2019-03-18 13:17:19 -05:00
|
|
|
#include "analysis/SubPhase.h"
|
|
|
|
|
|
|
|
// Constructor
|
|
|
|
SubPhase::SubPhase(std::shared_ptr <Domain> dm):
|
2019-03-19 15:36:02 -05:00
|
|
|
Dm(dm)
|
2019-03-18 13:17:19 -05:00
|
|
|
{
|
|
|
|
Nx=dm->Nx; Ny=dm->Ny; Nz=dm->Nz;
|
|
|
|
Volume=(Nx-2)*(Ny-2)*(Nz-2)*Dm->nprocx()*Dm->nprocy()*Dm->nprocz()*1.0;
|
|
|
|
|
|
|
|
morph_w = std::shared_ptr<Minkowski>(new Minkowski(Dm));
|
|
|
|
morph_n = std::shared_ptr<Minkowski>(new Minkowski(Dm));
|
|
|
|
morph_i = std::shared_ptr<Minkowski>(new Minkowski(Dm));
|
|
|
|
|
|
|
|
// Global arrays
|
|
|
|
PhaseID.resize(Nx,Ny,Nz); PhaseID.fill(0);
|
|
|
|
Label_WP.resize(Nx,Ny,Nz); Label_WP.fill(0);
|
|
|
|
Label_NWP.resize(Nx,Ny,Nz); Label_NWP.fill(0);
|
2019-03-19 15:36:02 -05:00
|
|
|
Rho_n.resize(Nx,Ny,Nz); Rho_n.fill(0);
|
|
|
|
Rho_w.resize(Nx,Ny,Nz); Rho_w.fill(0);
|
2019-03-18 13:17:19 -05:00
|
|
|
Pressure.resize(Nx,Ny,Nz); Pressure.fill(0);
|
|
|
|
Phi.resize(Nx,Ny,Nz); Phi.fill(0);
|
|
|
|
DelPhi.resize(Nx,Ny,Nz); DelPhi.fill(0);
|
|
|
|
Vel_x.resize(Nx,Ny,Nz); Vel_x.fill(0); // Gradient of the phase indicator field
|
|
|
|
Vel_y.resize(Nx,Ny,Nz); Vel_y.fill(0);
|
|
|
|
Vel_z.resize(Nx,Ny,Nz); Vel_z.fill(0);
|
2019-03-19 15:36:02 -05:00
|
|
|
SDs.resize(Nx,Ny,Nz); SDs.fill(0);
|
2019-03-18 13:17:19 -05:00
|
|
|
//.........................................
|
|
|
|
|
|
|
|
//.........................................
|
|
|
|
if (Dm->rank()==0){
|
|
|
|
TIMELOG = fopen("subphase.csv","a+");
|
|
|
|
if (fseek(TIMELOG,0,SEEK_SET) == fseek(TIMELOG,0,SEEK_CUR))
|
|
|
|
{
|
|
|
|
// If timelog is empty, write a short header to list the averages
|
|
|
|
//fprintf(TIMELOG,"--------------------------------------------------------------------------------------\n");
|
|
|
|
fprintf(TIMELOG,"time rn rw nun nuw Fx Fy Fz iftwn ");
|
|
|
|
fprintf(TIMELOG,"pnc pnd pni pwc pwd pwi "); // pressures
|
|
|
|
fprintf(TIMELOG,"Mwc Mwd Mwi Mnc Mnd Mni "); // mass
|
|
|
|
fprintf(TIMELOG,"Pwc_x Pwd_x Pwi_x Pnc_x Pnd_x Pni_x "); // momentum
|
|
|
|
fprintf(TIMELOG,"Pwc_y Pwd_y Pwi_y Pnc_y Pnd_y Pni_y ");
|
|
|
|
fprintf(TIMELOG,"Pwc_z Pwd_z Pwi_z Pnc_z Pnd_z Pni_z ");
|
|
|
|
fprintf(TIMELOG,"Kwc Kwd Kwi Knc Knd Kni "); // kinetic energy
|
|
|
|
fprintf(TIMELOG,"Vwc Awc Hwc Xwc "); // wc region
|
|
|
|
fprintf(TIMELOG,"Vwd Awd Hwd Xwd "); // wd region
