15
|
|
|
|
|
if (f16 > 0){
|
|
|
|
|
distodd[7*N+n] = f16;
|
|
|
|
|
disteven[8*N+nn] = f15;
|
|
|
|
|
// }
|
|
|
|
|
}
|
|
|
|
|
//........................................................................
|
|
|
|
|
nn = n-Nx*Ny+Nx; // neighbor index (pull convention)
|
|
|
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
|
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
|
|
|
//if (!(j-1<0) && (k+1<Nz)){
|
|
|
|
|
f18 = disteven[9*N+nn]; // pull neighbor for distribution 17
|
|
|
|
|
if (f18 > 0){
|
|
|
|
|
distodd[8*N+n] = f18;
|
|
|
|
|
disteven[9*N+nn] = f17;
|
|
|
|
|
// }
|
|
|
|
|
}
|
|
|
|
|
//........................................................................
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2013-08-26 15:12:25 -04:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
2015-06-15 21:37:07 -04:00
|
|
|
|
2017-09-18 05:55:34 -04:00
|
|
|
extern "C" void ScaLBL_D3Q19_Swap_Compact(int *neighborList, double *disteven, double *distodd, int Np)
|
|
|
|
|
{
|
|
|
|
|
int q,n,nn;
|
|
|
|
|
double f1,f2;
|
|
|
|
|
for (q=0; q<9; q++){
|
|
|
|
|
for (n=0; n<Np; n++){
|
|
|
|
|
nn = neighborList[q*Np+n];
|
|
|
|
|
if (!(nn<0)){
|
|
|
|
|
f1 = distodd[q*Np+n];
|
|
|
|
|
f2 = disteven[(q+1)*Np+nn];
|
|
|
|
|
disteven[(q+1)*Np+nn] = f1;
|
|
|
|
|
distodd[q*Np+n] = f2;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
2018-01-24 10:08:43 -05:00
|
|
|
extern "C" double ScaLBL_D3Q19_Flux_BC_z(double *disteven, double *distodd, double flux,
|
|
|
|
|
int Nx, int Ny, int Nz){
|
2017-09-18 05:55:34 -04:00
|
|
|
// Note that this routine assumes the distributions are stored "opposite"
|
|
|
|
|
// odd distributions in disteven and even distributions in distodd.
|
|
|
|
|
int n,N;
|
|
|
|
|
// distributions
|
|
|
|
|
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
|
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
|
|
|
double din = 0.f;
|
|
|
|
|
N = Nx*Ny*Nz;
|
|
|
|
|
|
2018-01-24 10:08:43 -05:00
|
|
|
double A = 1.f*double(Nx*Ny);
|
2017-09-18 05:55:34 -04:00
|
|
|
double sum = 0.f;
|
|
|
|
|
for (n=Nx*Ny; n<2*Nx*Ny; n++){
|
2018-01-13 09:43:20 -05:00
|
|
|
|
2018-01-24 10:08:43 -05:00
|
|
|
//........................................................................
|
|
|
|
|
// Read distributions from "opposite" memory convention
|
|
|
|
|
//........................................................................
|
|
|
|
|
//........................................................................
|
|
|
|
|
f1 = distodd[n];
|
|
|
|
|
f3 = distodd[N+n];
|
|
|
|
|
f5 = distodd[2*N+n];
|
|
|
|
|
f7 = distodd[3*N+n];
|
|
|
|
|
f9 = distodd[4*N+n];
|
|
|
|
|
f11 = distodd[5*N+n];
|
|
|
|
|
f13 = distodd[6*N+n];
|
|
|
|
|
f15 = distodd[7*N+n];
|
|
|
|
|
f17 = distodd[8*N+n];
|
|
|
|
|
//........................................................................
|
|
|
|
|
f0 = disteven[n];
|
|
|
|
|
f2 = disteven[N+n];
|
|
|
|
|
f4 = disteven[2*N+n];
|
|
|
|
|
f6 = disteven[3*N+n];
|
|
|
|
|
f8 = disteven[4*N+n];
|
|
|
|
|
f10 = disteven[5*N+n];
|
|
|
|
|
f12 = disteven[6*N+n];
|
|
|
|
|
f14 = disteven[7*N+n];
|
|
|
|
|
f16 = disteven[8*N+n];
|
|
|
|
|
f18 = disteven[9*N+n];
|
|
|
|
|
//...................................................
|
|
|
|
|
|
|
|
|
|
// Determine the outlet flow velocity
|
|
|
|
|
//sum += 1.0 - (f0+f4+f3+f2+f1+f8+f7+f9+ f10 + 2*(f5+ f15+f18+f11+f14))/din;
|
|
|
|
|
//sum += (f0+f4+f3+f2+f1+f8+f7+f9+ f10 + 2*(f5+f15+f18+f11+f14));
|
|
|
|
|
sum += (f0+f1+f2+f3+f4+f7+f8+f9+f10 + 2*(f6+f12+f13+f16+f17));
|
|
|
|
|
}
|
|
|
|
|
din = sum/(A*(1.0-flux));
|
2017-09-18 05:55:34 -04:00
|
|
|
return din;
|
|
|
|
|
}
|
|
|
|
|
|
2018-01-24 10:08:43 -05:00
|
|
|
extern "C" double ScaLBL_D3Q19_AAodd_Flux_BC_z(int *d_neighborList, int *list, double *dist, double flux,
|
|
|
|
|
double area, int count, int Np){
|
|
|
|
|
int idx, n;
|
|
|
|
|
int nread;
|
|
|
|
|
|
|
|
|
|
// distributions
|
|
|
|
|
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
|
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
|
|
|
double factor = 1.f/(area);
|
|
|
|
|
double sum = 0.f;
|
|
|
|
|
|
|
|
|
|
for (idx=0; idx<count; idx++){
|
|
|
|
|
n = list[idx];
|
|
|
|
|
|
|
|
|
|
f0 = dist[n];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n];
|
|
|
|
|
f1 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+2*Np];
|
|
|
|
|
f3 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+6*Np];
|
|
|
|
|
f7 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+8*Np];
|
|
|
|
|
f9 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+12*Np];
|
|
|
|
|
f13 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+16*Np];
|
|
|
|
|
f17 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+Np];
|
|
|
|
|
f2 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+3*Np];
|
|
|
|
|
f4 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+5*Np];
|
|
|
|
|
f6 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+7*Np];
|
|
|
|
|
f8 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+9*Np];
|
|
|
|
|
f10 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+11*Np];
|
|
|
|
|
f12 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+15*Np];
|
|
|
|
|
f16 = dist[nread];
|
|
|
|
|
|
|
|
|
|
sum += factor*(f0+f1+f2+f3+f4+f7+f8+f9+f10 + 2*(f6+f12+f13+f16+f17));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return sum;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
extern "C" double ScaLBL_D3Q19_AAeven_Flux_BC_z(int *list, double *dist, double flux, double area,
|
|
|
|
|
int count, int Np){
|
|
|
|
|
int idx, n;
|
|
|
|
|
// distributions
|
|
|
|
|
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
|
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
|
|
|
double factor = 1.f/(area);
|
|
|
|
|
double sum = 0.f;
|
|
|
|
|
|
|
|
|
|
for (idx=0; idx<count; idx++){
|
|
|
|
|
n = list[idx];
|
|
|
|
|
f0 = dist[n];
|
|
|
|
|
f1 = dist[2*Np+n];
|
|
|
|
|
f2 = dist[1*Np+n];
|
|
|
|
|
f3 = dist[4*Np+n];
|
|
|
|
|
f4 = dist[3*Np+n];
|
|
|
|
|
f6 = dist[5*Np+n];
|
|
|
|
|
f7 = dist[8*Np+n];
|
|
|
|
|
f8 = dist[7*Np+n];
|
|
|
|
|
f9 = dist[10*Np+n];
|
|
|
|
|
f10 = dist[9*Np+n];
|
|
|
|
|
f12 = dist[11*Np+n];
|
|
|
|
|
f13 = dist[14*Np+n];
|
|
|
|
|
f16 = dist[15*Np+n];
|
|
|
|
|
f17 = dist[18*Np+n];
|
|
|
|
|
sum += factor*(f0+f1+f2+f3+f4+f7+f8+f9+f10 + 2*(f6+f12+f13+f16+f17));
|
|
|
|
|
}
|
|
|
|
|
return sum;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extern "C" double ScaLBL_D3Q19_Flux_BC_Z(double *disteven, double *distodd, double flux,
|
2017-09-18 05:55:34 -04:00
|
|
|
int Nx, int Ny, int Nz, int outlet){
|
|
|
|
|
// Note that this routine assumes the distributions are stored "opposite"
|
|
|
|
|
// odd distributions in disteven and even distributions in distodd.
|
|
|
|
|
int n,N;
|
|
|
|
|
// distributions
|
|
|
|
|
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
|
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
|
|
|
double dout = 0.f;
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2017-09-18 05:55:34 -04:00
|
|
|
N = Nx*Ny*Nz;
|
|
|
|
|
|
|
|
|
|
// Loop over the boundary - threadblocks delineated by start...finish
|
2018-01-24 10:08:43 -05:00
|
|
|
double A = 1.f*double(Nx*Ny);
|
2017-09-18 05:55:34 -04:00
|
|
|
double sum = 0.f;
|
|
|
|
|
for (n=outlet; n<N-Nx*Ny; n++){
|
2018-01-24 10:08:43 -05:00
|
|
|
|
|
|
|
|
//........................................................................
|
|
|
|
|
// Read distributions from "opposite" memory convention
|
|
|
|
|
//........................................................................
|
|
|
|
|
f1 = distodd[n];
|
|
|
|
|
f3 = distodd[N+n];
|
|
|
|
|
f5 = distodd[2*N+n];
|
|
|
|
|
f7 = distodd[3*N+n];
|
|
|
|
|
f9 = distodd[4*N+n];
|
|
|
|
|
f11 = distodd[5*N+n];
|
|
|
|
|
f13 = distodd[6*N+n];
|
|
|
|
|
f15 = distodd[7*N+n];
|
|
|
|
|
f17 = distodd[8*N+n];
|
|
|
|
|
//........................................................................
