merging electrokinetic & greyscale

This commit is contained in:
James McClure 2021-01-04 14:00:44 -05:00
commit 2fc85dead8
22 changed files with 9586 additions and 224 deletions

259
analysis/GreyPhase.cpp Normal file
View File

@ -0,0 +1,259 @@
#include "analysis/GreyPhase.h"
// Constructor
GreyPhaseAnalysis::GreyPhaseAnalysis(std::shared_ptr <Domain> dm):
Dm(dm)
{
Nx=dm->Nx; Ny=dm->Ny; Nz=dm->Nz;
Volume=(Nx-2)*(Ny-2)*(Nz-2)*Dm->nprocx()*Dm->nprocy()*Dm->nprocz()*1.0;
// Global arrays
SDs.resize(Nx,Ny,Nz); SDs.fill(0);
Porosity.resize(Nx,Ny,Nz); Porosity.fill(0);
//PhaseID.resize(Nx,Ny,Nz); PhaseID.fill(0);
Rho_n.resize(Nx,Ny,Nz); Rho_n.fill(0);
Rho_w.resize(Nx,Ny,Nz); Rho_w.fill(0);
Pressure.resize(Nx,Ny,Nz); Pressure.fill(0);
//Phi.resize(Nx,Ny,Nz); Phi.fill(0);
//DelPhi.resize(Nx,Ny,Nz); DelPhi.fill(0);
Vel_x.resize(Nx,Ny,Nz); Vel_x.fill(0); // Gradient of the phase indicator field
Vel_y.resize(Nx,Ny,Nz); Vel_y.fill(0);
Vel_z.resize(Nx,Ny,Nz); Vel_z.fill(0);
//.........................................
if (Dm->rank()==0){
bool WriteHeader=false;
TIMELOG = fopen("timelog.csv","r");
if (TIMELOG != NULL)
fclose(TIMELOG);
else
WriteHeader=true;
TIMELOG = fopen("timelog.csv","a+");
if (WriteHeader)
{
// If timelog is empty, write a short header to list the averages
//fprintf(TIMELOG,"--------------------------------------------------------------------------------------\n");
fprintf(TIMELOG,"sw krw krn vw vn pw pn\n");
}
}
}
// Destructor
GreyPhaseAnalysis::~GreyPhaseAnalysis()
{
}
void GreyPhaseAnalysis::Write(int timestep)
{
}
void GreyPhaseAnalysis::SetParams(double rhoA, double rhoB, double tauA, double tauB, double force_x, double force_y, double force_z, double alpha, double B, double GreyPorosity)
{
Fx = force_x;
Fy = force_y;
Fz = force_z;
rho_n = rhoA;
rho_w = rhoB;
nu_n = (tauA-0.5)/3.f;
nu_w = (tauB-0.5)/3.f;
gamma_wn = 6.0*alpha;
beta = B;
grey_porosity = GreyPorosity;
}
void GreyPhaseAnalysis::Basic(){
int i,j,k,n,imin,jmin,kmin,kmax;
// If external boundary conditions are set, do not average over the inlet
kmin=1; kmax=Nz-1;
imin=jmin=1;
if (Dm->inlet_layers_z > 0 && Dm->kproc() == 0) kmin += Dm->inlet_layers_z;
if (Dm->outlet_layers_z > 0 && Dm->kproc() == Dm->nprocz()-1) kmax -= Dm->outlet_layers_z;
Water_local.reset();
Oil_local.reset();
double count_w = 0.0;
double count_n = 0.0;
for (k=kmin; k<kmax; k++){
for (j=jmin; j<Ny-1; j++){
for (i=imin; i<Nx-1; i++){
n = k*Nx*Ny + j*Nx + i;
// Compute volume averages
if ( Dm->id[n] > 0 ){
// compute density
double nA = Rho_n(n);
double nB = Rho_w(n);
double phi = (nA-nB)/(nA+nB);
double porosity = Porosity(n);
Water_local.M += rho_w*nB*porosity;
Water_local.Px += porosity*rho_w*nB*Vel_x(n);
Water_local.Py += porosity*rho_w*nB*Vel_y(n);
Water_local.Pz += porosity*rho_w*nB*Vel_z(n);
Oil_local.M += rho_n*nA*porosity;
Oil_local.Px += porosity*rho_n*nA*Vel_x(n);
Oil_local.Py += porosity*rho_n*nA*Vel_y(n);
Oil_local.Pz += porosity*rho_n*nA*Vel_z(n);
if ( phi > 0.99 ){
Oil_local.p += Pressure(n);
//Oil_local.p += pressure*(rho_n*nA)/(rho_n*nA+rho_w*nB);
count_n += 1.0;
}
else if ( phi < -0.99 ){
Water_local.p += Pressure(n);
//Water_local.p += pressure*(rho_w*nB)/(rho_n*nA+rho_w*nB);
count_w += 1.0;
}
}
}
}
}
Oil.M=sumReduce( Dm->Comm, Oil_local.M);
Oil.Px=sumReduce( Dm->Comm, Oil_local.Px);
Oil.Py=sumReduce( Dm->Comm, Oil_local.Py);
Oil.Pz=sumReduce( Dm->Comm, Oil_local.Pz);
Water.M=sumReduce( Dm->Comm, Water_local.M);
Water.Px=sumReduce( Dm->Comm, Water_local.Px);
Water.Py=sumReduce( Dm->Comm, Water_local.Py);
Water.Pz=sumReduce( Dm->Comm, Water_local.Pz);
//Oil.p /= Oil.M;
//Water.p /= Water.M;
count_w=sumReduce( Dm->Comm, count_w);
count_n=sumReduce( Dm->Comm, count_n);
if (count_w > 0.0)
Water.p=sumReduce( Dm->Comm, Water_local.p) / count_w;
else
Water.p = 0.0;