|
|
|
|
fprintf(TIMELOG,"Vnc Anc Hnc Xnc "); // nc region
|
|
|
|
fprintf(TIMELOG,"Vnd And Hnd Xnd "); // nd region
|
2019-03-19 15:36:02 -05:00
|
|
|
fprintf(TIMELOG,"Vi Ai Hi Xi\n"); // interface region
|
2019-03-18 13:17:19 -05:00
|
|
|
// stress tensor
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
else{
|
|
|
|
char LocalRankString[8];
|
|
|
|
sprintf(LocalRankString,"%05d",Dm->rank());
|
|
|
|
char LocalRankFilename[40];
|
|
|
|
sprintf(LocalRankFilename,"%s%s","subphase.csv.",LocalRankString);
|
|
|
|
TIMELOG = fopen(LocalRankFilename,"a+");
|
|
|
|
//fprintf(TIMELOG,"--------------------------------------------------------------------------------------\n");
|
2019-03-19 15:36:02 -05:00
|
|
|
fprintf(TIMELOG,"time rn rw nun nuw Fx Fy Fz iftwn ");
|
|
|
|
fprintf(TIMELOG,"pnc pnd pni pwc pwd pwi "); // pressures
|
|
|
|
fprintf(TIMELOG,"Mwc Mwd Mwi Mnc Mnd Mni "); // mass
|
|
|
|
fprintf(TIMELOG,"Pwc_x Pwd_x Pwi_x Pnc_x Pnd_x Pni_x "); // momentum
|
|
|
|
fprintf(TIMELOG,"Pwc_y Pwd_y Pwi_y Pnc_y Pnd_y Pni_y ");
|
|
|
|
fprintf(TIMELOG,"Pwc_z Pwd_z Pwi_z Pnc_z Pnd_z Pni_z ");
|
|
|
|
fprintf(TIMELOG,"Kwc Kwd Kwi Knc Knd Kni "); // kinetic energy
|
|
|
|
fprintf(TIMELOG,"Vwc Awc Hwc Xwc "); // wc region
|
|
|
|
fprintf(TIMELOG,"Vwd Awd Hwd Xwd "); // wd region
|
|
|
|
fprintf(TIMELOG,"Vnc Anc Hnc Xnc "); // nc region
|
|
|
|
fprintf(TIMELOG,"Vnd And Hnd Xnd "); // nd region
|
|
|
|
fprintf(TIMELOG,"Vi Ai Hi Xi\n"); // interface region
|
2019-03-18 13:17:19 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Destructor
|
|
|
|
SubPhase::~SubPhase()
|
|
|
|
{
|
|
|
|
if ( TIMELOG!=NULL ) { fclose(TIMELOG); }
|
|
|
|
|
|
|
|
}
|
|
|
|
|
2019-03-19 15:36:02 -05:00
|
|
|
void SubPhase::SetParams(double rhoA, double rhoB, double tauA, double tauB, double force_x, double force_y, double force_z, double alpha, double B)
|
2019-03-18 13:17:19 -05:00
|
|
|
{
|
|
|
|
Fx = force_x;
|
|
|
|
Fy = force_y;
|
|
|
|
Fz = force_z;
|
|
|
|
rho_n = rhoA;
|
|
|
|
rho_w = rhoB;
|
|
|
|
nu_n = (tauA-0.5)/3.f;
|
|
|
|
nu_w = (tauB-0.5)/3.f;
|
|
|
|
gamma_wn = 5.796*alpha;
|
2019-03-19 15:36:02 -05:00
|
|
|
beta = B;
|
2019-03-18 13:17:19 -05:00
|
|
|
}
|
|
|
|
|
2019-03-19 15:36:02 -05:00
|
|
|
void SubPhase::BulkAverage(){
|
|
|
|
int i,j,k,n,imin,jmin,kmin,kmax;
|
|
|
|
|
|
|
|