|
|
|
|
|
f0 = disteven[n];
|
|
|
|
|
f2 = disteven[N+n];
|
|
|
|
|
f4 = disteven[2*N+n];
|
|
|
|
|
f6 = disteven[3*N+n];
|
|
|
|
|
f8 = disteven[4*N+n];
|
|
|
|
|
f10 = disteven[5*N+n];
|
|
|
|
|
f12 = disteven[6*N+n];
|
|
|
|
|
f14 = disteven[7*N+n];
|
|
|
|
|
f16 = disteven[8*N+n];
|
|
|
|
|
f18 = disteven[9*N+n];
|
|
|
|
|
|
|
|
|
|
sum += (f0+f1+f2+f3+f4+f7+f8+f9+f10 + 2*(f5+f11+f14+f15+f18));
|
|
|
|
|
|
2017-09-18 05:55:34 -04:00
|
|
|
}
|
2018-01-24 10:08:43 -05:00
|
|
|
dout = sum/(A*(1.0+flux));
|
2017-09-18 05:55:34 -04:00
|
|
|
return dout;
|
|
|
|
|
}
|
|
|
|
|
|
2018-01-24 10:08:43 -05:00
|
|
|
extern "C" void ScaLBL_D3Q19_AAeven_Pressure_BC_z(int *list, double *dist, double din, int count, int Np)
|
2017-09-18 05:55:34 -04:00
|
|
|
{
|
2018-01-24 10:08:43 -05:00
|
|
|
int idx, n;
|
2017-09-18 05:55:34 -04:00
|
|
|
// distributions
|
|
|
|
|
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
|
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
2018-01-24 10:08:43 -05:00
|
|
|
double ux,uy,uz,Cyz,Cxz;
|
2018-01-13 09:40:33 -05:00
|
|
|
ux = uy = 0.0;
|
2018-01-24 10:08:43 -05:00
|
|
|
for (int idx=0; idx<count; idx++){
|
|
|
|
|
n = list[idx];
|
|
|
|
|
f0 = dist[n];
|
|
|
|
|
f1 = dist[2*Np+n];
|
|
|
|
|
f2 = dist[1*Np+n];
|
|
|
|
|
f3 = dist[4*Np+n];
|
|
|
|
|
f4 = dist[3*Np+n];
|
|
|
|
|
f6 = dist[5*Np+n];
|
|
|
|
|
f7 = dist[8*Np+n];
|
|
|
|
|
f8 = dist[7*Np+n];
|
|
|
|
|
f9 = dist[10*Np+n];
|
|
|
|
|
f10 = dist[9*Np+n];
|
|
|
|
|
f12 = dist[11*Np+n];
|
|
|
|
|
f13 = dist[14*Np+n];
|
|
|
|
|
f16 = dist[15*Np+n];
|
|
|
|
|
f17 = dist[18*Np+n];
|
|
|
|
|
//...................................................
|
|
|
|
|
// Determine the inlet flow velocity
|
|
|
|
|
//ux = (f1-f2+f7-f8+f9-f10+f11-f12+f13-f14);
|
|
|
|
|
//uy = (f3-f4+f7-f8-f9+f10+f15-f16+f17-f18);
|
|
|
|
|
uz = din - (f0+f1+f2+f3+f4+f7+f8+f9+f10 + 2*(f6+f12+f13+f16+f17));
|
2017-09-18 05:55:34 -04:00
|
|
|
|
2018-01-24 10:08:43 -05:00
|
|
|
Cxz = 0.5*(f1+f7+f9-f2-f10-f8) - 0.3333333333333333*ux;
|
|
|
|
|
Cyz = 0.5*(f3+f7+f10-f4-f9-f8) - 0.3333333333333333*uy;
|
2017-09-18 05:55:34 -04:00
|
|
|
|
2018-01-24 10:08:43 -05:00
|
|
|
f5 = f6 + 0.33333333333333338*uz;
|
|
|
|
|
f11 = f12 + 0.16666666666666678*(uz+ux)-Cxz;
|
|
|
|
|
f14 = f13 + 0.16666666666666678*(uz-ux)+Cxz;
|
|
|
|
|
f15 = f16 + 0.16666666666666678*(uy+uz)-Cyz;
|
|
|
|
|
f18 = f17 + 0.16666666666666678*(uz-uy)+Cyz;
|
|
|
|
|
|
|
|
|
|
dist[6*Np+n] = f5;
|
|
|
|
|
dist[12*Np+n] = f11;
|
|
|
|
|
dist[13*Np+n] = f14;
|
|
|
|
|
dist[16*Np+n] = f15;
|
|
|
|
|
dist[17*Np+n] = f18;
|
|
|
|
|
}
|
|
|
|
|
}
|
2017-09-18 05:55:34 -04:00
|
|
|
|
2018-01-24 10:08:43 -05:00
|
|
|
extern "C" void ScaLBL_D3Q19_AAeven_Pressure_BC_Z(int *list, double *dist, double dout, int count, int Np)
|
|
|
|
|
{
|
|
|
|
|
int idx, n;
|
|
|
|
|
// distributions
|
|
|
|
|
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
|
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
|
|
|
double ux,uy,uz,Cyz,Cxz;
|
|
|
|
|
ux = uy = 0.0;
|
|
|
|
|
for (int idx=0; idx<count; idx++){
|
|
|
|
|
n = list[idx];
|
|
|
|
|
//........................................................................
|
|
|
|
|
// Read distributions
|
|
|
|
|
//........................................................................
|
|
|
|
|
f0 = dist[n];
|
|
|
|
|
f1 = dist[2*Np+n];
|
|
|
|
|
f2 = dist[1*Np+n];
|
|
|
|
|
f3 = dist[4*Np+n];
|
|
|
|
|
f4 = dist[3*Np+n];
|
|
|
|
|
f5 = dist[6*Np+n];
|
|
|
|
|
f7 = dist[8*Np+n];
|
|
|
|
|
f8 = dist[7*Np+n];
|
|
|
|
|
f9 = dist[10*Np+n];
|
|
|
|
|
f10 = dist[9*Np+n];
|
|
|
|
|
f11 = dist[12*Np+n];
|
|
|
|
|
f14 = dist[13*Np+n];
|
|
|
|
|
f15 = dist[16*Np+n];
|
|
|
|
|
f18 = dist[17*Np+n];
|
|
|
|
|
|
|
|
|
|
// Determine the outlet flow velocity
|
|
|
|
|
//ux = f1-f2+f7-f8+f9-f10+f11-f12+f13-f14;
|
|
|
|
|
//uy = f3-f4+f7-f8-f9+f10+f15-f16+f17-f18;
|
|
|
|
|
uz = -dout + (f0+f1+f2+f3+f4+f7+f8+f9+f10 + 2*(f5+f11+f14+f15+f18));
|
|
|
|
|
|
|
|
|
|
Cxz = 0.5*(f1+f7+f9-f2-f10-f8) - 0.3333333333333333*ux;
|
|
|
|
|
Cyz = 0.5*(f3+f7+f10-f4-f9-f8) - 0.3333333333333333*uy;
|
|
|
|
|
|
|
|
|
|
f6 = f5 - 0.33333333333333338*uz;
|
|
|
|
|
f12 = f11 - 0.16666666666666678*(uz+ux)+Cxz;
|
|
|
|
|
f13 = f14 - 0.16666666666666678*(uz-ux)-Cxz;
|
|
|
|
|
f16 = f15 - 0.16666666666666678*(uy+uz)+Cyz;
|
|
|
|
|
f17 = f18 - 0.16666666666666678*(uz-uy)-Cyz;
|
|
|
|
|
|
|
|
|
|
dist[5*Np+n] = f6;
|
|
|
|
|
dist[11*Np+n] = f12;
|
|
|
|
|
dist[14*Np+n] = f13;
|
|
|
|
|
dist[15*Np+n] = f16;
|
|
|
|
|
dist[18*Np+n] = f17;
|
|
|
|
|
//...................................................
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
extern "C" void ScaLBL_D3Q19_AAodd_Pressure_BC_z(int *d_neighborList, int *list, double *dist, double din, int count, int Np)
|
|
|
|
|
{
|
|
|
|
|
int idx, n;
|
|
|
|
|
int nread;
|
|
|
|
|
int nr5,nr11,nr14,nr15,nr18;
|
|
|
|
|
// distributions
|
|
|
|
|
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
|
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
|
|
|
double ux,uy,uz,Cyz,Cxz;
|
|
|
|
|
ux = uy = 0.0;
|
|
|
|
|
|
|
|
|
|
for (int idx=0; idx<count; idx++){
|
|
|
|
|
n = list[idx];
|
|
|
|
|
f0 = dist[n];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n];
|
|
|
|
|
f1 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+2*Np];
|
|
|
|
|
f3 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+6*Np];
|
|
|
|
|
f7 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+8*Np];
|
|
|
|
|
f9 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+12*Np];
|
|
|
|
|
f13 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+16*Np];
|
|
|
|
|
f17 = dist[nread];
|
2017-09-18 05:55:34 -04:00
|
|
|
|
2018-01-24 10:08:43 -05:00
|
|
|
nread = d_neighborList[n+Np];
|
|
|
|
|
f2 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+3*Np];
|
|
|
|
|
f4 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+5*Np];
|
|
|
|
|
f6 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+7*Np];
|
|
|
|
|
f8 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+9*Np];
|
|
|
|
|
f10 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+11*Np];
|
|
|
|
|
f12 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+15*Np];
|
|
|
|
|
f16 = dist[nread];
|
|
|
|
|
|
|
|
|
|
// Unknown distributions
|
|
|
|
|
nr5 = d_neighborList[n+4*Np];
|
|
|
|
|
nr11 = d_neighborList[n+10*Np];
|
|
|
|
|
nr15 = d_neighborList[n+14*Np];
|
|
|
|
|
nr14 = d_neighborList[n+13*Np];
|
|
|
|
|
nr18 = d_neighborList[n+17*Np];
|
|
|
|
|
|
|
|
|
|
//...................................................
|
|
|
|
|
// Determine the inlet flow velocity
|
|
|
|
|
//ux = (f1-f2+f7-f8+f9-f10+f11-f12+f13-f14);
|
|
|
|
|
//uy = (f3-f4+f7-f8-f9+f10+f15-f16+f17-f18);
|
|
|
|
|
uz = din - (f0+f1+f2+f3+f4+f7+f8+f9+f10 + 2*(f6+f12+f13+f16+f17));
|
|
|
|
|
|
|
|
|
|
Cxz = 0.5*(f1+f7+f9-f2-f10-f8) - 0.3333333333333333*ux;
|
|
|
|
|
Cyz = 0.5*(f3+f7+f10-f4-f9-f8) - 0.3333333333333333*uy;
|
|
|
|
|
|
|
|
|
|
f5 = f6 + 0.33333333333333338*uz;
|
|
|
|
|
f11 = f12 + 0.16666666666666678*(uz+ux)-Cxz;
|
|
|
|
|
f14 = f13 + 0.16666666666666678*(uz-ux)+Cxz;
|
|
|
|
|
f15 = f16 + 0.16666666666666678*(uy+uz)-Cyz;
|
|
|
|
|
f18 = f17 + 0.16666666666666678*(uz-uy)+Cyz;
|
|
|
|
|
|
|
|
|
|
dist[nr5] = f5;
|
|
|
|
|
dist[nr11] = f11;
|
|
|
|
|
dist[nr14] = f14;
|
|
|
|
|
dist[nr15] = f15;
|
|
|
|
|
dist[nr18] = f18;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
extern "C" void ScaLBL_D3Q19_AAodd_Pressure_BC_Z(int *d_neighborList, int *list, double *dist, double dout, int count, int Np)
|
|
|
|
|
{
|
|
|
|
|
int idx,n,nread;
|
|
|
|
|
int nr6,nr12,nr13,nr16,nr17;
|
|
|
|
|
// distributions
|
|
|
|
|
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
|
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
|
|
|
double ux,uy,uz,Cyz,Cxz;
|
|
|
|
|
ux = uy = 0.0;
|
|
|
|
|
|
|
|
|
|
for (int idx=0; idx<count; idx++){
|
|
|
|
|
n = list[idx];
|
2017-09-18 05:55:34 -04:00
|
|
|
//........................................................................
|
2018-01-24 10:08:43 -05:00
|
|
|
// Read distributions
|
2017-09-18 05:55:34 -04:00
|
|
|
//........................................................................