if (count_n > 0.0)
Oil.p=sumReduce( Dm->Comm, Oil_local.p) / count_n;
else
Oil.p = 0.0;
// check for NaN
bool err=false;
if (Water.M != Water.M) err=true;
if (Water.p != Water.p) err=true;
if (Water.Px != Water.Px) err=true;
if (Water.Py != Water.Py) err=true;
if (Water.Pz != Water.Pz) err=true;
if (Oil.M != Oil.M) err=true;
if (Oil.p != Oil.p) err=true;
if (Oil.Px != Oil.Px) err=true;
if (Oil.Py != Oil.Py) err=true;
if (Oil.Pz != Oil.Pz) err=true;
if (Dm->rank() == 0){
double force_mag = sqrt(Fx*Fx+Fy*Fy+Fz*Fz);
double dir_x = 0.0;
double dir_y = 0.0;
double dir_z = 0.0;
if (force_mag > 0.0){
dir_x = Fx/force_mag;
dir_y = Fy/force_mag;
dir_z = Fz/force_mag;
}
else {
// default to z direction
dir_x = 0.0;
dir_y = 0.0;
dir_z = 1.0;
}
if (Dm->BoundaryCondition == 1 || Dm->BoundaryCondition == 2 || Dm->BoundaryCondition == 3 || Dm->BoundaryCondition == 4 ){
// compute the pressure drop
double pressure_drop = (Pressure(Nx*Ny + Nx + 1) - 1.0) / 3.0;
double length = ((Nz-2)*Dm->nprocz());
force_mag -= pressure_drop/length;
}
if (force_mag == 0.0){
// default to z direction
dir_x = 0.0;
dir_y = 0.0;
dir_z = 1.0;
force_mag = 1.0;
}
saturation=Water.M/(Water.M + Oil.M); // assume constant density
water_flow_rate=grey_porosity*saturation*(Water.Px*dir_x + Water.Py*dir_y + Water.Pz*dir_z)/Water.M;
oil_flow_rate =grey_porosity*(1.0-saturation)*(Oil.Px*dir_x + Oil.Py*dir_y + Oil.Pz*dir_z)/Oil.M;
double h = Dm->voxel_length;
//TODO check if need greyporosity or domain porosity ? - compare to analytical solution
double krn = h*h*nu_n*oil_flow_rate / force_mag ;
double krw = h*h*nu_w*water_flow_rate / force_mag;
//printf(" water saturation = %f, fractional flow =%f \n",saturation,fractional_flow);
fprintf(TIMELOG,"%.5g %.5g %.5g %.5g %.5g %.5g %.5g\n",saturation,krw,krn,h*water_flow_rate,h*oil_flow_rate, Water.p, Oil.p);
fflush(TIMELOG);
}
if (err==true){
// exception if simulation produceds NaN
printf("GreyPhaseAnalysis.cpp: NaN encountered, may need to check simulation parameters \n");
}
ASSERT(err==false);
}
/*
inline void InterfaceTransportMeasures( double beta, double rA, double rB, double nA, double nB,
double nx, double ny, double nz, double ux, double uy, double uz, interface &I){
double A1,A2,A3,A4,A5,A6;
double B1,B2,B3,B4,B5,B6;
double nAB,delta;
// Instantiate mass transport distributions
// Stationary value - distribution 0
nAB = 1.0/(nA+nB);
//...............................................
// q = 0,2,4
// Cq = {1,0,0}, {0,1,0}, {0,0,1}
delta = beta*nA*nB*nAB*0.1111111111111111*nx;
if (!(nA*nB*nAB>0)) delta=0;
A1 = nA*(0.1111111111111111*(1+4.5*ux))+delta;
B1 = nB*(0.1111111111111111*(1+4.5*ux))-delta;
A2 = nA*(0.1111111111111111*(1-4.5*ux))-delta;
B2 = nB*(0.1111111111111111*(1-4.5*ux))+delta;
//...............................................
// Cq = {0,1,0}
delta = beta*nA*nB*nAB*0.1111111111111111*ny;
if (!(nA*nB*nAB>0)) delta=0;
A3 = nA*(0.1111111111111111*(1+4.5*uy))+delta;
B3 = nB*(0.1111111111111111*(1+4.5*uy))-delta;
A4 = nA*(0.1111111111111111*(1-4.5*uy))-delta;
B4 = nB*(0.1111111111111111*(1-4.5*uy))+delta;
//...............................................
// q = 4
// Cq = {0,0,1}
delta = beta*nA*nB*nAB*0.1111111111111111*nz;
if (!(nA*nB*nAB>0)) delta=0;
A5 = nA*(0.1111111111111111*(1+4.5*uz))+delta;
B5 = nB*(0.1111111111111111*(1+4.5*uz))-delta;
A6 = nA*(0.1111111111111111*(1-4.5*uz))-delta;
B6 = nB*(0.1111111111111111*(1-4.5*uz))+delta;
double unx = (A1-A2);
double uny = (A3-A4);
double unz = (A5-A6);
double uwx = (B1-B2);
double uwy = (B3-B4);
double uwz = (B5-B6);
I.Mn += rA*nA;
I.Mw += rB*nB;
I.Pnx += rA*nA*unx;
I.Pny += rA*nA*uny;
I.Pnz += rA*nA*unz;
I.Pwx += rB*nB*uwx;
I.Pwy += rB*nB*uwy;
I.Pwz += rB*nB*uwz;
I.Kn += rA*nA*(unx*unx + uny*uny + unz*unz);
I.Kw += rB*nB*(uwx*uwx + uwy*uwy + uwz*uwz);
}
*/