// If external boundary conditions are set, do not average over the inlet
|
|
|
|
kmin=1; kmax=Nz-1;
|
|
|
|
if (Dm->BoundaryCondition > 0 && Dm->kproc() == 0) kmin=4;
|
|
|
|
if (Dm->BoundaryCondition > 0 && Dm->kproc() == Dm->nprocz()-1) kmax=Nz-4;
|
|
|
|
|
|
|
|
imin=jmin=1;
|
|
|
|
// If inlet layers exist use these as default
|
|
|
|
if (Dm->inlet_layers_x > 0) imin = Dm->inlet_layers_x;
|
|
|
|
if (Dm->inlet_layers_y > 0) jmin = Dm->inlet_layers_y;
|
|
|
|
if (Dm->inlet_layers_z > 0) kmin = Dm->inlet_layers_z;
|
|
|
|
|
|
|
|
nb.reset(); wb.reset();
|
|
|
|
/*
|
|
|
|
//Dm->CommunicateMeshHalo(Phi);
|
|
|
|
for (int k=1; k<Nz-1; k++){
|
|
|
|
for (int j=1; j<Ny-1; j++){
|
|
|
|
for (int i=1; i<Nx-1; i++){
|
|
|
|
// Compute all of the derivatives using finite differences
|
|
|
|
double fx = 0.5*(Phi(i+1,j,k) - Phi(i-1,j,k));
|
|
|
|
double fy = 0.5*(Phi(i,j+1,k) - Phi(i,j-1,k));
|
|
|
|
double fz = 0.5*(Phi(i,j,k+1) - Phi(i,j,k-1));
|
|
|
|
DelPhi(i,j,k) = sqrt(fx*fx+fy*fy+fz*fz);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
*/
|
|
|
|
|
2019-03-20 15:17:35 -05:00
|
|
|
double nA,nB;
|
2019-03-19 15:36:02 -05:00
|
|
|
for (k=kmin; k<kmax; k++){
|
|
|
|
for (j=jmin; j<Ny-1; j++){
|
|
|
|
for (i=imin; i<Nx-1; i++){
|
|
|
|
n = k*Nx*Ny + j*Nx + i;
|
|
|
|
// Compute volume averages
|
|
|
|
if ( Dm->id[n] > 0 ){
|
|
|
|
// compute density
|
2019-03-20 15:17:35 -05:00
|
|
|
double nA = Rho_n(n);
|
|
|
|
double nB = Rho_w(n);
|
|
|
|
double phi = (nA-nB)/(nA+nB);
|
2019-03-19 15:36:02 -05:00
|
|
|
Phi(n) = phi;
|
|
|
|
|
|
|
|
if ( phi > 0.0 ){
|
|
|
|
nb.V += 1.0;
|
|
|
|
nb.M += rho_n;
|
|
|
|
// velocity
|
2019-03-20 15:17:35 -05:00
|
|
|
nb.Px += rho_n*nA*Vel_x(n);
|
|
|
|
nb.Py += rho_n*nA*Vel_y(n);
|
|
|
|
nb.Pz += rho_n*nA*Vel_z(n);
|
2019-03-19 15:36:02 -05:00
|
|
|
|
|
|
|
/* // volume the excludes the interfacial region
|
|
|
|
if (DelPhi(n) < 1e-4){
|
|
|
|
// pressure
|
|
|
|
pan += Pressure(n);
|
|
|
|
}
|
|
|
|
else{
|
|
|
|
|
|
|
|
}
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
else{
|
|
|
|
wb.M += rho_w;
|
|
|
|
wb.V += 1.0;
|
2019-03-18 13:17:19 -05:00
|
|
|
|
2019-03-19 15:36:02 -05:00
|
|
|
// velocity
|
2019-03-20 15:17:35 -05:00
|
|
|
wb.Px += rho_w*nB*Vel_x(n);
|
|
|
|
wb.Py += rho_w*nB*Vel_y(n);
|
|
|
|
wb.Pz += rho_w*nB*Vel_z(n);
|
2019-03-19 15:36:02 -05:00
|
|