|
2018-01-24 10:08:43 -05:00
|
|
|
f0 = dist[n];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n];
|
|
|
|
|
f1 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+2*Np];
|
|
|
|
|
f3 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+4*Np];
|
|
|
|
|
f5 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+6*Np];
|
|
|
|
|
f7 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+8*Np];
|
|
|
|
|
f9 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+10*Np];
|
|
|
|
|
f11 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+14*Np];
|
|
|
|
|
f15 = dist[nread];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+Np];
|
|
|
|
|
f2 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+3*Np];
|
|
|
|
|
f4 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+7*Np];
|
|
|
|
|
f8 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+9*Np];
|
|
|
|
|
f10 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+13*Np];
|
|
|
|
|
f14 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = d_neighborList[n+17*Np];
|
|
|
|
|
f18 = dist[nread];
|
|
|
|
|
|
|
|
|
|
// unknown distributions
|
|
|
|
|
nr6 = d_neighborList[n+5*Np];
|
|
|
|
|
nr12 = d_neighborList[n+11*Np];
|
|
|
|
|
nr16 = d_neighborList[n+15*Np];
|
|
|
|
|
nr17 = d_neighborList[n+16*Np];
|
|
|
|
|
nr13 = d_neighborList[n+12*Np];
|
|
|
|
|
|
|
|
|
|
// Determine the inlet flow velocity
|
|
|
|
|
//ux = f1-f2+f7-f8+f9-f10+f11-f12+f13-f14;
|
|
|
|
|
//uy = f3-f4+f7-f8-f9+f10+f15-f16+f17-f18;
|
|
|
|
|
uz = -dout + (f0+f1+f2+f3+f4+f7+f8+f9+f10 + 2*(f5+f11+f14+f15+f18));
|
|
|
|
|
|
|
|
|
|
Cxz = 0.5*(f1+f7+f9-f2-f10-f8) - 0.3333333333333333*ux;
|
|
|
|
|
Cyz = 0.5*(f3+f7+f10-f4-f9-f8) - 0.3333333333333333*uy;
|
|
|
|
|
|
|
|
|
|
f6 = f5 - 0.33333333333333338*uz;
|
|
|
|
|
f12 = f11 - 0.16666666666666678*(uz+ux)+Cxz;
|
|
|
|
|
f13 = f14 - 0.16666666666666678*(uz-ux)-Cxz;
|
|
|
|
|
f16 = f15 - 0.16666666666666678*(uy+uz)+Cyz;
|
|
|
|
|
f17 = f18 - 0.16666666666666678*(uz-uy)-Cyz;
|
|
|
|
|
|
|
|
|
|
//........Store in "opposite" memory location..........
|
|
|
|
|
dist[nr6] = f6;
|
|
|
|
|
dist[nr12] = f12;
|
|
|
|
|
dist[nr13] = f13;
|
|
|
|
|
dist[nr16] = f16;
|
|
|
|
|
dist[nr17] = f17;
|
|
|
|
|
//...................................................
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
extern "C" void ScaLBL_D3Q19_Pressure_BC_z(int *list, double *dist, double din, int count, int Np)
|
|
|
|
|
{
|
|
|
|
|
int n;
|
|
|
|
|
// distributions
|
|
|
|
|
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
|
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
|
|
|
double ux,uy,uz;
|
|
|
|
|
double Cxz,Cyz;
|
|
|
|
|
|
|
|
|
|
for (int idx=0; idx<count; idx++){
|
|
|
|
|
n = list[idx];
|
2017-09-18 05:55:34 -04:00
|
|
|
//........................................................................
|
2018-01-24 10:08:43 -05:00
|
|
|
// Read distributions from "opposite" memory convention
|
2017-09-18 05:55:34 -04:00
|
|
|
//........................................................................
|
2018-01-24 10:08:43 -05:00
|
|
|
//........................................................................
|
|
|
|
|
f0 = dist[n];
|
|
|
|
|
f1 = dist[Np+n];
|
|
|
|
|
f2 = dist[2*Np+n];
|
|
|
|
|
f3 = dist[3*Np+n];
|
|
|
|
|
f4 = dist[4*Np+n];
|
|
|
|
|
f6 = dist[6*Np+n];
|
|
|
|
|
f7 = dist[7*Np+n];
|
|
|
|
|
f8 = dist[8*Np+n];
|
|
|
|
|
f9 = dist[9*Np+n];
|
|
|
|
|
f10 = dist[10*Np+n];
|
|
|
|
|
f12 = dist[12*Np+n];
|
|
|
|
|
f13 = dist[13*Np+n];
|
|
|
|
|
f16 = dist[16*Np+n];
|
|
|
|
|
f17 = dist[17*Np+n];
|
2017-09-18 05:55:34 -04:00
|
|
|
//...................................................
|
|
|
|
|
//........Determine the inlet flow velocity.........
|
|
|
|
|
// uz = -1 + (f0+f3+f4+f1+f2+f7+f8+f10+f9
|
|
|
|
|
// + 2*(f5+f15+f18+f11+f14))/din;
|
|
|
|
|
//........Set the unknown distributions..............
|
|
|
|
|
// f6 = f5 - 0.3333333333333333*din*uz;
|
|
|
|
|
// f16 = f15 - 0.1666666666666667*din*uz;
|
|
|
|
|
// f17 = f16 - f3 + f4-f15+f18-f7+f8-f10+f9;
|
|
|
|
|
// f12= 0.5*(-din*uz+f5+f15+f18+f11+f14-f6-f16-
|
|
|
|
|
// f17+f1-f2-f14+f11+f7-f8-f10+f9);
|
|
|
|
|
// f13= -din*uz+f5+f15+f18+f11+f14-f6-f16-f17-f12;
|
|
|
|
|
// Determine the inlet flow velocity
|
2018-01-24 10:08:43 -05:00
|
|
|
ux = (f1-f2+f7-f8+f9-f10+f11-f12+f13-f14);
|
|
|
|
|
uy = (f3-f4+f7-f8-f9+f10+f15-f16+f17-f18);
|
2017-09-18 05:55:34 -04:00
|
|
|
uz = din - (f0+f1+f2+f3+f4+f7+f8+f9+f10 + 2*(f6+f12+f13+f16+f17));
|
|
|
|
|
|
|
|
|
|
Cxz = 0.5*(f1+f7+f9-f2-f10-f8) - 0.3333333333333333*ux;
|
|
|
|
|
Cyz = 0.5*(f3+f7+f10-f4-f9-f8) - 0.3333333333333333*uy;
|
|
|
|
|
|
2018-01-24 10:08:43 -05:00
|
|
|
f5 = f6 + 0.33333333333333338*uz;
|
|
|
|
|
f11 = f12 + 0.16666666666666678*(uz+ux)-Cxz;
|
|
|
|
|
f14 = f13 + 0.16666666666666678*(uz-ux)+Cxz;
|
|
|
|
|
f15 = f16 + 0.16666666666666678*(uy+uz)-Cyz;
|
|
|
|
|
f18 = f17 + 0.16666666666666678*(uz-uy)+Cyz;
|
2017-09-18 05:55:34 -04:00
|
|
|
//........Store in "opposite" memory location..........
|
2018-01-24 10:08:43 -05:00
|
|
|
dist[5*Np+n] = f5;
|
|
|
|
|
dist[11*Np+n] = f11;
|
|
|
|
|
dist[14*Np+n] = f14;
|
|
|
|
|
dist[15*Np+n] = f15;
|
|
|
|
|
dist[18*Np+n] = f18;
|
|
|
|
|
|
2017-09-18 05:55:34 -04:00
|
|
|
/*
|
|
|
|
|
printf("Site=%i\n",n);
|
|
|
|
|
printf("ux=%f, uy=%f, uz=%f\n",ux,uy,uz);
|
|
|
|
|
printf("Cxz=%f, Cyz=%f\n",Cxz,Cyz);
|
|
|
|
|
n = N;
|
2018-01-24 10:08:43 -05:00
|
|
|
*/
|
2017-09-18 05:55:34 -04:00
|
|
|
//...................................................
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2018-01-24 10:08:43 -05:00
|
|
|
extern "C" void ScaLBL_D3Q19_Pressure_BC_Z(int *list, double *dist, double dout, int count, int Np)
|
2017-09-18 05:55:34 -04:00
|
|
|
{
|
2018-01-24 10:08:43 -05:00
|
|
|
int n;
|
2017-09-18 05:55:34 -04:00
|
|
|
// distributions
|
|
|
|
|
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
|
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
|
|
|
double ux,uy,uz;
|
|
|
|
|
double Cxz,Cyz;
|
|
|
|
|
|
2018-01-24 10:08:43 -05:00
|
|
|
for (int idx=0; idx<count; idx++){
|
|
|
|
|
n = list[idx];
|
|
|
|
|
|
2017-09-18 05:55:34 -04:00
|
|
|
//........................................................................
|
2018-01-24 10:08:43 -05:00
|
|
|
// Read distributions
|
2017-09-18 05:55:34 -04:00
|
|
|
//........................................................................
|
2018-01-24 10:08:43 -05:00
|
|
|
f0 = dist[n];
|
|
|
|
|
f1 = dist[Np+n];
|
|
|
|
|
f2 = dist[2*Np+n];
|
|
|
|
|
f3 = dist[3*Np+n];
|
|
|
|
|
f4 = dist[4*Np+n];
|
|
|
|
|
f5 = dist[5*Np+n];
|
|
|
|
|
f7 = dist[7*Np+n];
|
|
|
|
|
f8 = dist[8*Np+n];
|
|
|
|
|
f9 = dist[9*Np+n];
|
|
|
|
|
f10 = dist[10*Np+n];
|
|
|
|
|
f11 = dist[11*Np+n];
|
|
|
|
|
f14 = dist[14*Np+n];
|
|
|
|
|
f15 = dist[15*Np+n];
|
|
|
|
|
f18 = dist[18*Np+n];
|
2017-09-18 05:55:34 -04:00
|
|
|
//........Determine the outlet flow velocity.........
|
|
|
|
|
// uz = 1 - (f0+f3+f4+f1+f2+f7+f8+f10+f9+
|
|
|
|
|
// 2*(f6+f16+f17+f12+f13))/dout;
|
|
|
|
|
//...................................................
|
|
|
|
|
//........Set the Unknown Distributions..............
|
|
|
|
|
// f5 = f6 + 0.33333333333333338*dout*uz;
|
|
|
|
|
// f15 = f16 + 0.16666666666666678*dout*uz;
|
|
|
|
|
// f18 = f15+f3-f4-f16+f17+f7-f8+f10-f9;
|
|
|
|
|
// f11= 0.5*(dout*uz+f6+ f16+f17+f12+f13-f5
|
|
|
|
|
// -f15-f18-f1+f2-f13+f12-f7+f8+f10-f9);
|
|
|
|
|
// f14= dout*uz+f6+ f16+f17+f12+f13-f5-f15-f18-f11;
|
|
|
|
|
// Determine the outlet flow velocity
|
|
|
|
|
//ux = f1-f2+f7-f8+f9-f10+f11-f12+f13-f14;
|
|
|
|
|
//uy = f3-f4+f7-f8-f9+f10+f15-f16+f17-f18;
|
|
|
|
|
//uz = -1.0 + (f0+f4+f3+f2+f1+f8+f7+f9+f10 + 2*(f6+f16+f17+f12+f13))/dout;
|
|
|
|
|
|
|
|
|
|
// Determine the inlet flow velocity
|
2018-01-24 10:08:43 -05:00
|
|
|
ux = f1-f2+f7-f8+f9-f10+f11-f12+f13-f14;
|
|
|
|
|
uy = f3-f4+f7-f8-f9+f10+f15-f16+f17-f18;
|
2017-09-18 05:55:34 -04:00
|
|
|
uz = -dout + (f0+f1+f2+f3+f4+f7+f8+f9+f10 + 2*(f5+f11+f14+f15+f18));
|
|
|
|
|
|
|
|
|
|
Cxz = 0.5*(f1+f7+f9-f2-f10-f8) - 0.3333333333333333*ux;
|
|
|
|
|
Cyz = 0.5*(f3+f7+f10-f4-f9-f8) - 0.3333333333333333*uy;
|
|
|
|
|
|
2018-01-24 10:08:43 -05:00
|
|
|
f6 = f5 - 0.33333333333333338*uz;
|
|
|
|
|
f12 = f11 - 0.16666666666666678*(uz+ux)+Cxz;
|
|
|
|
|
f13 = f14 - 0.16666666666666678*(uz-ux)-Cxz;
|
|
|
|
|
f16 = f15 - 0.16666666666666678*(uy+uz)+Cyz;
|
|
|
|
|
f17 = f18 - 0.16666666666666678*(uz-uy)-Cyz;
|
2017-09-18 05:55:34 -04:00
|
|
|
|
|
|
|
|
//........Store in "opposite" memory location..........
|
2018-01-24 10:08:43 -05:00
|
|
|
dist[6*Np+n] = f6;
|
|
|
|
|
dist[12*Np+n] = f12;
|
|
|
|
|
dist[13*Np+n] = f13;
|
|
|
|
|
dist[16*Np+n] = f16;
|
|
|
|
|
dist[17*Np+n] = f17;
|
2017-09-18 05:55:34 -04:00
|
|
|
//...................................................