71
analysis/GreyPhase.h Normal file
View File

@ -0,0 +1,71 @@
/*
* Sub-phase averaging tools
*/
#ifndef GreyPhase_INC
#define GreyPhase_INC
#include <vector>
#include "common/ScaLBL.h"
#include "common/Communication.h"
#include "analysis/analysis.h"
#include "common/Utilities.h"
#include "common/MPI_Helpers.h"
#include "IO/MeshDatabase.h"
#include "IO/Reader.h"
#include "IO/Writer.h"
class GreyPhase{
public:
double p;
double M,Px,Py,Pz;
void reset(){
p=M=Px=Py=Pz=0.0;
}
private:
};
class GreyPhaseAnalysis{
public:
std::shared_ptr <Domain> Dm;
double Volume;
// input variables
double rho_n, rho_w;
double nu_n, nu_w;
double gamma_wn, beta;
double Fx, Fy, Fz;
double grey_porosity;
// outputs
double saturation,water_flow_rate, oil_flow_rate;
//simulation outputs (averaged values)
GreyPhase Water, Oil;
GreyPhase Water_local, Oil_local;
//...........................................................................
int Nx,Ny,Nz;
//IntArray PhaseID; // Phase ID array
DoubleArray SDs; // contains porosity map
DoubleArray Porosity; // contains porosity map
DoubleArray Rho_n; // density field
DoubleArray Rho_w; // density field
//DoubleArray Phi; // phase indicator field
//DoubleArray DelPhi; // Magnitude of Gradient of the phase indicator field
DoubleArray Pressure; // pressure field
DoubleArray Vel_x; // velocity field
DoubleArray Vel_y;
DoubleArray Vel_z;
GreyPhaseAnalysis(std::shared_ptr <Domain> Dm);
~GreyPhaseAnalysis();
void SetParams(double rhoA, double rhoB, double tauA, double tauB, double force_x, double force_y, double force_z, double alpha, double beta, double GreyPorosity);
void Basic();
void Write(int time);
private:
FILE *TIMELOG;
};
#endif