|
|
|
|
|
/*
|
|
|
|
if (DelPhi(n) < 1e-4){
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
else{
|
|
|
|
|
|
|
|
}
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
wb.V=sumReduce( Dm->Comm, wb.V);
|
|
|
|
wb.M=sumReduce( Dm->Comm, wb.M);
|
|
|
|
nb.M=sumReduce( Dm->Comm, nb.M);
|
|
|
|
wb.Px=sumReduce( Dm->Comm, wb.Px);
|
|
|
|
wb.Py=sumReduce( Dm->Comm, wb.Py);
|
|
|
|
wb.Pz=sumReduce( Dm->Comm, wb.Pz);
|
|
|
|
nb.Px=sumReduce( Dm->Comm, nb.Px);
|
|
|
|
nb.Py=sumReduce( Dm->Comm, nb.Py);
|
|
|
|
nb.Pz=sumReduce( Dm->Comm, nb.Pz);
|
|
|
|
|
|
|
|
if (Dm->rank() == 0){
|
|
|
|
double saturation=wb.V/(wb.V + nb.V);
|
|
|
|
double fractional_flow=nb.M*sqrt(wb.Px*wb.Px+wb.Py*wb.Py+wb.Pz*wb.Pz)/(wb.M*sqrt(nb.Px*nb.Px+nb.Py*nb.Py+nb.Pz*nb.Pz));
|
|
|
|
printf("saturation = %f, fractional flow =%f \n",saturation,fractional_flow);
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
2019-03-20 15:17:35 -05:00
|
|
|
|
|
|
|
inline void InterfaceTransportMeasures( double beta, double rA, double rB, double nA, double nB,
|
|
|
|
double nx, double ny, double nz, double ux, double uy, double uz, interface &I){
|
|
|
|
|
|
|
|
double A0,A1,A2,A3,A4,A5,A6;
|
|
|
|
double B0,B1,B2,B3,B4,B5,B6;
|
|
|
|
double nAB,delta;
|
|
|
|
// Instantiate mass transport distributions
|
|
|
|
// Stationary value - distribution 0
|
|
|
|
nAB = 1.0/(nA+nB);
|
|
|
|
A0 = 0.3333333333333333*nA;
|
|
|
|
B0 = 0.3333333333333333*nB;
|
|
|
|
|
|
|
|
//...............................................
|
|
|
|
// q = 0,2,4
|
|
|
|
// Cq = {1,0,0}, {0,1,0}, {0,0,1}
|
|
|
|
delta = beta*nA*nB*nAB*0.1111111111111111*nx;
|
|
|
|
if (!(nA*nB*nAB>0)) delta=0;
|
|
|
|
A1 = nA*(0.1111111111111111*(1+4.5*ux))+delta;
|
|
|
|
B1 = nB*(0.1111111111111111*(1+4.5*ux))-delta;
|
|
|
|
A2 = nA*(0.1111111111111111*(1-4.5*ux))-delta;
|
|
|
|
B2 = nB*(0.1111111111111111*(1-4.5*ux))+delta;
|
|
|
|
|
|
|
|
//...............................................
|
|
|
|
// Cq = {0,1,0}
|
|
|
|
delta = beta*nA*nB*nAB*0.1111111111111111*ny;
|
|
|
|
if (!(nA*nB*nAB>0)) delta=0;
|
|
|
|
A3 = nA*(0.1111111111111111*(1+4.5*uy))+delta;
|
|
|
|
B3 = nB*(0.1111111111111111*(1+4.5*uy))-delta;
|
|
|
|
A4 = nA*(0.1111111111111111*(1-4.5*uy))-delta;
|
|
|
|
B4 = nB*(0.1111111111111111*(1-4.5*uy))+delta;
|
|
|
|
|
|
|
|
//...............................................