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2015-07-18 16:01:14 -04:00
|
|
|
extern "C" void ScaLBL_D3Q19_Velocity_BC_z(double *disteven, double *distodd, double uz,
|
2018-01-24 10:08:43 -05:00
|
|
|
int Nx, int Ny, int Nz)
|
2015-07-18 16:01:14 -04:00
|
|
|
{
|
|
|
|
|
int n,N;
|
|
|
|
|
// distributions
|
|
|
|
|
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
|
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
|
|
|
double din;
|
2018-01-24 10:08:43 -05:00
|
|
|
|
2015-07-18 16:01:14 -04:00
|
|
|
N = Nx*Ny*Nz;
|
|
|
|
|
|
|
|
|
|
for (n=Nx*Ny; n<2*Nx*Ny; n++){
|
|
|
|
|
|
|
|
|
|
//........................................................................
|
|
|
|
|
// Read distributions from "opposite" memory convention
|
|
|
|
|
//........................................................................
|
|
|
|
|
//........................................................................
|
2018-01-24 10:08:43 -05:00
|
|
|
f1 = distodd[n];
|
|
|
|
|
f3 = distodd[N+n];
|
|
|
|
|
f5 = distodd[2*N+n];
|
|
|
|
|
f7 = distodd[3*N+n];
|
|
|
|
|
f9 = distodd[4*N+n];
|
|
|
|
|
f11 = distodd[5*N+n];
|
|
|
|
|
f13 = distodd[6*N+n];
|
|
|
|
|
f15 = distodd[7*N+n];
|
|
|
|
|
f17 = distodd[8*N+n];
|
2015-07-18 16:01:14 -04:00
|
|
|
//........................................................................
|
|
|
|
|
f0 = disteven[n];
|
2018-01-24 10:08:43 -05:00
|
|
|
f2 = disteven[N+n];
|
|
|
|
|
f4 = disteven[2*N+n];
|
|
|
|
|
f6 = disteven[3*N+n];
|
|
|
|
|
f8 = disteven[4*N+n];
|
|
|
|
|
f10 = disteven[5*N+n];
|
|
|
|
|
f12 = disteven[6*N+n];
|
|
|
|
|
f14 = disteven[7*N+n];
|
|
|
|
|
f16 = disteven[8*N+n];
|
|
|
|
|
f18 = disteven[9*N+n];
|
2015-07-18 16:01:14 -04:00
|
|
|
//...................................................
|
|
|
|
|
|
2018-01-24 10:08:43 -05:00
|
|
|
// Determine the outlet flow velocity
|
|
|
|
|
// uz = 1.0 - (f0+f4+f3+f2+f1+f8+f7+f9+f10 +
|
|
|
|
|
// 2*(f5+f15+f18+f11+f14))/din;
|
|
|
|
|
din = (f0+f4+f3+f2+f1+f8+f7+f9+f10+2*(f5+f15+f18+f11+f14))/(1.0-uz);
|
|
|
|
|
// Set the unknown distributions:
|
|
|
|
|
f6 = f5 + 0.3333333333333333*din*uz;
|
|
|
|
|
f16 = f15 + 0.1666666666666667*din*uz;
|
|
|
|
|
f17 = f16 + f4 - f3-f15+f18+f8-f7 +f9-f10;
|
|
|
|
|
f12= (din*uz+f5+ f15+f18+f11+f14-f6-f16-f17-f2+f1-f14+f11-f8+f7+f9-f10)*0.5;
|
|
|
|
|
f13= din*uz+f5+ f15+f18+f11+f14-f6-f16-f17-f12;
|
2015-07-18 16:01:14 -04:00
|
|
|
|
|
|
|
|
//........Store in "opposite" memory location..........
|
2018-01-24 10:08:43 -05:00
|
|
|
disteven[3*N+n] = f6;
|
|
|
|
|
disteven[6*N+n] = f12;
|
|
|
|
|
distodd[6*N+n] = f13;
|
|
|
|
|
disteven[8*N+n] = f16;
|
|
|
|
|
distodd[8*N+n] = f17;
|
2015-07-18 16:01:14 -04:00
|
|
|
//...................................................
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
extern "C" void ScaLBL_D3Q19_Velocity_BC_Z(double *disteven, double *distodd, double uz,
|
2018-01-24 10:08:43 -05:00
|
|
|
int Nx, int Ny, int Nz, int outlet)
|
2015-07-18 16:01:14 -04:00
|
|
|
{
|
|
|
|
|
int n,N;
|
|
|
|
|
// distributions
|
|
|
|
|
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
|
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
|
|
|
double dout;
|
|
|
|
|
|
|
|
|
|
N = Nx*Ny*Nz;
|
|
|
|
|
|
|
|
|
|
// Loop over the boundary - threadblocks delineated by start...finish
|
|
|
|
|
for (n=outlet; n<N-Nx*Ny; n++){
|
|
|
|
|
//........................................................................
|
|
|
|
|
// Read distributions from "opposite" memory convention
|
|
|
|
|
//........................................................................
|
2018-01-24 10:08:43 -05:00
|
|
|
f1 = distodd[n];
|
|
|
|
|
f3 = distodd[N+n];
|
|
|
|
|
f5 = distodd[2*N+n];
|
|
|
|
|
f7 = distodd[3*N+n];
|
|
|
|
|
f9 = distodd[4*N+n];
|
|
|
|
|
f11 = distodd[5*N+n];
|
|
|
|
|
f13 = distodd[6*N+n];
|
|
|
|
|
f15 = distodd[7*N+n];
|
|
|
|
|
f17 = distodd[8*N+n];
|
2015-07-18 16:01:14 -04:00
|
|
|
//........................................................................
|
|
|
|
|
f0 = disteven[n];
|
2018-01-24 10:08:43 -05:00
|
|
|
f2 = disteven[N+n];
|
|
|
|
|
f4 = disteven[2*N+n];
|
|
|
|
|
f6 = disteven[3*N+n];
|
|
|
|
|
f8 = disteven[4*N+n];
|
|
|
|
|
f10 = disteven[5*N+n];
|
|
|
|
|
f12 = disteven[6*N+n];
|
|
|
|
|
f14 = disteven[7*N+n];
|
|
|
|
|
f16 = disteven[8*N+n];
|
|
|
|
|
f18 = disteven[9*N+n];
|
|
|
|
|
//uz = -1.0 + (f0+f4+f3+f2+f1+f8+f7+f9+f10 + 2*(f6+f16+f17+f12+f13))/dout;
|
|
|
|
|
dout = (f0+f4+f3+f2+f1+f8+f7+f9+f10 + 2*(f6+f16+f17+f12+f13))/(1.0+uz);
|
|
|
|
|
f5 = f6 - 0.33333333333333338*dout* uz;
|
|
|
|
|
f15 = f16 - 0.16666666666666678*dout* uz;
|
|
|
|
|
f18 = f15 - f4 + f3-f16+f17-f8+f7-f9+f10;
|
|
|
|
|
f11 = (-dout*uz+f6+ f16+f17+f12+f13-f5-f15-f18+f2-f1-f13+f12+f8-f7-f9+f10)*0.5;
|
|
|
|
|
f14 = -dout*uz+f6+ f16+f17+f12+f13-f5-f15-f18-f11;
|
2015-07-18 16:01:14 -04:00
|
|
|
//........Store in "opposite" memory location..........
|
2018-01-24 10:08:43 -05:00
|
|
|
distodd[2*N+n] = f5;
|
|
|
|
|
distodd[5*N+n] = f11;
|
|
|
|
|
disteven[7*N+n] = f14;
|
|
|
|
|
distodd[7*N+n] = f15;
|
|
|
|
|
disteven[9*N+n] = f18;
|
2015-07-18 16:01:14 -04:00
|
|
|
//...................................................
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2018-01-24 10:08:43 -05:00
|
|
|
extern "C" void ScaLBL_D3Q19_Momentum(double *dist, double *vel, int Np)
|
2015-06-15 21:37:07 -04:00
|
|
|
{
|
2018-01-24 10:08:43 -05:00
|
|
|
int n;
|
|
|
|
|
int N =Np;
|
2015-06-15 21:37:07 -04:00
|
|
|
// distributions
|
|
|
|
|
double f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
|
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
|
|
|
double vx,vy,vz;
|
|
|
|
|
|
|
|
|
|
for (n=0; n<N; n++){
|
2018-01-24 10:08:43 -05:00
|
|
|
//........................................................................
|
|
|
|
|
// Registers to store the distributions
|
|
|
|
|
//........................................................................
|
|
|
|
|
f2 = dist[2*N+n];
|
|
|
|
|
f4 = dist[4*N+n];
|
|
|
|
|
f6 = dist[6*N+n];
|
|
|
|
|
f8 = dist[8*N+n];
|
|
|
|
|
f10 = dist[10*N+n];
|
|
|
|
|
f12 = dist[12*N+n];
|
|
|
|
|
f14 = dist[14*N+n];
|
|
|
|
|
f16 = dist[16*N+n];
|
|
|
|
|
f18 = dist[18*N+n];
|
|
|
|
|
//........................................................................
|
|
|
|
|
f1 = dist[N+n];
|
|
|
|
|
f3 = dist[3*N+n];
|
|
|
|
|
f5 = dist[5*N+n];
|
|
|
|
|
f7 = dist[7*N+n];
|
|
|
|
|
f9 = dist[9*N+n];
|
|
|
|
|
f11 = dist[11*N+n];
|
|
|
|
|
f13 = dist[13*N+n];
|
|
|
|
|
f15 = dist[15*N+n];
|
|
|
|
|
f17 = dist[17*N+n];
|
|
|
|
|
//.................Compute the velocity...................................
|
|
|
|
|
vx = f1-f2+f7-f8+f9-f10+f11-f12+f13-f14;
|
|
|
|
|
vy = f3-f4+f7-f8-f9+f10+f15-f16+f17-f18;
|
|
|
|
|
vz = f5-f6+f11-f12-f13+f14+f15-f16-f17+f18;
|
|
|
|
|
//..................Write the velocity.....................................