View File

@ -94,11 +94,13 @@ void Minkowski::ComputeScalar(const DoubleArray& Field, const double isovalue)
//Xi += 0.25*double(object.VertexCount);
// check if vertices are at corners
for (int idx=0; idx<object.VertexCount; idx++){
auto P1 = object.vertex.coords(idx);
/*auto P1 = object.vertex.coords(idx);
if ( remainder(P1.x,1.0)==0.0 && remainder(P1.y,1.0)==0.0 && remainder(P1.z,1.0)==0.0 ){
Xi += 0.125;
}
else Xi += 0.25;
else
*/
Xi += 0.25;
}
/*double nside_extern = double(npts);
double nside_intern = double(npts)-3.0;
@ -150,7 +152,43 @@ void Minkowski::MeasureObject(){
}
CalcDist(distance,id,*Dm);
//Mean3D(distance,smooth_distance);
Eikonal(distance, id, *Dm, 20, {true, true, true});
//Eikonal(distance, id, *Dm, 20, {true, true, true});
ComputeScalar(distance,0.0);
}
void Minkowski::MeasureObject(double factor, const DoubleArray &Phi){
/*
* compute the distance to an object
*
* THIS ALGORITHM ASSUMES THAT id() is populated with phase id to distinguish objects
* 0 - labels the object
* 1 - labels the rest of the
*/
for (int k=0; k<Nz; k++){
for (int j=0; j<Ny; j++){
for (int i=0; i<Nx; i++){
distance(i,j,k) =2.0*double(id(i,j,k))-1.0;
}
}
}
CalcDist(distance,id,*Dm);
for (int k=0; k<Nz; k++){
for (int j=0; j<Ny; j++){
for (int i=0; i<Nx; i++){
double value = Phi(i,j,k);
double dist_value = distance(i,j,k);
if (dist_value < 2.5 && dist_value > -2.5) {
double new_distance = factor*log((1.0+value)/(1.0-value));
if (dist_value*new_distance < 0.0 )
new_distance = (-1.0)*new_distance;
distance(i,j,k) = new_distance;
}
}
}
}
ComputeScalar(distance,0.0);
}
@ -200,6 +238,50 @@ int Minkowski::MeasureConnectedPathway(){
return n_connected_components;
}
int Minkowski::MeasureConnectedPathway(double factor, const DoubleArray &Phi){
/*
* compute the connected pathway for object with LABEL in id field
* compute the labels for connected components
* compute the distance to the connected pathway
*
* THIS ALGORITHM ASSUMES THAT id() is populated with phase id to distinguish objects
*/
char LABEL = 0;
for (int k=0; k<Nz; k++){
for (int j=0; j<Ny; j++){
for (int i=0; i<Nx; i++){
if (id(i,j,k) == LABEL){
distance(i,j,k) = 1.0;
}
else
distance(i,j,k) = -1.0;
}
}
}
// Extract only the connected part of NWP
double vF=0.0;
n_connected_components = ComputeGlobalBlobIDs(Nx-2,Ny-2,Nz-2,Dm->rank_info,distance,distance,vF,vF,label,Dm->Comm);
// int n_connected_components = ComputeGlobalPhaseComponent(Nx-2,Ny-2,Nz-2,Dm->rank_info,const IntArray &PhaseID, int &VALUE, BlobIDArray &GlobalBlobID, Dm->Comm )
MPI_Barrier(Dm->Comm);
for (int k=0; k<Nz; k++){
for (int j=0; j<Ny; j++){
for (int i=0; i<Nx; i++){
if ( label(i,j,k) == 0){
id(i,j,k) = 0;
}
else{
id(i,j,k) = 1;
}
}
}
}
MeasureObject(factor,Phi);
return n_connected_components;
}
void Minkowski::PrintAll()
{

View File

@ -63,7 +63,9 @@ public:
Minkowski(std::shared_ptr <Domain> Dm);
~Minkowski();
void MeasureObject();
void MeasureObject(double factor, const DoubleArray &Phi);
int MeasureConnectedPathway();
int MeasureConnectedPathway(double factor, const DoubleArray &Phi);
void ComputeScalar(const DoubleArray& Field, const double isovalue);
void PrintAll();

View File

@ -427,13 +427,13 @@ void SubPhase::Full(){
}
}
// measure the whole object
morph_n->MeasureObject();
morph_n->MeasureObject();//0.5/beta,Phi);
nd.V = morph_n->V();
nd.A = morph_n->A();
nd.H = morph_n->H();
nd.X = morph_n->X();
// measure only the connected part
nd.Nc = morph_n->MeasureConnectedPathway();
nd.Nc = morph_n->MeasureConnectedPathway();//0.5/beta,Phi);
nc.V = morph_n->V();
nc.A = morph_n->A();
nc.H = morph_n->H();
@ -475,13 +475,13 @@ void SubPhase::Full(){
}
}
}
morph_w->MeasureObject();
morph_w->MeasureObject();//-0.5/beta,Phi);
wd.V = morph_w->V();
wd.A = morph_w->A();
wd.H = morph_w->H();
wd.X = morph_w->X();
// measure only the connected part
wd.Nc = morph_w->MeasureConnectedPathway();
wd.Nc = morph_w->MeasureConnectedPathway();//-0.5/beta,Phi);
wc.V = morph_w->V();
wc.A = morph_w->A();
wc.H = morph_w->H();

View File

@ -165,6 +165,7 @@ Domain::~Domain()
delete [] recvData_yZ; delete [] recvData_Yz; delete [] recvData_YZ;
// Free id
delete [] id;
// Free the communicator
if ( Comm != MPI_COMM_WORLD && Comm != MPI_COMM_NULL ) {
MPI_Comm_free(&Comm);
@ -675,6 +676,7 @@ void Domain::Decomp( const std::string& Filename )
//.........................................................
}
void Domain::AggregateLabels( const std::string& filename ){
int nx = Nx;
@ -695,7 +697,7 @@ void Domain::AggregateLabels( const std::string& filename ){
int full_ny = npy*(ny-2);
int full_nz = npz*(nz-2);
int local_size = (nx-2)*(ny-2)*(nz-2);
long int full_size = long(full_nx)*long(full_ny)*long(full_nz);
unsigned long int full_size = long(full_nx)*long(full_ny)*long(full_nz);
signed char *LocalID;
LocalID = new signed char [local_size];
@ -725,7 +727,7 @@ void Domain::AggregateLabels( const std::string& filename ){
int y = j-1;
int z = k-1;
int n_local = (k-1)*(nx-2)*(ny-2) + (j-1)*(nx-2) + i-1;
int n_full = z*full_nx*full_ny + y*full_nx + x;
unsigned long int n_full = z*long(full_nx)*long(full_ny) + y*long(full_nx) + x;
FullID[n_full] = LocalID[n_local];
}
}
@ -745,7 +747,7 @@ void Domain::AggregateLabels( const std::string& filename ){
int y = j-1 + ipy*(ny-2);
int z = k-1 + ipz*(nz-2);
int n_local = (k-1)*(nx-2)*(ny-2) + (j-1)*(nx-2) + i-1;
int n_full = z*full_nx*full_ny + y*full_nx + x;
unsigned long int n_full = z*long(full_nx)*long(full_ny) + y*long(full_nx) + x;
FullID[n_full] = LocalID[n_local];
}
}
@ -1231,7 +1233,7 @@ void Domain::CommunicateMeshHalo(DoubleArray &Mesh)
UnpackMeshData(recvList_YZ, recvCount_YZ ,recvData_YZ, MeshData);
}
// Ideally stuff below here should be moved somewhere else -- doesn't really belong here
// TODO Ideally stuff below here should be moved somewhere else -- doesn't really belong here
void WriteCheckpoint(const char *FILENAME, const double *cDen, const double *cfq, size_t Np)
{
double value;