|
|
|
|
// q = 4
|
|
|
|
// Cq = {0,0,1}
|
|
|
|
delta = beta*nA*nB*nAB*0.1111111111111111*nz;
|
|
|
|
if (!(nA*nB*nAB>0)) delta=0;
|
|
|
|
A5 = nA*(0.1111111111111111*(1+4.5*uz))+delta;
|
|
|
|
B5 = nB*(0.1111111111111111*(1+4.5*uz))-delta;
|
|
|
|
A6 = nA*(0.1111111111111111*(1-4.5*uz))-delta;
|
|
|
|
B6 = nB*(0.1111111111111111*(1-4.5*uz))+delta;
|
|
|
|
|
|
|
|
double unx = (A1-A2);
|
|
|
|
double uny = (A3-A4);
|
|
|
|
double unz = (A5-A6);
|
|
|
|
double uwx = (B1-B2);
|
|
|
|
double uwy = (B3-B4);
|
|
|
|
double uwz = (B5-B6);
|
|
|
|
|
|
|
|
I.Mn += rA*nA;
|
|
|
|
I.Mw += rB*nB;
|
|
|
|
I.Pnx += rA*nA*unx;
|
|
|
|
I.Pny += rA*nA*uny;
|
|
|
|
I.Pnz += rA*nA*unz;
|
|
|
|
I.Pwx += rB*nB*uwx;
|
|
|
|
I.Pwy += rB*nB*uwy;
|
|
|
|
I.Pwz += rB*nB*uwz;
|
|
|
|
I.Kn += rA*nA*(unx*unx + uny*uny + unz*unz);
|
|
|
|
I.Kw += rB*nB*(uwx*uwx + uwy*uwy + uwz*uwz);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
void SubPhase::FullAnalysis(){
|
|
|
|
int i,j,k,n,imin,jmin,kmin,kmax;
|
|
|
|
|
|
|
|
// If external boundary conditions are set, do not average over the inlet
|
|
|
|
kmin=1; kmax=Nz-1;
|
|
|
|
if (Dm->BoundaryCondition > 0 && Dm->kproc() == 0) kmin=4;
|
|
|
|
if (Dm->BoundaryCondition > 0 && Dm->kproc() == Dm->nprocz()-1) kmax=Nz-4;
|
|
|
|
|
|
|
|
imin=jmin=1;
|
|
|
|
// If inlet layers exist use these as default
|
|
|
|
if (Dm->inlet_layers_x > 0) imin = Dm->inlet_layers_x;
|
|
|
|
if (Dm->inlet_layers_y > 0) jmin = Dm->inlet_layers_y;
|
|
|
|
if (Dm->inlet_layers_z > 0) kmin = Dm->inlet_layers_z;
|
|
|
|
|
|
|
|
nd.reset(); nc.reset(); wd.reset(); wc.reset(); iwn.reset();
|
|
|
|
|
|
|
|
Dm->CommunicateMeshHalo(Phi);
|
|
|
|
for (int k=1; k<Nz-1; k++){
|
|
|
|
for (int j=1; j<Ny-1; j++){
|
|
|
|
for (int i=1; i<Nx-1; i++){
|
|
|
|
// Compute all of the derivatives using finite differences
|
|
|
|
double fx = 0.5*(Phi(i+1,j,k) - Phi(i-1,j,k));
|
|
|
|
double fy = 0.5*(Phi(i,j+1,k) - Phi(i,j-1,k));
|
|
|
|
double fz = 0.5*(Phi(i,j,k+1) - Phi(i,j,k-1));
|
|
|
|
DelPhi(i,j,k) = sqrt(fx*fx+fy*fy+fz*fz);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
Dm->CommunicateMeshHalo(DelPhi);
|
|
|
|
|
|
|
|
/* Set up geometric analysis of each region */
|
|
|
|
|
|
|
|
// non-wetting
|
|
|
|
for (k=0; k<Nz; k++){
|
|
|
|
for (j=0; j<Ny; j++){
|
|
|
|
for (i=0; i<Nx; i++){
|
|
|
|
n = k*Nx*Ny+j*Nx+i;
|
|
|
|
if (!(Dm->id[n] > 0)){
|
|
|
|
// Solid phase
|
|
|
|
morph_n->id(i,j,k) = 1;
|
|
|
|
|
|
|
|
}
|
|
|
|
else if (Phi(n) > 0.0){
|
|
|
|
// non-wetting phase
|
|
|
|
morph_n->id(i,j,k) = 0;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