|
|
|
|
|
vel[n] = vx;
|
|
|
|
|
vel[N+n] = vy;
|
|
|
|
|
vel[2*N+n] = vz;
|
|
|
|
|
//........................................................................
|
2015-06-15 21:37:07 -04:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2018-01-26 10:19:37 -05:00
|
|
|
extern "C" void ScaLBL_D3Q19_Pressure(const double *fq, double *Pressure, int Np)
|
2015-06-15 21:37:07 -04:00
|
|
|
{
|
2018-01-26 10:19:37 -05:00
|
|
|
int n;
|
2015-06-15 21:37:07 -04:00
|
|
|
// distributions
|
|
|
|
|
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
|
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
|
|
|
|
2018-01-26 10:19:37 -05:00
|
|
|
for (n=0; n<Np; n++){
|
|
|
|
|
//........................................................................
|
|
|
|
|
// Registers to store the distributions
|
|
|
|
|
//........................................................................
|
|
|
|
|
f2 = dist[2*N+n];
|
|
|
|
|
f4 = dist[4*N+n];
|
|
|
|
|
f6 = dist[6*N+n];
|
|
|
|
|
f8 = dist[8*N+n];
|
|
|
|
|
f10 = dist[10*N+n];
|
|
|
|
|
f12 = dist[12*N+n];
|
|
|
|
|
f14 = dist[14*N+n];
|
|
|
|
|
f16 = dist[16*N+n];
|
|
|
|
|
f18 = dist[18*N+n];
|
|
|
|
|
//........................................................................
|
|
|
|
|
f1 = dist[N+n];
|
|
|
|
|
f3 = dist[3*N+n];
|
|
|
|
|
f5 = dist[5*N+n];
|
|
|
|
|
f7 = dist[7*N+n];
|
|
|
|
|
f9 = dist[9*N+n];
|
|
|
|
|
f11 = dist[11*N+n];
|
|
|
|
|
f13 = dist[13*N+n];
|
|
|
|
|
f15 = dist[15*N+n];
|
|
|
|
|
f17 = dist[17*N+n];
|
|
|
|
|
//.................Compute the velocity...................................
|
|
|
|
|
Pressure[n] = 0.3333333333333333*(f0+f2+f1+f4+f3+f6+f5+f8+f7+f10+
|
|
|
|
|
f9+f12+f11+f14+f13+f16+f15+f18+f17);
|
2015-06-15 21:37:07 -04:00
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2018-01-24 10:08:43 -05:00
|
|
|
extern "C" void ScaLBL_D3Q19_AAeven_MRT(double *dist, int start, int finish, int Np, double rlx_setA, double rlx_setB, double Fx,
|
|
|
|
|
double Fy, double Fz){
|
|
|
|
|
int n;
|
|
|
|
|
double fq,fp;
|
|
|
|
|
// conserved momemnts
|
|
|
|
|
double rho,jx,jy,jz;
|
|
|
|
|
// non-conserved moments
|
|
|
|
|
double m1,m2,m4,m6,m8,m9,m10,m11,m12,m13,m14,m15,m16,m17,m18;
|
|
|
|
|
|
|
|
|
|
const double mrt_V1=0.05263157894736842;
|
|
|
|
|
const double mrt_V2=0.012531328320802;
|
|
|
|
|
const double mrt_V3=0.04761904761904762;
|
|
|
|
|
const double mrt_V4=0.004594820384294068;
|
|
|
|
|
const double mrt_V5=0.01587301587301587;
|
|
|
|
|
const double mrt_V6=0.0555555555555555555555555;
|
|
|
|
|
const double mrt_V7=0.02777777777777778;
|
|
|
|
|
const double mrt_V8=0.08333333333333333;
|
|
|
|
|
const double mrt_V9=0.003341687552213868;
|
|
|
|
|
const double mrt_V10=0.003968253968253968;
|
|
|
|
|
const double mrt_V11=0.01388888888888889;
|
|
|
|
|
const double mrt_V12=0.04166666666666666;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (int n=start; n<finish; n++){
|
|
|
|
|
// q=0
|
|
|
|
|
fq = dist[n];
|
|
|
|
|
rho = fq;
|
|
|
|
|
m1 = -30.0*fq;
|
|
|
|
|
m2 = 12.0*fq;
|
|
|
|
|
|
|
|
|
|
// q=1
|
|
|
|
|
fq = dist[2*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 -= 11.0*fq;
|
|
|
|
|
m2 -= 4.0*fq;
|
|
|
|
|
jx = fq;
|
|
|
|
|
m4 = -4.0*fq;
|
|
|
|
|
m9 = 2.0*fq;
|
|
|
|
|
m10 = -4.0*fq;
|
|
|
|
|
|
|
|
|
|
// f2 = dist[10*Np+n];
|
|
|
|
|
fq = dist[1*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 -= 11.0*(fq);
|
|
|
|
|
m2 -= 4.0*(fq);
|
|
|
|
|
jx -= fq;
|
|
|
|
|
m4 += 4.0*(fq);
|
|
|
|
|
m9 += 2.0*(fq);
|
|
|
|
|
m10 -= 4.0*(fq);
|
|
|
|
|
|
|
|
|
|
// q=3
|
|
|
|
|
fq = dist[4*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 -= 11.0*fq;
|
|
|
|
|
m2 -= 4.0*fq;
|
|
|
|
|
jy = fq;
|
|
|
|
|
m6 = -4.0*fq;
|
|
|
|
|
m9 -= fq;
|
|
|
|
|
m10 += 2.0*fq;
|
|
|
|
|
m11 = fq;
|
|
|
|
|
m12 = -2.0*fq;
|
|
|
|
|
|
|
|
|
|
// q = 4
|
|
|
|
|
fq = dist[3*Np+n];
|
|
|
|
|
rho+= fq;
|
|
|
|
|
m1 -= 11.0*fq;
|
|
|
|
|
m2 -= 4.0*fq;
|
|
|
|
|
jy -= fq;
|
|
|
|
|
m6 += 4.0*fq;
|
|
|
|
|
m9 -= fq;
|
|
|
|
|
m10 += 2.0*fq;
|
|
|
|
|
m11 += fq;
|
|
|
|
|
m12 -= 2.0*fq;
|
|
|
|
|
|
|
|
|
|
// q=5
|
|
|
|
|
fq = dist[6*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 -= 11.0*fq;
|
|
|
|
|
m2 -= 4.0*fq;
|
|
|
|
|
jz = fq;
|
|
|
|
|
m8 = -4.0*fq;
|
|
|
|
|
m9 -= fq;
|
|
|
|
|
m10 += 2.0*fq;
|
|
|
|
|
m11 -= fq;
|
|
|
|
|
m12 += 2.0*fq;
|
|
|
|
|
|
|
|
|
|
// q = 6
|
|
|
|
|
fq = dist[5*Np+n];
|
|
|
|
|
rho+= fq;
|
|
|
|
|
m1 -= 11.0*fq;
|
|
|
|
|
m2 -= 4.0*fq;
|
|
|
|
|
jz -= fq;
|
|
|
|
|
m8 += 4.0*fq;
|
|
|
|
|
m9 -= fq;
|
|
|
|
|
m10 += 2.0*fq;
|
|
|
|
|
m11 -= fq;
|
|
|
|
|
m12 += 2.0*fq;
|
|
|
|
|
|
|
|
|
|
// q=7
|
|
|
|
|
fq = dist[8*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0*fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx += fq;
|
|
|
|
|
m4 += fq;
|
|
|
|
|
jy += fq;
|
|
|
|
|
m6 += fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 += fq;
|
|
|
|
|
m12 += fq;
|
|
|
|
|
m13 = fq;
|
|
|
|
|
m16 = fq;
|
|
|
|
|
m17 = -fq;
|
|
|
|
|
|
|
|
|
|
// q = 8
|
|
|
|
|
fq = dist[7*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0*fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx -= fq;
|
|
|
|
|
m4 -= fq;
|
|
|
|
|
jy -= fq;
|
|
|
|
|
m6 -= fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 += fq;
|
|
|
|
|
m12 += fq;
|
|
|
|
|
m13 += fq;
|
|
|
|
|
m16 -= fq;
|
|
|
|
|
m17 += fq;
|
|
|
|
|
|
|
|
|
|
// q=9
|
|
|
|
|
fq = dist[10*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0*fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx += fq;
|
|
|
|
|
m4 += fq;
|
|
|
|
|
jy -= fq;
|
|
|
|
|
m6 -= fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 += fq;
|
|
|
|
|
m12 += fq;
|
|
|
|
|
m13 -= fq;
|
|
|
|
|
m16 += fq;
|
|
|
|
|
m17 += fq;
|
|
|
|
|
|
|
|
|
|
// q = 10
|
|
|
|
|
fq = dist[9*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0*fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx -= fq;
|
|
|
|
|
m4 -= fq;
|
|
|
|
|
jy += fq;
|
|
|
|
|
m6 += fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 += fq;
|
|
|
|
|
m12 += fq;
|
|
|
|
|
m13 -= fq;
|
|
|
|
|
m16 -= fq;
|
|
|
|
|
m17 -= fq;
|
|
|
|
|
|
|
|
|
|
// q=11
|
|
|
|
|
fq = dist[12*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0*fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx += fq;
|
|
|
|
|
m4 += fq;
|
|
|
|
|
jz += fq;
|
|
|
|
|
m8 += fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 -= fq;
|
|
|
|
|
m12 -= fq;
|
|
|
|
|
m15 = fq;
|
|
|
|
|
m16 -= fq;
|
|
|
|
|
m18 = fq;
|
|
|
|
|
|
|
|
|
|
// q=12
|
|
|
|
|
fq = dist[11*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0*fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx -= fq;
|
|
|
|
|
m4 -= fq;
|
|
|
|
|
jz -= fq;
|
|
|
|
|
m8 -= fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 -= fq;
|
|
|
|
|
m12 -= fq;
|
|
|
|
|
m15 += fq;
|
|
|
|
|
m16 += fq;
|
|
|
|
|
m18 -= fq;
|
|
|
|
|
|
|
|
|
|
// q=13
|
|
|
|
|
fq = dist[14*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0*fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx += fq;
|
|
|
|
|
m4 += fq;
|
|
|
|
|
jz -= fq;
|
|
|
|
|
m8 -= fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 -= fq;
|
|
|
|
|
m12 -= fq;
|
|
|
|
|
m15 -= fq;
|
|
|
|
|
m16 -= fq;
|
|
|
|
|
m18 -= fq;
|
|
|
|
|
|
|
|
|
|
// q=14
|
|
|
|
|
fq = dist[13*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0*fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx -= fq;
|
|
|
|
|
m4 -= fq;
|
|
|
|
|
jz += fq;
|
|
|
|
|
m8 += fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 -= fq;
|
|
|
|
|
m12 -= fq;
|
|
|
|
|
m15 -= fq;
|
|
|
|
|
m16 += fq;
|
|
|
|
|
m18 += fq;
|
|
|
|
|
|
|
|
|
|
// q=15
|
|
|
|
|
fq = dist[16*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0*fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jy += fq;
|
|
|
|
|
m6 += fq;
|
|
|
|
|
jz += fq;
|
|
|
|
|
m8 += fq;
|
|
|
|
|
m9 -= 2.0*fq;
|
|
|
|
|
m10 -= 2.0*fq;
|
|
|
|
|
m14 = fq;
|
|
|
|
|
m17 += fq;
|
|
|
|
|
m18 -= fq;
|
|
|
|
|
|
|
|
|
|
// q=16
|
|
|
|
|
fq = dist[15*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0*fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jy -= fq;
|
|
|
|
|
m6 -= fq;
|
|
|
|
|
jz -= fq;
|
|
|
|
|
m8 -= fq;
|
|
|
|
|
m9 -= 2.0*fq;
|
|
|
|
|
m10 -= 2.0*fq;
|
|
|
|
|
m14 += fq;
|
|
|
|
|
m17 -= fq;
|
|
|
|
|
m18 += fq;
|
|
|
|
|
|
|
|
|
|
// q=17
|
|
|
|
|
fq = dist[18*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0*fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jy += fq;
|
|
|
|
|
m6 += fq;
|
|
|
|
|
jz -= fq;
|
|
|
|
|
m8 -= fq;
|
|
|
|
|
m9 -= 2.0*fq;
|
|
|
|
|
m10 -= 2.0*fq;
|
|
|
|
|
m14 -= fq;
|
|
|
|
|
m17 += fq;
|
|
|
|
|
m18 += fq;
|
|
|
|
|
|
|
|
|
|
// q=18
|
|
|
|
|
fq = dist[17*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0*fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jy -= fq;
|
|
|
|
|
m6 -= fq;
|
|
|
|
|
jz += fq;
|
|
|
|
|
m8 += fq;
|
|
|
|
|
m9 -= 2.0*fq;
|
|
|
|
|
m10 -= 2.0*fq;
|
|
|
|
|
m14 -= fq;
|
|
|
|
|
m17 -= fq;
|
|
|
|
|
m18 -= fq;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//........................................................................