View File

@ -246,6 +246,9 @@ private:
};
//void ReadFromFile(const std::string& Filename,const std::string& Datatype, double *UserData);
//void ReadFromFile(const std::string& Filename, DoubleArray &Mesh);
void WriteCheckpoint(const char *FILENAME, const double *cDen, const double *cfq, size_t Np);
void ReadCheckpoint(char *FILENAME, double *cDen, double *cfq, size_t Np);

View File

@ -81,43 +81,43 @@ ScaLBL_Communicator::ScaLBL_Communicator(std::shared_ptr <Domain> Dm){
//BoundaryCondition = 0; // default to periodic BC
//......................................................................................
ScaLBL_AllocateZeroCopy((void **) &sendbuf_x, 5*sendCount_x*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_X, 5*sendCount_X*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_y, 5*sendCount_y*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_Y, 5*sendCount_Y*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_z, 5*sendCount_z*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_Z, 5*sendCount_Z*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_xy, sendCount_xy*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_xY, sendCount_xY*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_Xy, sendCount_Xy*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_XY, sendCount_XY*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_xz, sendCount_xz*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_xZ, sendCount_xZ*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_Xz, sendCount_Xz*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_XZ, sendCount_XZ*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_yz, sendCount_yz*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_yZ, sendCount_yZ*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_Yz, sendCount_Yz*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_YZ, sendCount_YZ*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_x, 2*5*sendCount_x*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_X, 2*5*sendCount_X*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_y, 2*5*sendCount_y*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_Y, 2*5*sendCount_Y*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_z, 2*5*sendCount_z*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_Z, 2*5*sendCount_Z*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_xy, 2*sendCount_xy*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_xY, 2*sendCount_xY*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_Xy, 2*sendCount_Xy*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_XY, 2*sendCount_XY*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_xz, 2*sendCount_xz*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_xZ, 2*sendCount_xZ*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_Xz, 2*sendCount_Xz*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_XZ, 2*sendCount_XZ*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_yz, 2*sendCount_yz*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_yZ, 2*sendCount_yZ*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_Yz, 2*sendCount_Yz*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &sendbuf_YZ, 2*sendCount_YZ*sizeof(double)); // Allocate device memory
//......................................................................................
ScaLBL_AllocateZeroCopy((void **) &recvbuf_x, 5*recvCount_x*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_X, 5*recvCount_X*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_y, 5*recvCount_y*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_Y, 5*recvCount_Y*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_z, 5*recvCount_z*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_Z, 5*recvCount_Z*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_xy, recvCount_xy*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_xY, recvCount_xY*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_Xy, recvCount_Xy*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_XY, recvCount_XY*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_xz, recvCount_xz*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_xZ, recvCount_xZ*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_Xz, recvCount_Xz*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_XZ, recvCount_XZ*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_yz, recvCount_yz*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_yZ, recvCount_yZ*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_Yz, recvCount_Yz*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_YZ, recvCount_YZ*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_x, 2*5*recvCount_x*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_X, 2*5*recvCount_X*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_y, 2*5*recvCount_y*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_Y, 2*5*recvCount_Y*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_z, 2*5*recvCount_z*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_Z, 2*5*recvCount_Z*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_xy, 2*recvCount_xy*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_xY, 2*recvCount_xY*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_Xy, 2*recvCount_Xy*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_XY, 2*recvCount_XY*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_xz, 2*recvCount_xz*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_xZ, 2*recvCount_xZ*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_Xz, 2*recvCount_Xz*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_XZ, 2*recvCount_XZ*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_yz, 2*recvCount_yz*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_yZ, 2*recvCount_yZ*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_Yz, 2*recvCount_Yz*sizeof(double)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &recvbuf_YZ, 2*recvCount_YZ*sizeof(double)); // Allocate device memory
//......................................................................................
ScaLBL_AllocateZeroCopy((void **) &dvcSendList_x, sendCount_x*sizeof(int)); // Allocate device memory
ScaLBL_AllocateZeroCopy((void **) &dvcSendList_X, sendCount_X*sizeof(int)); // Allocate device memory
@ -1348,6 +1348,7 @@ void ScaLBL_Communicator::RecvGrad(double *phi, double *grad){
ScaLBL_Gradient_Unpack(1.0,-1,0,0,dvcRecvDist_x,0,recvCount_x,recvbuf_x,phi,grad,N);
ScaLBL_Gradient_Unpack(0.5,-1,-1,0,dvcRecvDist_x,recvCount_x,recvCount_x,recvbuf_x,phi,grad,N);
ScaLBL_Gradient_Unpack(0.5,-1,1,0,dvcRecvDist_x,2*recvCount_x,recvCount_x,recvbuf_x,phi,grad,N);
ScaLBL_Gradient_Unpack(0.5,-1,0,-1,dvcRecvDist_x,3*recvCount_x,recvCount_x,recvbuf_x,phi,grad,N);
ScaLBL_Gradient_Unpack(0.5,-1,0,1,dvcRecvDist_x,4*recvCount_x,recvCount_x,recvbuf_x,phi,grad,N);
//...................................................................................
//...Packing for X face(1,7,9,11,13)................................