// wetting phase
|
|
|
|
morph_n->id(i,j,k) = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// measure the whole object
|
|
|
|
morph_n->MeasureObject();
|
|
|
|
nd.V = morph_n->V();
|
|
|
|
nd.A = morph_n->A();
|
|
|
|
nd.H = morph_n->H();
|
|
|
|
nd.X = morph_n->X();
|
|
|
|
// measure only the connected part
|
|
|
|
morph_n->MeasureConnectedPathway();
|
|
|
|
nc.V = morph_n->V();
|
|
|
|
nc.A = morph_n->A();
|
|
|
|
nc.H = morph_n->H();
|
|
|
|
nc.X = morph_n->X();
|
|
|
|
// update disconnected part
|
|
|
|
nd.V -= nc.V;
|
|
|
|
nd.A -= nc.A;
|
|
|
|
nd.H -= nc.H;
|
|
|
|
nd.X -= nc.X;
|
|
|
|
|
|
|
|
// wetting
|
|
|
|
for (k=0; k<Nz; k++){
|
|
|
|
for (j=0; j<Ny; j++){
|
|
|
|
for (i=0; i<Nx; i++){
|
|
|
|
n = k*Nx*Ny+j*Nx+i;
|
|
|
|
if (!(Dm->id[n] > 0)){
|
|
|
|
// Solid phase
|
|
|
|
morph_w->id(i,j,k) = 1;
|
|
|
|
|
|
|
|
}
|
|
|
|
else if (Phi(n) < 0.0){
|
|
|
|
// wetting phase
|
|
|
|
morph_w->id(i,j,k) = 0;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
// non-wetting phase
|
|
|
|
morph_w->id(i,j,k) = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
morph_w->MeasureObject();
|
|
|
|
wd.V = morph_w->V();
|
|
|
|
wd.A = morph_w->A();
|
|
|
|
wd.H = morph_w->H();
|
|
|
|
wd.X = morph_w->X();
|
|
|
|
// measure only the connected part
|
|
|
|
morph_w->MeasureConnectedPathway();
|
|
|
|
wc.V = morph_w->V();
|
|
|
|
wc.A = morph_w->A();
|
|
|
|
wc.H = morph_w->H();
|
|
|
|
wc.X = morph_w->X();
|
|
|
|
// update disconnected part
|
|
|
|
wd.V -= wc.V;
|
|
|
|
wd.A -= wc.A;
|
|
|
|
wd.H -= wc.H;
|
|
|
|
wd.X -= wc.X;
|
|
|
|
|
|
|
|
/* Set up geometric analysis of interface region */
|
|
|
|
for (k=0; k<Nz; k++){
|
|
|
|
for (j=0; j<Ny; j++){
|
|
|
|
for (i=0; i<Nx; i++){
|
|
|
|
n = k*Nx*Ny+j*Nx+i;
|
|
|
|
if (!(Dm->id[n] > 0)){
|
|
|
|
// Solid phase
|
|
|
|
morph_i->id(i,j,k) = 1;
|
|
|
|
}
|
|
|
|
else if (DelPhi(n) > 1e-4){
|
|
|
|
// wetting phase
|
|
|
|
morph_i->id(i,j,k) = 0;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
// non-wetting phase
|
|
|
|
morph_i->id(i,j,k) = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
morph_i->MeasureObject();
|
|
|
|
iwn.V = morph_i->V();
|
|
|
|
iwn.A = morph_i->A();
|
|
|
|
iwn.H = morph_i->H();
|
|
|
|
iwn.X = morph_i->X();
|
|
|
|
|
|
|
|
double vol_nc_bulk = 0.0;
|
|
|
|
double vol_wc_bulk = 0.0;
|
|
|
|
double vol_nd_bulk = 0.0;
|
|
|
|
double vol_wd_bulk = 0.0;
|
|
|
|
for (k=kmin; k<kmax; k++){
|
|
|
|
for (j=jmin; j<Ny-1; j++){
|
|
|
|
for (i=imin; i<Nx-1; i++){
|
|
|
|
n = k*Nx*Ny + j*Nx + i;