|
|
|
|
|
// READ THE DISTRIBUTIONS
|
|
|
|
|
// (read from opposite array due to previous swap operation)
|
|
|
|
|
//........................................................................
|
|
|
|
|
|
|
|
|
|
//..............incorporate external force................................................
|
|
|
|
|
//..............carry out relaxation process...............................................
|
|
|
|
|
m1 = m1 + rlx_setA*((19*(jx*jx+jy*jy+jz*jz)/rho - 11*rho) - m1);
|
|
|
|
|
m2 = m2 + rlx_setA*((3*rho - 5.5*(jx*jx+jy*jy+jz*jz)/rho) - m2);
|
|
|
|
|
m4 = m4 + rlx_setB*((-0.6666666666666666*jx) - m4);
|
|
|
|
|
m6 = m6 + rlx_setB*((-0.6666666666666666*jy) - m6);
|
|
|
|
|
m8 = m8 + rlx_setB*((-0.6666666666666666*jz) - m8);
|
|
|
|
|
m9 = m9 + rlx_setA*(((2*jx*jx-jy*jy-jz*jz)/rho) - m9);
|
|
|
|
|
m10 = m10 + rlx_setA*(-0.5*((2*jx*jx-jy*jy-jz*jz)/rho) - m10);
|
|
|
|
|
m11 = m11 + rlx_setA*(((jy*jy-jz*jz)/rho) - m11);
|
|
|
|
|
m12 = m12 + rlx_setA*(-0.5*((jy*jy-jz*jz)/rho) - m12);
|
|
|
|
|
m13 = m13 + rlx_setA*((jx*jy/rho) - m13);
|
|
|
|
|
m14 = m14 + rlx_setA*((jy*jz/rho) - m14);
|
|
|
|
|
m15 = m15 + rlx_setA*((jx*jz/rho) - m15);
|
|
|
|
|
m16 = m16 + rlx_setB*( - m16);
|
|
|
|
|
m17 = m17 + rlx_setB*( - m17);
|
|
|
|
|
m18 = m18 + rlx_setB*( - m18);
|
|
|
|
|
//.......................................................................................................
|
|
|
|
|
//.................inverse transformation......................................................
|
|
|
|
|
|
|
|
|
|
// q=0
|
|
|
|
|
fq = mrt_V1*rho-mrt_V2*m1+mrt_V3*m2;
|
|
|
|
|
dist[n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 1
|
|
|
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jx-m4)+mrt_V6*(m9-m10) + 0.16666666*Fx;
|
|
|
|
|
dist[1*Np+n] = fq;
|
|
|
|
|
|
|
|
|
|
// q=2
|
|
|
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m4-jx)+mrt_V6*(m9-m10) - 0.16666666*Fx;
|
|
|
|
|
dist[2*Np+n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 3
|
|
|
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jy-m6)+mrt_V7*(m10-m9)+mrt_V8*(m11-m12) + 0.16666666*Fy;
|
|
|
|
|
dist[3*Np+n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 4
|
|
|
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m6-jy)+mrt_V7*(m10-m9)+mrt_V8*(m11-m12) - 0.16666666*Fy;
|
|
|
|
|
dist[4*Np+n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 5
|
|
|
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jz-m8)+mrt_V7*(m10-m9)+mrt_V8*(m12-m11) + 0.16666666*Fz;
|
|
|
|
|
dist[5*Np+n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 6
|
|
|
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m8-jz)+mrt_V7*(m10-m9)+mrt_V8*(m12-m11) - 0.16666666*Fz;
|
|
|
|
|
dist[6*Np+n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 7
|
|
|
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jx+jy)+0.025*(m4+m6)
|
|
|
|
|
+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
|
|
|
|
|
+mrt_V12*m12+0.25*m13+0.125*(m16-m17) + 0.08333333333*(Fx+Fy);
|
|
|
|
|
dist[7*Np+n] = fq;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// q = 8
|
|
|
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2-0.1*(jx+jy)-0.025*(m4+m6) +mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
|
|
|
|
|
+mrt_V12*m12+0.25*m13+0.125*(m17-m16) - 0.08333333333*(Fx+Fy);
|
|
|
|
|
dist[8*Np+n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 9
|
|
|
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jx-jy)+0.025*(m4-m6)
|
|
|
|
|
+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
|
|
|
|
|
+mrt_V12*m12-0.25*m13+0.125*(m16+m17) + 0.08333333333*(Fx-Fy);
|
|
|
|
|
dist[9*Np+n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 10
|
|
|
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jy-jx)+0.025*(m6-m4)
|
|
|
|
|
+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
|
|
|
|
|
+mrt_V12*m12-0.25*m13-0.125*(m16+m17)- 0.08333333333*(Fx-Fy);
|
|
|
|
|
dist[10*Np+n] = fq;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// q = 11
|
|
|
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
|
|
|
+mrt_V10*m2+0.1*(jx+jz)+0.025*(m4+m8)
|
|
|
|
|
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
|
|
|
|
|
-mrt_V12*m12+0.25*m15+0.125*(m18-m16) + 0.08333333333*(Fx+Fz);
|
|
|
|
|
dist[11*Np+n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 12
|
|
|
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2-0.1*(jx+jz)-0.025*(m4+m8)
|
|
|
|
|
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
|
|
|
|
|
-mrt_V12*m12+0.25*m15+0.125*(m16-m18) - 0.08333333333*(Fx+Fz);
|
|
|
|
|
dist[12*Np+n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 13
|
|
|
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
|
|
|
+mrt_V10*m2+0.1*(jx-jz)+0.025*(m4-m8)
|
|
|
|
|
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
|
|
|
|
|
-mrt_V12*m12-0.25*m15-0.125*(m16+m18) + 0.08333333333*(Fx-Fz);
|
|
|
|
|
dist[13*Np+n] = fq;
|
|
|
|
|
|
|
|
|
|
// q= 14
|
|
|
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
|
|
|
+mrt_V10*m2+0.1*(jz-jx)+0.025*(m8-m4)
|
|
|
|
|
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
|
|
|
|
|
-mrt_V12*m12-0.25*m15+0.125*(m16+m18) - 0.08333333333*(Fx-Fz);
|
|
|
|
|
|
|
|
|
|
dist[14*Np+n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 15
|
|
|
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
|
|
|
+mrt_V10*m2+0.1*(jy+jz)+0.025*(m6+m8)
|
|
|
|
|
-mrt_V6*m9-mrt_V7*m10+0.25*m14+0.125*(m17-m18) + 0.08333333333*(Fy+Fz);
|
|
|
|
|
dist[15*Np+n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 16
|
|
|
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
|
|
|
+mrt_V10*m2-0.1*(jy+jz)-0.025*(m6+m8)
|
|
|
|
|
-mrt_V6*m9-mrt_V7*m10+0.25*m14+0.125*(m18-m17)- 0.08333333333*(Fy+Fz);
|
|
|
|
|
dist[16*Np+n] = fq;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// q = 17
|
|
|
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
|
|
|
+mrt_V10*m2+0.1*(jy-jz)+0.025*(m6-m8)
|
|
|
|
|
-mrt_V6*m9-mrt_V7*m10-0.25*m14+0.125*(m17+m18) + 0.08333333333*(Fy-Fz);
|
|
|
|
|
dist[17*Np+n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 18
|
|
|
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
|
|
|
+mrt_V10*m2+0.1*(jz-jy)+0.025*(m8-m6)
|
|
|
|
|
-mrt_V6*m9-mrt_V7*m10-0.25*m14-0.125*(m17+m18) - 0.08333333333*(Fy-Fz);
|
|
|
|
|
dist[18*Np+n] = fq;
|
|
|
|
|
|
|
|
|
|
//........................................................................