View File

@ -55,7 +55,7 @@ extern "C" void ScaLBL_D3Q19_AAeven_BGK(double *dist, int start, int finish, int
extern "C" void ScaLBL_D3Q19_AAodd_BGK(int *neighborList, double *dist, int start, int finish, int Np, double rlx, double Fx, double Fy, double Fz);
// GREYSCALE MODEL
// GREYSCALE MODEL (Single-component)
extern "C" void ScaLBL_D3Q19_GreyIMRT_Init(double *Dist, int Np, double Den);
@ -70,7 +70,6 @@ extern "C" void ScaLBL_D3Q19_AAeven_Greyscale_IMRT(double *dist, int start, int
extern "C" void ScaLBL_D3Q19_AAodd_Greyscale_IMRT(int *neighborList, double *dist, int start, int finish, int Np, double rlx, double rlx_eff, double Fx, double Fy, double Fz,
double *Poros,double *Perm, double *Velocity,double Den,double *Pressure);
// ION TRANSPORT MODEL
extern "C" void ScaLBL_D3Q7_AAodd_IonConcentration(int *neighborList, double *dist, double *Den, int start, int finish, int Np);
@ -115,6 +114,122 @@ extern "C" void ScaLBL_D3Q19_AAeven_StokesMRT(double *dist, double *Velocity, do
extern "C" void ScaLBL_D3Q19_AAodd_StokesMRT(int *neighborList, double *dist, double *Velocity, double *ChargeDensity, double *ElectricField, double rlx_setA, double rlx_setB,
double Gx, double Gy, double Gz, double rho0, double den_scale, double h, double time_conv,int start, int finish, int Np);
extern "C" void ScaLBL_D3Q19_AAeven_Greyscale_MRT(double *dist, int start, int finish, int Np, double rlx, double rlx_eff, double Fx, double Fy, double Fz,
double *Poros,double *Perm, double *Velocity,double Den,double *Pressure);
extern "C" void ScaLBL_D3Q19_AAodd_Greyscale_MRT(int *neighborList, double *dist, int start, int finish, int Np, double rlx, double rlx_eff, double Fx, double Fy, double Fz,
double *Poros,double *Perm, double *Velocity,double Den,double *Pressure);
// GREYSCALE FREE-ENERGY MODEL (Two-component)
//extern "C" void ScaLBL_D3Q19_AAeven_GreyscaleFE(double *dist, double *Aq, double *Bq, double *Den,
// double *DenGradA, double *DenGradB, double *SolidForce, int start, int finish, int Np,
// double tauA,double tauB,double tauA_eff,double tauB_eff,double rhoA,double rhoB,double Gsc, double Gx, double Gy, double Gz,
// double *Poros,double *Perm, double *Velocity,double *Pressure);
//
//extern "C" void ScaLBL_D3Q19_AAodd_GreyscaleFE(int *neighborList, double *dist, double *Aq, double *Bq, double *Den,
// double *DenGradA, double *DenGradB, double *SolidForce, int start, int finish, int Np,
// double tauA,double tauB,double tauA_eff,double tauB_eff,double rhoA,double rhoB,double Gsc, double Gx, double Gy, double Gz,
// double *Poros,double *Perm, double *Velocity,double *Pressure);
//
//extern "C" void ScaLBL_D3Q19_AAeven_GreyscaleFEChem(double *dist, double *Cq, double *Phi, double *SolidForce, int start, int finish, int Np,
// double tauA,double tauB,double tauA_eff,double tauB_eff,double rhoA,double rhoB,double gamma,double kappaA,double kappaB,double lambdaA,double lambdaB,
// double Gx, double Gy, double Gz,
// double *Poros,double *Perm, double *Velocity,double *Pressure,double *PressureGrad,double *PressTensorGrad,double *PhiLap);
//
//extern "C" void ScaLBL_D3Q19_AAodd_GreyscaleFEChem(int *neighborList, double *dist, double *Cq, double *Phi, double *SolidForce, int start, int finish, int Np,
// double tauA,double tauB,double tauA_eff,double tauB_eff,double rhoA,double rhoB,double gamma,double kappaA,double kappaB,double lambdaA,double lambdaB,
// double Gx, double Gy, double Gz,
// double *Poros,double *Perm, double *Velocity,double *Pressure,double *PressureGrad,double *PressTensorGrad,double *PhiLap);
//
//extern "C" void ScaLBL_D3Q7_GreyscaleFE_Init(double *Den, double *Cq, double *PhiLap, double gamma, double kappaA, double kappaB, double lambdaA, double lambdaB, int start, int finish, int Np);
//
//extern "C" void ScaLBL_D3Q19_GreyscaleFE_IMRT_Init(double *dist, double *Den, double rhoA, double rhoB, int Np);
