add geometric test for 3D topo
This commit is contained in:
232
tests/TestTopo3D.cpp
Normal file
232
tests/TestTopo3D.cpp
Normal file
@@ -0,0 +1,232 @@
|
||||
// Sequential blob analysis
|
||||
// Reads parallel simulation data and performs connectivity analysis
|
||||
// and averaging on a blob-by-blob basis
|
||||
// James E. McClure 2014
|
||||
|
||||
#include <iostream>
|
||||
#include <math.h>
|
||||
#include "common/Communication.h"
|
||||
#include "analysis/analysis.h"
|
||||
#include "analysis/Minkowski.h"
|
||||
#include "IO/MeshDatabase.h"
|
||||
|
||||
std::shared_ptr<Database> loadInputs( int nprocs )
|
||||
{
|
||||
//auto db = std::make_shared<Database>( "Domain.in" );
|
||||
auto db = std::make_shared<Database>();
|
||||
db->putScalar<int>( "BC", 0 );
|
||||
db->putVector<int>( "nproc", { 1, 1, 1 } );
|
||||
db->putVector<int>( "n", { 100, 100, 100 } );
|
||||
db->putScalar<int>( "nspheres", 1 );
|
||||
db->putVector<double>( "L", { 1, 1, 1 } );
|
||||
return db;
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
// Initialize MPI
|
||||
int rank, nprocs;
|
||||
MPI_Init(&argc,&argv);
|
||||
MPI_Comm comm = MPI_COMM_WORLD;
|
||||
MPI_Comm_rank(comm,&rank);
|
||||
MPI_Comm_size(comm,&nprocs);
|
||||
{ // Limit scope so variables that contain communicators will free before MPI_Finialize
|
||||
|
||||
if ( rank==0 ) {
|
||||
printf("-----------------------------------------------------------\n");
|
||||
printf("Unit test 3D topologies \n");
|
||||
printf("-----------------------------------------------------------\n");
|
||||
}
|
||||
|
||||
//.......................................................................
|
||||
// Reading the domain information file
|
||||
//.......................................................................
|
||||
int i,j,k,n;
|
||||
|
||||
// Load inputs
|
||||
auto db = loadInputs( nprocs );
|
||||
int Nx = db->getVector<int>( "n" )[0];
|
||||
int Ny = db->getVector<int>( "n" )[1];
|
||||
int Nz = db->getVector<int>( "n" )[2];
|
||||
int nprocx = db->getVector<int>( "nproc" )[0];
|
||||
int nprocy = db->getVector<int>( "nproc" )[1];
|
||||
int nprocz = db->getVector<int>( "nproc" )[2];
|
||||
|
||||
if (rank==0){
|
||||
printf("********************************************************\n");
|
||||
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
|
||||
printf("********************************************************\n");
|
||||
}
|
||||
|
||||
// Get the rank info
|
||||
std::shared_ptr<Domain> Dm(new Domain(db,comm));
|
||||
|
||||
Nx += 2;
|
||||
Ny += 2;
|
||||
Nz += 2;
|
||||
int N = Nx*Ny*Nz;
|
||||
//.......................................................................
|
||||
for ( k=1;k<Nz-1;k++){
|
||||
for ( j=1;j<Ny-1;j++){
|
||||
for ( i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
Dm->id[n] = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
//.......................................................................
|
||||
Dm->CommInit(); // Initialize communications for domains
|
||||
//.......................................................................
|
||||
|
||||
// Create visualization structure
|
||||
std::vector<IO::MeshDataStruct> visData;
|
||||
fillHalo<double> fillData(Dm->Comm,Dm->rank_info,{Dm->Nx-2,Dm->Ny-2,Dm->Nz-2},{1,1,1},0,1);;
|
||||
|
||||
IO::initialize("","silo","false");
|
||||
// Create the MeshDataStruct
|
||||
visData.resize(1);
|
||||
visData[0].meshName = "domain";
|
||||
visData[0].mesh = std::make_shared<IO::DomainMesh>( Dm->rank_info,Dm->Nx-2,Dm->Ny-2,Dm->Nz-2,Dm->Lx,Dm->Ly,Dm->Lz );
|
||||
auto PhaseVar = std::make_shared<IO::Variable>();
|
||||
PhaseVar->name = "phase";
|
||||
PhaseVar->type = IO::VariableType::VolumeVariable;
|
||||
PhaseVar->dim = 1;
|
||||
PhaseVar->data.resize(Dm->Nx-2,Dm->Ny-2,Dm->Nz-2);
|
||||
visData[0].vars.push_back(PhaseVar);
|
||||
|
||||
//.......................................................................
|
||||
// Assign the phase ID field based and the signed distance
|
||||
//.......................................................................