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
extern "C" void ScaLBL_D3Q19_AAodd_MRT(int *neighborList, double *dist, int start, int finish, int Np, double rlx_setA, double rlx_setB, double Fx,
|
|
|
|
|
double Fy, double Fz){
|
|
|
|
|
int n;
|
|
|
|
|
double fq,fp;
|
|
|
|
|
// conserved momemnts
|
|
|
|
|
double rho,jx,jy,jz;
|
|
|
|
|
// non-conserved moments
|
|
|
|
|
double m1,m2,m4,m6,m8,m9,m10,m11,m12,m13,m14,m15,m16,m17,m18;
|
|
|
|
|
const double mrt_V1=0.05263157894736842;
|
|
|
|
|
const double mrt_V2=0.012531328320802;
|
|
|
|
|
const double mrt_V3=0.04761904761904762;
|
|
|
|
|
const double mrt_V4=0.004594820384294068;
|
|
|
|
|
const double mrt_V5=0.01587301587301587;
|
|
|
|
|
const double mrt_V6=0.0555555555555555555555555;
|
|
|
|
|
const double mrt_V7=0.02777777777777778;
|
|
|
|
|
const double mrt_V8=0.08333333333333333;
|
|
|
|
|
const double mrt_V9=0.003341687552213868;
|
|
|
|
|
const double mrt_V10=0.003968253968253968;
|
|
|
|
|
const double mrt_V11=0.01388888888888889;
|
|
|
|
|
const double mrt_V12=0.04166666666666666;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int nread;
|
|
|
|
|
for (int n=start; n<finish; n++){
|
|
|
|
|
// q=0
|
|
|
|
|
fq = dist[n];
|
|
|
|
|
rho = fq;
|
|
|
|
|
m1 = -30.0*fq;
|
|
|
|
|
m2 = 12.0*fq;
|
|
|
|
|
|
|
|
|
|
// q=1
|
|
|
|
|
nread = neighborList[n]; // neighbor 2 ( > 10Np => odd part of dist)
|
|
|
|
|
fq = dist[nread]; // reading the f1 data into register fq
|
|
|
|
|
//fp = dist[10*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 -= 11.0*fq;
|
|
|
|
|
m2 -= 4.0*fq;
|
|
|
|
|
jx = fq;
|
|
|
|
|
m4 = -4.0*fq;
|
|
|
|
|
m9 = 2.0*fq;
|
|
|
|
|
m10 = -4.0*fq;
|
|
|
|
|
|
|
|
|
|
// f2 = dist[10*Np+n];
|
|
|
|
|
nread = neighborList[n+Np]; // neighbor 1 ( < 10Np => even part of dist)
|
|
|
|
|
fq = dist[nread]; // reading the f2 data into register fq
|
|
|
|
|
//fq = dist[Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 -= 11.0*(fq);
|
|
|
|
|
m2 -= 4.0*(fq);
|
|
|
|
|
jx -= fq;
|
|
|
|
|
m4 += 4.0*(fq);
|
|
|
|
|
m9 += 2.0*(fq);
|
|
|
|
|
m10 -= 4.0*(fq);
|
|
|
|
|
|
|
|
|
|
// q=3
|
|
|
|
|
nread = neighborList[n+2*Np]; // neighbor 4
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[11*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 -= 11.0*fq;
|
|
|
|
|
m2 -= 4.0*fq;
|
|
|
|
|
jy = fq;
|
|
|
|
|
m6 = -4.0*fq;
|
|
|
|
|
m9 -= fq;
|
|
|
|
|
m10 += 2.0*fq;
|
|
|
|
|
m11 = fq;
|
|
|
|
|
m12 = -2.0*fq;
|
|
|
|
|
|
|
|
|
|
// q = 4
|
|
|
|
|
nread = neighborList[n+3*Np]; // neighbor 3
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[2*Np+n];
|
|
|
|
|
rho+= fq;
|
|
|
|
|
m1 -= 11.0*fq;
|
|
|
|
|
m2 -= 4.0*fq;
|
|
|
|
|
jy -= fq;
|
|
|
|
|
m6 += 4.0*fq;
|
|
|
|
|
m9 -= fq;
|
|
|
|
|
m10 += 2.0*fq;
|
|
|
|
|
m11 += fq;
|
|
|
|
|
m12 -= 2.0*fq;
|
|
|
|
|
|
|
|
|
|
// q=5
|
|
|
|
|
nread = neighborList[n+4*Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[12*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 -= 11.0*fq;
|
|
|
|
|
m2 -= 4.0*fq;
|
|
|
|
|
jz = fq;
|
|
|
|
|
m8 = -4.0*fq;
|
|
|
|
|
m9 -= fq;
|
|
|
|
|
m10 += 2.0*fq;
|
|
|
|
|
m11 -= fq;
|
|
|
|
|
m12 += 2.0*fq;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// q = 6
|
|
|
|
|
nread = neighborList[n+5*Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[3*Np+n];
|
|
|
|
|
rho+= fq;
|
|
|
|
|
m1 -= 11.0*fq;
|
|
|
|
|
m2 -= 4.0*fq;
|
|
|
|
|
jz -= fq;
|
|
|
|
|
m8 += 4.0*fq;
|
|
|
|
|
m9 -= fq;
|
|
|
|
|
m10 += 2.0*fq;
|
|
|
|
|
m11 -= fq;
|
|
|
|
|
m12 += 2.0*fq;
|
|
|
|
|
|
|
|
|
|
// q=7
|
|
|
|
|
nread = neighborList[n+6*Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[13*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0*fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx += fq;
|
|
|
|
|
m4 += fq;
|
|
|
|
|
jy += fq;
|
|
|
|
|
m6 += fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 += fq;
|
|
|
|
|
m12 += fq;
|
|
|
|
|
m13 = fq;
|
|
|
|
|
m16 = fq;
|
|
|
|
|
m17 = -fq;
|
|
|
|
|
|
|
|
|
|
// q = 8
|
|
|
|
|
nread = neighborList[n+7*Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[4*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0*fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx -= fq;
|
|
|
|
|
m4 -= fq;
|
|
|
|
|
jy -= fq;
|
|
|
|
|
m6 -= fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 += fq;
|
|
|
|
|
m12 += fq;
|
|
|
|
|
m13 += fq;
|
|
|
|
|
m16 -= fq;
|
|
|
|
|
m17 += fq;
|
|
|
|
|
|
|
|
|
|
// q=9
|
|
|
|
|
nread = neighborList[n+8*Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[14*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0*fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx += fq;
|
|
|
|
|
m4 += fq;
|
|
|
|
|
jy -= fq;
|
|
|
|
|
m6 -= fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 += fq;
|
|
|
|
|
m12 += fq;
|
|
|
|
|
m13 -= fq;
|
|
|
|
|
m16 += fq;
|
|
|
|
|
m17 += fq;
|
|
|
|
|
|
|
|
|
|
// q = 10
|
|
|
|
|
nread = neighborList[n+9*Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[5*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0*fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx -= fq;
|
|
|
|
|
m4 -= fq;
|
|
|
|
|
jy += fq;
|
|
|
|
|
m6 += fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 += fq;
|
|
|
|
|
m12 += fq;
|
|
|
|
|
m13 -= fq;
|
|
|
|
|
m16 -= fq;
|
|
|
|
|
m17 -= fq;
|
|
|
|
|
|
|
|
|
|
// q=11
|
|
|
|
|
nread = neighborList[n+10*Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[15*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0*fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx += fq;
|
|
|
|
|
m4 += fq;
|
|
|
|
|
jz += fq;
|
|
|
|
|
m8 += fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 -= fq;
|
|
|
|
|
m12 -= fq;
|
|
|
|
|
m15 = fq;
|
|
|
|
|
m16 -= fq;
|
|
|
|
|
m18 = fq;
|
|
|
|
|
|
|
|
|
|
// q=12
|
|
|
|
|
nread = neighborList[n+11*Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[6*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0*fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx -= fq;
|
|
|
|
|
m4 -= fq;
|
|
|
|
|
jz -= fq;
|
|
|
|
|
m8 -= fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 -= fq;
|
|
|
|
|
m12 -= fq;
|
|
|
|
|
m15 += fq;
|
|
|
|
|
m16 += fq;
|
|
|
|
|
m18 -= fq;
|
|
|
|
|
|
|
|
|
|
// q=13
|
|
|
|
|
nread = neighborList[n+12*Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[16*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0*fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx += fq;
|
|
|
|
|
m4 += fq;
|
|
|
|
|
jz -= fq;
|
|
|
|
|
m8 -= fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 -= fq;
|
|
|
|
|
m12 -= fq;
|
|
|
|
|
m15 -= fq;
|
|
|
|
|
m16 -= fq;
|
|
|
|
|
m18 -= fq;
|
|
|
|
|
|
|
|
|
|
// q=14
|
|
|
|
|
nread = neighborList[n+13*Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[7*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0*fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jx -= fq;
|
|
|
|
|
m4 -= fq;
|
|
|
|
|
jz += fq;
|
|
|
|
|
m8 += fq;
|
|
|
|
|
m9 += fq;
|
|
|
|
|
m10 += fq;
|
|
|
|
|
m11 -= fq;
|
|
|
|
|
m12 -= fq;
|
|
|
|
|
m15 -= fq;
|
|
|
|
|
m16 += fq;
|
|
|
|
|
m18 += fq;
|
|
|
|
|
|
|
|
|
|
// q=15
|
|
|
|
|
nread = neighborList[n+14*Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[17*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0*fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jy += fq;
|
|
|
|
|
m6 += fq;
|
|
|
|
|
jz += fq;
|
|
|
|
|
m8 += fq;
|
|
|
|
|
m9 -= 2.0*fq;
|
|
|
|
|
m10 -= 2.0*fq;
|
|
|
|
|
m14 = fq;
|
|
|
|
|
m17 += fq;
|
|
|
|
|
m18 -= fq;
|
|
|
|
|
|
|
|
|
|
// q=16
|
|
|
|
|
nread = neighborList[n+15*Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[8*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0*fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jy -= fq;
|
|
|
|
|
m6 -= fq;
|
|
|
|
|
jz -= fq;
|
|
|
|
|
m8 -= fq;
|
|
|
|
|
m9 -= 2.0*fq;
|
|
|
|
|
m10 -= 2.0*fq;
|
|
|
|
|
m14 += fq;
|
|
|
|
|
m17 -= fq;
|
|
|
|
|
m18 += fq;
|
|
|
|
|
|
|
|
|
|
// q=17
|
|
|
|
|
//fq = dist[18*Np+n];
|
|
|
|
|
nread = neighborList[n+16*Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0*fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jy += fq;
|
|
|
|
|
m6 += fq;
|
|
|
|
|
jz -= fq;
|
|
|
|
|
m8 -= fq;
|
|
|
|
|
m9 -= 2.0*fq;
|
|
|
|
|
m10 -= 2.0*fq;
|
|
|
|
|
m14 -= fq;
|
|
|
|
|
m17 += fq;
|
|
|
|
|
m18 += fq;
|
|
|
|
|
|
|
|
|
|
// q=18
|
|
|
|
|
nread = neighborList[n+17*Np];
|
|
|
|
|
fq = dist[nread];
|
|
|
|
|
//fq = dist[9*Np+n];
|
|
|
|
|
rho += fq;
|
|
|
|
|
m1 += 8.0*fq;
|
|
|
|
|
m2 += fq;
|
|
|
|
|
jy -= fq;
|
|
|
|
|
m6 -= fq;
|
|
|
|
|
jz += fq;
|
|
|
|
|
m8 += fq;
|
|
|
|
|
m9 -= 2.0*fq;
|
|
|
|
|
m10 -= 2.0*fq;
|
|
|
|
|
m14 -= fq;
|
|
|
|
|
m17 -= fq;
|
|
|
|
|
m18 -= fq;
|
|
|
|
|
|
|
|
|
|
//..............incorporate external force................................................
|
|
|
|
|
//..............carry out relaxation process...............................................
|
|
|
|
|
m1 = m1 + rlx_setA*((19*(jx*jx+jy*jy+jz*jz)/rho - 11*rho) - m1);
|
|
|
|
|
m2 = m2 + rlx_setA*((3*rho - 5.5*(jx*jx+jy*jy+jz*jz)/rho) - m2);
|
|
|
|
|
m4 = m4 + rlx_setB*((-0.6666666666666666*jx) - m4);
|
|
|
|
|
m6 = m6 + rlx_setB*((-0.6666666666666666*jy) - m6);
|
|
|
|
|
m8 = m8 + rlx_setB*((-0.6666666666666666*jz) - m8);
|
|
|
|
|
m9 = m9 + rlx_setA*(((2*jx*jx-jy*jy-jz*jz)/rho) - m9);
|
|
|
|
|
m10 = m10 + rlx_setA*(-0.5*((2*jx*jx-jy*jy-jz*jz)/rho) - m10);
|
|
|
|
|
m11 = m11 + rlx_setA*(((jy*jy-jz*jz)/rho) - m11);
|
|
|
|
|
m12 = m12 + rlx_setA*(-0.5*((jy*jy-jz*jz)/rho) - m12);
|
|
|
|
|
m13 = m13 + rlx_setA*((jx*jy/rho) - m13);
|
|
|
|
|
m14 = m14 + rlx_setA*((jy*jz/rho) - m14);
|
|
|
|
|
m15 = m15 + rlx_setA*((jx*jz/rho) - m15);
|
|
|
|
|
m16 = m16 + rlx_setB*( - m16);
|
|
|
|
|
m17 = m17 + rlx_setB*( - m17);
|
|
|
|
|
m18 = m18 + rlx_setB*( - m18);
|
|
|
|
|
//.......................................................................................................
|
|
|
|
|
//.................inverse transformation......................................................