//
//extern "C" void ScaLBL_D3Q7_AAodd_GreyscaleFEDensity(int *NeighborList, double *Aq, double *Bq, double *Den, double *Phi, int start, int finish, int Np);
//
//extern "C" void ScaLBL_D3Q7_AAeven_GreyscaleFEDensity(double *Aq, double *Bq, double *Den, double *Phi, int start, int finish, int Np);
//
//extern "C" void ScaLBL_D3Q7_AAodd_GreyscaleFEPhi(int *NeighborList, double *Cq, double *Phi, int start, int finish, int Np);
//
//extern "C" void ScaLBL_D3Q7_AAeven_GreyscaleFEPhi(double *Cq, double *Phi, int start, int finish, int Np);
//
//extern "C" void ScaLBL_D3Q19_GreyscaleFE_Gradient(int *neighborList, double *Den, double *DenGrad, int start, int finish, int Np);
//
//extern "C" void ScaLBL_D3Q19_GreyscaleFE_Laplacian(int *neighborList, double *Den, double *DenLap, int start, int finish, int Np);
//
//extern "C" void ScaLBL_D3Q19_GreyscaleFE_Pressure(double *dist, double *Den, double *Porosity,double *Velocity,
// double *Pressure, double rhoA,double rhoB, int Np);
//
//extern "C" void ScaLBL_D3Q19_GreyscaleFE_PressureTensor(int *neighborList, double *Phi,double *Pressure, double *PressTensor, double *PhiLap,
// double kappaA,double kappaB,double lambdaA,double lambdaB, int start, int finish, int Np);
// GREYSCALE SHAN-CHEN MODEL (Two-component)
//extern "C" void ScaLBL_D3Q19_GreyscaleSC_Init(int *Map, double *distA, double *distB, double *DenA, double *DenB, int Np);
//
//extern "C" void ScaLBL_D3Q19_AAodd_GreyscaleSC_Density(int *NeighborList, int *Map, double *distA, double *distB, double *DenA, double *DenB, int start, int finish, int Np);
//
//extern "C" void ScaLBL_D3Q19_AAeven_GreyscaleSC_Density(int *Map, double *distA, double *distB, double *DenA, double *DenB, int start, int finish, int Np);
//
//extern "C" void ScaLBL_D3Q19_AAodd_GreyscaleSC_MRT(int *neighborList, int *Mpa, double *distA, double *distB, double *DenA,double *DenB, double *DenGradA, double *DenGradB,
// double *SolidForceA, double *SolidForceB, double *Poros,double *Perm, double *Velocity,double *Pressure,
// double tauA,double tauB,double tauA_eff,double tauB_eff, double Gsc, double Gx, double Gy, double Gz,
// int start, int finish, int Np);
//
//extern "C" void ScaLBL_D3Q19_AAeven_GreyscaleSC_MRT(int *Map,double *distA, double *distB, double *DenA,double *DenB, double *DenGradA, double *DenGradB,
// double *SolidForceA, double *SolidForceB, double *Poros,double *Perm, double *Velocity,double *Pressure,
// double tauA,double tauB,double tauA_eff,double tauB_eff, double Gsc, double Gx, double Gy, double Gz,
// int start, int finish, int Np);
//
//extern "C" void ScaLBL_D3Q19_AAodd_GreyscaleSC_BGK(int *neighborList, int *Map, double *distA, double *distB, double *DenA, double *DenB, double *DenGradA, double *DenGradB,
// double *SolidForceA, double *SolidForceB, double *Poros,double *Perm, double *Velocity,double *Pressure,
// double tauA,double tauB,double tauA_eff,double tauB_eff, double Gsc, double Gx, double Gy, double Gz,
// int start, int finish, int Np);
//
//extern "C" void ScaLBL_D3Q19_AAeven_GreyscaleSC_BGK(int *Map, double *distA, double *distB, double *DenA, double *DenB, double *DenGradA, double *DenGradB,
// double *SolidForceA, double *SolidForceB, double *Poros,double *Perm, double *Velocity,double *Pressure,
// double tauA,double tauB,double tauA_eff,double tauB_eff, double Gsc, double Gx, double Gy, double Gz,
// int start, int finish, int Np);
//
//extern "C" void ScaLBL_D3Q19_GreyscaleSC_Gradient(int *neighborList, int *Map, double *Den, double *DenGrad, int strideY, int strideZ,int start, int finish, int Np);
//
//extern "C" void ScaLBL_GreyscaleSC_BC_z(int *list, int *Map, double *DenA, double *DenB, double vA, double vB, int count);
//
//extern "C" void ScaLBL_GreyscaleSC_BC_Z(int *list, int *Map, double *DenA, double *DenB, double vA, double vB, int count);
//