|
||||
double R1,R2,R;
|
||||
double CX,CY,CZ; //CY1,CY2;
|
||||
CX=Nx*nprocx*0.5;
|
||||
CY=Ny*nprocy*0.5;
|
||||
CZ=Nz*nprocz*0.5;
|
||||
R1 = (Nx-2)*nprocx*0.3; // middle radius
|
||||
R2 = (Nx-2)*nprocx*0.1; // donut thickness
|
||||
R = 0.4*nprocx*(Nx-2);
|
||||
|
||||
Minkowski Object(Dm);
|
||||
|
||||
int timestep = 0;
|
||||
double x,y,z;
|
||||
|
||||
// partial torus
|
||||
timestep += 1;
|
||||
for ( k=1;k<Nz-1;k++){
|
||||
for ( j=1;j<Ny-1;j++){
|
||||
for ( i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
|
||||
// global position relative to center
|
||||
x = Dm->iproc()*(Nx-2)+i - CX - 0.1;
|
||||
y = Dm->jproc()*(Ny-2)+j - CY - 0.1;
|
||||
z = Dm->kproc()*(Nz-2)+k - CZ -0.1;
|
||||
|
||||
//..............................................................................
|
||||
if (x > 0 && y>0){
|
||||
double d1 = R2-sqrt(x*x +(y-R1)*(y-R1));
|
||||
double d2 = R2-sqrt((x-R1)*(x-R1)+y*y);
|
||||
Object.distance(i,j,k) = max(d1,d2);
|
||||
}
|
||||
else{
|
||||
// Single torus
|
||||
Object.distance(i,j,k) = sqrt((sqrt(x*x+y*y) - R1)*(sqrt(x*x+y*y) - R1) + z*z) - R2;
|
||||
}
|
||||
|
||||
if (Object.distance(i,j,k) > 0.0){
|
||||
Dm->id[n] = 2;
|
||||
Object.id(i,j,k) = 2;
|
||||
}
|
||||
else{
|
||||
Dm->id[n] = 1;
|
||||
Object.id(i,j,k) = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ASSERT(visData[0].vars[0]->name=="phase");
|
||||
Array<double>& PhaseData = visData[0].vars[0]->data;
|
||||
fillData.copy(Object.distance,PhaseData);
|
||||
IO::writeData( timestep, visData, comm );
|
||||
|
||||
//spherical shell
|
||||
timestep += 1;
|
||||
for ( k=1;k<Nz-1;k++){
|
||||
for ( j=1;j<Ny-1;j++){
|
||||
for ( i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
|
||||
// global position relative to center
|
||||
x = Dm->iproc()*(Nx-2)+i - CX - 0.1;
|
||||
y = Dm->jproc()*(Ny-2)+j - CY - 0.1;
|
||||
z = Dm->kproc()*(Nz-2)+k - CZ - 0.1;
|
||||
|
||||
//..............................................................................
|
||||
// Single torus
|
||||
double d1 = sqrt(x*x+y*y+z*z)-R1;
|
||||
double d2 = R-sqrt(x*x+y*y+z*z);
|
||||
Object.distance(i,j,k) = min(d1,d2);
|
||||
|
||||
if (Object.distance(i,j,k) > 0.0){
|
||||
Dm->id[n] = 2;
|
||||
Object.id(i,j,k) = 2;
|
||||
}
|
||||
else{
|
||||
Dm->id[n] = 1;
|
||||
Object.id(i,j,k) = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ASSERT(visData[0].vars[0]->name=="phase");
|
||||
Array<double>& PhaseData = visData[0].vars[0]->data;
|
||||
fillData.copy(Object.distance,PhaseData);
|
||||
IO::writeData( timestep, visData, comm );
|
||||
|
||||
// bowl
|
||||
timestep += 1;
|
||||
for ( k=1;k<Nz-1;k++){
|
||||
for ( j=1;j<Ny-1;j++){
|
||||
for ( i=1;i<Nx-1;i++){
|
||||
n = k*Nx*Ny+j*Nx+i;
|
||||
|
||||
// global position relative to center
|
||||
x = Dm->iproc()*(Nx-2)+i - CX - 0.1;
|
||||
y = Dm->jproc()*(Ny-2)+j - CY - 0.1;
|
||||
z = Dm->kproc()*(Nz-2)+k - CZ - 0.1;
|
||||
|
||||
//..............................................................................
|
||||
// Bowl
|
||||
if (z <0 ){
|
||||
double d1 = sqrt(x*x+y*y+z*z)-R1;
|
||||
double d2 = R-sqrt(x*x+y*y+z*z);
|
||||
Object.distance(i,j,k) = min(d1,d2);
|
||||
}
|
||||
else{
|
||||
Object.distance(i,j,k) = sqrt((sqrt(x*x+y*y) - R1)*(sqrt(x*x+y*y) - R1) + z*z) - R2;
|
||||
}
|
||||
|
||||
if (Object.distance(i,j,k) > 0.0){
|
||||
Dm->id[n] = 2;
|
||||
Object.id(i,j,k) = 2;
|
||||
}
|
||||
else{
|
||||
Dm->id[n] = 1;
|
||||
Object.id(i,j,k) = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ASSERT(visData[0].vars[0]->name=="phase");
|
||||
Array<double>& PhaseData = visData[0].vars[0]->data;
|
||||
fillData.copy(Object.distance,PhaseData);
|
||||
IO::writeData( timestep, visData, comm );
|
||||
|
||||
} // Limit scope so variables that contain communicators will free before MPI_Finialize
|
||||
MPI_Barrier(comm);
|
||||
MPI_Finalize();
|
||||
return 0;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user