|
|
|
|
// Compute volume averages
|
|
|
|
if ( Dm->id[n] > 0 ){
|
|
|
|
// compute density
|
|
|
|
double nA = Rho_n(n);
|
|
|
|
double nB = Rho_w(n);
|
|
|
|
double phi = (rho_n-rho_w)/(rho_n+rho_w);
|
|
|
|
double ux = Vel_x(n);
|
|
|
|
double uy = Vel_y(n);
|
|
|
|
double uz = Vel_z(n);
|
|
|
|
Phi(n) = phi;
|
|
|
|
|
|
|
|
if (DelPhi(n) > 1e-4){
|
|
|
|
// interface region
|
|
|
|
double nx = 0.5*(Phi(i+1,j,k)-Phi(i-1,j,k));
|
|
|
|
double ny = 0.5*(Phi(i,j+1,k)-Phi(i,j-1,k));
|
|
|
|
double nz = 0.5*(Phi(i,j,k+1)-Phi(i,j,k-1));
|
|
|
|
InterfaceTransportMeasures( beta, rho_w, rho_n, nA, nB, nx, ny, nz, ux, uy, uz, iwn);
|
|
|
|
}
|
|
|
|
else if ( phi > 0.0){
|
|
|
|
if (morph_n->label(i,j,k) > 0 ){
|
|
|
|
vol_nd_bulk += 1.0;
|
|
|
|
nd.M += nA*rho_n;
|
|
|
|
nd.Px += nA*rho_n*ux;
|
|
|
|
nd.Py += nA*rho_n*uy;
|
|
|
|
nd.Pz += nA*rho_n*uz;
|
|
|
|
nd.K += nA*rho_n*(ux*ux + uy*uy + uz*uz);
|
|
|
|
nd.p += Pressure(n);
|
|
|
|
}
|
|
|
|
else{
|
|
|
|
vol_nc_bulk += 1.0;
|
|
|
|
nc.M += nA*rho_n;
|
|
|
|
nc.Px += nA*rho_n*ux;
|
|
|
|
nc.Py += nA*rho_n*uy;
|
|
|
|
nc.Pz += nA*rho_n*uz;
|
|
|
|
nc.K += nA*rho_n*(ux*ux + uy*uy + uz*uz);
|
|
|
|
nc.p += Pressure(n);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else{
|
|
|
|
// water region
|
|
|
|
if (morph_w->label(i,j,k) > 0 ){
|
|
|
|
vol_wd_bulk += 1.0;
|
|
|
|
wd.M += nB*rho_n;
|
|
|
|
wd.Px += nB*rho_n*ux;
|
|
|
|
wd.Py += nB*rho_n*uy;
|
|
|
|
wd.Pz += nB*rho_n*uz;
|
|
|
|
wd.K += nB*rho_w*(ux*ux + uy*uy + uz*uz);
|
|
|
|
wd.p += Pressure(n);
|
|
|
|
}
|
|
|
|
else{
|
|
|
|
vol_wc_bulk += 1.0;
|
|
|
|
wc.M += nB*rho_w;
|
|
|
|
wc.Px += nB*rho_w*ux;
|
|
|
|
wc.Py += nB*rho_w*uy;
|
|
|
|
wc.Pz += nB*rho_w*uz;
|
|
|
|
wc.K += nB*rho_w*(ux*ux + uy*uy + uz*uz);
|
|
|
|
wc.p += Pressure(n);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
iwn.V=sumReduce( Dm->Comm, iwn.V);
|
|
|
|
wb.M=sumReduce( Dm->Comm, wb.M);
|
|
|
|
nb.M=sumReduce( Dm->Comm, nb.M);
|
|
|
|
wb.Px=sumReduce( Dm->Comm, wb.Px);
|
|
|
|
wb.Py=sumReduce( Dm->Comm, wb.Py);
|
|
|
|
wb.Pz=sumReduce( Dm->Comm, wb.Pz);
|
|
|
|
nb.Px=sumReduce( Dm->Comm, nb.Px);
|
|
|
|
nb.Py=sumReduce( Dm->Comm, nb.Py);
|
|
|
|
nb.Pz=sumReduce( Dm->Comm, nb.Pz);
|
|
|
|
|
|
|
|
if (Dm->rank() == 0){
|
|
|
|
double saturation=wb.V/(wb.V + nb.V);
|
|
|
|
double fractional_flow=nb.M*sqrt(wb.Px*wb.Px+wb.Py*wb.Py+wb.Pz*wb.Pz)/(wb.M*sqrt(nb.Px*nb.Px+nb.Py*nb.Py+nb.Pz*nb.Pz));
|
|
|
|
printf("saturation = %f, fractional flow =%f \n",saturation,fractional_flow);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|