|
|
|
|
|
|
|
|
|
|
// q=0
|
|
|
|
|
fq = mrt_V1*rho-mrt_V2*m1+mrt_V3*m2;
|
|
|
|
|
dist[n] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 1
|
|
|
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jx-m4)+mrt_V6*(m9-m10)+0.16666666*Fx;
|
|
|
|
|
nread = neighborList[n+Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q=2
|
|
|
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m4-jx)+mrt_V6*(m9-m10) - 0.16666666*Fx;
|
|
|
|
|
nread = neighborList[n];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 3
|
|
|
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jy-m6)+mrt_V7*(m10-m9)+mrt_V8*(m11-m12) + 0.16666666*Fy;
|
|
|
|
|
nread = neighborList[n+3*Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 4
|
|
|
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m6-jy)+mrt_V7*(m10-m9)+mrt_V8*(m11-m12) - 0.16666666*Fy;
|
|
|
|
|
nread = neighborList[n+2*Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 5
|
|
|
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jz-m8)+mrt_V7*(m10-m9)+mrt_V8*(m12-m11) + 0.16666666*Fz;
|
|
|
|
|
nread = neighborList[n+5*Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 6
|
|
|
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m8-jz)+mrt_V7*(m10-m9)+mrt_V8*(m12-m11) - 0.16666666*Fz;
|
|
|
|
|
nread = neighborList[n+4*Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 7
|
|
|
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jx+jy)+0.025*(m4+m6)
|
|
|
|
|
+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
|
|
|
|
|
+mrt_V12*m12+0.25*m13+0.125*(m16-m17) + 0.08333333333*(Fx+Fy);
|
|
|
|
|
nread = neighborList[n+7*Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 8
|
|
|
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2-0.1*(jx+jy)-0.025*(m4+m6) +mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
|
|
|
|
|
+mrt_V12*m12+0.25*m13+0.125*(m17-m16) - 0.08333333333*(Fx+Fy);
|
|
|
|
|
nread = neighborList[n+6*Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 9
|
|
|
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jx-jy)+0.025*(m4-m6)
|
|
|
|
|
+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
|
|
|
|
|
+mrt_V12*m12-0.25*m13+0.125*(m16+m17) + 0.08333333333*(Fx-Fy);
|
|
|
|
|
nread = neighborList[n+9*Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 10
|
|
|
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jy-jx)+0.025*(m6-m4)
|
|
|
|
|
+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
|
|
|
|
|
+mrt_V12*m12-0.25*m13-0.125*(m16+m17)- 0.08333333333*(Fx-Fy);
|
|
|
|
|
nread = neighborList[n+8*Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 11
|
|
|
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
|
|
|
+mrt_V10*m2+0.1*(jx+jz)+0.025*(m4+m8)
|
|
|
|
|
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
|
|
|
|
|
-mrt_V12*m12+0.25*m15+0.125*(m18-m16) + 0.08333333333*(Fx+Fz);
|
|
|
|
|
nread = neighborList[n+11*Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 12
|
|
|
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2-0.1*(jx+jz)-0.025*(m4+m8)
|
|
|
|
|
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
|
|
|
|
|
-mrt_V12*m12+0.25*m15+0.125*(m16-m18) - 0.08333333333*(Fx+Fz);
|
|
|
|
|
nread = neighborList[n+10*Np];
|
|
|
|
|
dist[nread]= fq;
|
|
|
|
|
|
|
|
|
|
// q = 13
|
|
|
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
|
|
|
+mrt_V10*m2+0.1*(jx-jz)+0.025*(m4-m8)
|
|
|
|
|
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
|
|
|
|
|
-mrt_V12*m12-0.25*m15-0.125*(m16+m18) + 0.08333333333*(Fx-Fz);
|
|
|
|
|
nread = neighborList[n+13*Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q= 14
|
|
|
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
|
|
|
+mrt_V10*m2+0.1*(jz-jx)+0.025*(m8-m4)
|
|
|
|
|
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
|
|
|
|
|
-mrt_V12*m12-0.25*m15+0.125*(m16+m18) - 0.08333333333*(Fx-Fz);
|
|
|
|
|
nread = neighborList[n+12*Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// q = 15
|
|
|
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
|
|
|
+mrt_V10*m2+0.1*(jy+jz)+0.025*(m6+m8)
|
|
|
|
|
-mrt_V6*m9-mrt_V7*m10+0.25*m14+0.125*(m17-m18) + 0.08333333333*(Fy+Fz);
|
|
|
|
|
nread = neighborList[n+15*Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 16
|
|
|
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
|
|
|
+mrt_V10*m2-0.1*(jy+jz)-0.025*(m6+m8)
|
|
|
|
|
-mrt_V6*m9-mrt_V7*m10+0.25*m14+0.125*(m18-m17)- 0.08333333333*(Fy+Fz);
|
|
|
|
|
nread = neighborList[n+14*Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// q = 17
|
|
|
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
|
|
|
+mrt_V10*m2+0.1*(jy-jz)+0.025*(m6-m8)
|
|
|
|
|
-mrt_V6*m9-mrt_V7*m10-0.25*m14+0.125*(m17+m18) + 0.08333333333*(Fy-Fz);
|
|
|
|
|
nread = neighborList[n+17*Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
// q = 18
|
|
|
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
|
|
|
+mrt_V10*m2+0.1*(jz-jy)+0.025*(m8-m6)
|
|
|
|
|
-mrt_V6*m9-mrt_V7*m10-0.25*m14-0.125*(m17+m18) - 0.08333333333*(Fy-Fz);
|
|
|
|
|
nread = neighborList[n+16*Np];
|
|
|
|
|
dist[nread] = fq;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
extern "C" void ScaLBL_D3Q19_AAeven_Compact(char * ID, double *dist, int Np) {
|
|
|
|
|
|
|
|
|
|
int n;
|
|
|
|
|
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
|
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
|
|
|
|
|
|
|
|
for (int n=0; n<Np; n++){
|
|
|
|
|
|
|
|
|
|
//........................................................................
|
|
|
|
|
// READ THE DISTRIBUTIONS
|
|
|
|
|
// (read from opposite array due to previous swap operation)
|
|
|
|
|
//........................................................................
|
|
|
|
|
// even
|
|
|
|
|
f2 = dist[10*Np+n];
|
|
|
|
|
f4 = dist[11*Np+n];
|
|
|
|
|
f6 = dist[12*Np+n];
|
|
|
|
|
f8 = dist[13*Np+n];
|
|
|
|
|
f10 = dist[14*Np+n];
|
|
|
|
|
f12 = dist[15*Np+n];
|
|
|
|
|
f14 = dist[16*Np+n];
|
|
|
|
|
f16 = dist[17*Np+n];
|
|
|
|
|
f18 = dist[18*Np+n];
|
|
|
|
|
|
|
|
|
|
f0 = dist[n];
|
|
|
|
|
// odd
|
|
|
|
|
f1 = dist[Np+n];
|
|
|
|
|
f3 = dist[2*Np+n];
|
|
|
|
|
f5 = dist[3*Np+n];
|
|
|
|
|
f7 = dist[4*Np+n];
|
|
|
|
|
f9 = dist[5*Np+n];
|
|
|
|
|
f11 = dist[6*Np+n];
|
|
|
|
|
f13 = dist[7*Np+n];
|
|
|
|
|
f15 = dist[8*Np+n];
|
|
|
|
|
f17 = dist[9*Np+n];
|
|
|
|
|
|
|
|
|
|
//........................................................................
|
|
|
|
|
// WRITE THE DISTRIBUTIONS
|
|
|
|
|
// even
|
|
|
|
|
//disteven[n] = f0;
|
|
|
|
|
dist[Np+n] = f2;
|
|
|
|
|
dist[2*Np+n] = f4;
|
|
|
|
|
dist[3*Np+n] = f6;
|
|
|
|
|
dist[4*Np+n] = f8;
|
|
|
|
|
dist[5*Np+n] = f10;
|
|
|
|
|
dist[6*Np+n] = f12;
|
|
|
|
|
dist[7*Np+n] = f14;
|
|
|
|
|
dist[8*Np+n] = f16;
|
|
|
|
|
dist[9*Np+n] = f18;
|
|
|
|
|
|
|
|
|
|
// odd
|
|
|
|
|
dist[10*Np+n] = f1;
|
|
|
|
|
dist[11*Np+n] = f3;
|
|
|
|
|
dist[12*Np+n] = f5;
|
|
|
|
|
dist[13*Np+n] = f7;
|
|
|
|
|
dist[14*Np+n] = f9;
|
|
|
|
|
dist[15*Np+n] = f11;
|
|
|
|
|
dist[16*Np+n] = f13;
|
|
|
|
|
dist[17*Np+n] = f15;
|
|
|
|
|
dist[18*Np+n] = f17;
|
|
|
|
|
//........................................................................
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
extern "C" void ScaLBL_D3Q19_AAodd_Compact(char * ID, int *neighborList, double *dist, int Np) {
|
|
|
|
|
int n;
|
|
|
|
|
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
|
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
|
|
|
int nread;
|
|
|
|
|
|
|
|
|
|
for (int n=0; n<Np; n++){
|
|
|
|
|
//........Get 1-D index for this thread....................
|
|
|
|
|
|
|
|
|
|
f0 = dist[n];
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n]; // + 0*Np
|
|
|
|
|
f2 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+2*Np];
|
|
|
|
|
f4 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+4*Np];
|
|
|
|
|
f6 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+6*Np];
|
|
|
|
|
f8 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+8*Np];
|
|
|
|
|
f10 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+10*Np];
|
|
|
|
|
f12 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+12*Np];
|
|
|
|
|
f14 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+14*Np];
|
|
|
|
|
f16 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+16*Np];
|
|
|
|
|
f18 = dist[nread];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+Np];
|
|
|
|
|
f1 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+3*Np];
|
|
|
|
|
f3 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+5*Np];
|
|
|
|
|
f5 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+7*Np];
|
|
|
|
|
f7 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+9*Np];
|
|
|
|
|
f9 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+11*Np];
|
|
|
|
|
f11 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+13*Np];
|
|
|
|
|
f13 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+15*Np];
|
|
|
|
|
f15 = dist[nread];
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+17*Np];
|
|
|
|
|
f17 = dist[nread];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n];
|
|
|
|
|
dist[nread] = f1;
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+2*Np];
|
|
|
|
|
dist[nread] = f3;
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+4*Np];
|
|
|
|
|
dist[nread] = f5;
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+6*Np];
|
|
|
|
|
dist[nread] = f7;
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+8*Np];
|
|
|
|
|
dist[nread] = f9;
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+10*Np];
|
|
|
|
|
dist[nread] = f11;
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+12*Np];
|
|
|
|
|
dist[nread] = f13;
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+14*Np];
|
|
|
|
|
dist[nread] = f15;
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+16*Np];
|
|
|
|
|
dist[nread] = f17;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+Np];
|
|
|
|
|
dist[nread] = f2;
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+3*Np];
|
|
|
|
|
dist[nread] = f4;
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+5*Np];
|
|
|
|
|
dist[nread] = f6;
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+7*Np];
|
|
|
|
|
dist[nread] = f8;
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+9*Np];
|
|
|
|
|
dist[nread] = f10;
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+11*Np];
|
|
|
|
|
dist[nread] = f12;
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+13*Np];
|
|
|
|
|
dist[nread] = f14;
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+15*Np];
|
|
|
|
|
dist[nread] = f16;
|
|
|
|
|
|
|
|
|
|
nread = neighborList[n+17*Np];
|
|
|
|
|
dist[nread] = f18;
|
|
|
|
|
}
|
|
|
|
|
}
|