//extern "C" void ScaLBL_GreyscaleSC_AAeven_Pressure_BC_z(int *list, double *distA, double *distB, double dinA, double dinB, int count, int N);
//
//extern "C" void ScaLBL_GreyscaleSC_AAeven_Pressure_BC_Z(int *list, double *distA, double *distB, double doutA, double doutB, int count, int N);
//
//extern "C" void ScaLBL_GreyscaleSC_AAodd_Pressure_BC_z(int *neighborList, int *list, double *distA, double *distB, double dinA, double dinB, int count, int N);
//
//extern "C" void ScaLBL_GreyscaleSC_AAodd_Pressure_BC_Z(int *neighborList, int *list, double *distA, double *distB, double doutA, double doutB, int count, int N);
// GREYSCALE COLOR MODEL (Two-component)
//extern "C" void ScaLBL_D3Q19_GreyscaleColor_Init(double *dist, double *Porosity, int Np);
//extern "C" void ScaLBL_D3Q19_AAeven_GreyscaleColor(int *Map, double *dist, double *Aq, double *Bq, double *Den,
// double *ColorGrad,double *Phi,double *GreySolidGrad, double *Poros,double *Perm,double *Vel,
// double rhoA, double rhoB, double tauA, double tauB,double tauA_eff,double tauB_eff, double alpha, double beta,
// double Fx, double Fy, double Fz, int strideY, int strideZ, int start, int finish, int Np);
//
//extern "C" void ScaLBL_D3Q19_AAodd_GreyscaleColor(int *d_neighborList, int *Map, double *dist, double *Aq, double *Bq, double *Den,
// double *ColorGrad,double *Phi, double *GreySolidGrad, double *Poros,double *Perm,double *Vel,
// double rhoA, double rhoB, double tauA, double tauB, double tauA_eff,double tauB_eff, double alpha, double beta,
// double Fx, double Fy, double Fz, int strideY, int strideZ, int start, int finish, int Np);
extern "C" void ScaLBL_D3Q19_AAeven_GreyscaleColor(int *Map, double *dist, double *Aq, double *Bq, double *Den,
double *Phi,double *GreySolidGrad, double *Poros,double *Perm,double *Vel,double *Pressure,
double rhoA, double rhoB, double tauA, double tauB,double tauA_eff,double tauB_eff, double alpha, double beta,
double Fx, double Fy, double Fz, int strideY, int strideZ, int start, int finish, int Np);
extern "C" void ScaLBL_D3Q19_AAodd_GreyscaleColor(int *d_neighborList, int *Map, double *dist, double *Aq, double *Bq, double *Den,
double *Phi, double *GreySolidGrad, double *Poros,double *Perm,double *Vel,double *Pressure,
double rhoA, double rhoB, double tauA, double tauB, double tauA_eff,double tauB_eff, double alpha, double beta,
double Fx, double Fy, double Fz, int strideY, int strideZ, int start, int finish, int Np);
extern "C" void ScaLBL_PhaseField_InitFromRestart(double *Den, double *Aq, double *Bq, int start, int finish, int Np);
// MRT MODEL
extern "C" void ScaLBL_D3Q19_AAeven_MRT(double *dist, int start, int finish, int Np, double rlx_setA, double rlx_setB, double Fx,
double Fy, double Fz);
@ -289,7 +404,10 @@ public:
void D3Q7_Ion_Concentration_BC_Z(int *neighborList, double *fq, double Cout, int time);
void D3Q7_Ion_Flux_BC_z(int *neighborList, double *fq, double Cin, double tau, double *VelocityZ, int time);
void D3Q7_Ion_Flux_BC_Z(int *neighborList, double *fq, double Cout, double tau, double *VelocityZ, int time);
void GreyscaleSC_BC_z(int *Map, double *DenA, double *DenB, double vA, double vB);
void GreyscaleSC_BC_Z(int *Map, double *DenA, double *DenB, double vA, double vB);
void GreyscaleSC_Pressure_BC_z(int *neighborList, double *fqA, double *fqB, double dinA, double dinB, int time);
void GreyscaleSC_Pressure_BC_Z(int *neighborList, double *fqA, double *fqB, double doutA, double doutB, int time);
// Debugging and unit testing functions
void PrintD3Q19();

View File

@ -84,33 +84,6 @@ extern "C" void ScaLBL_D3Q19_Init(double *dist, int Np)
}
}
extern "C" void ScaLBL_D3Q19_GreyIMRT_Init(double *dist, int Np, double Den)
{
int n;
for (n=0; n<Np; n++){
dist[n] = Den - 0.6666666666666667;
dist[Np+n] = 0.055555555555555555; //double(100*n)+1.f;
dist[2*Np+n] = 0.055555555555555555; //double(100*n)+2.f;
dist[3*Np+n] = 0.055555555555555555; //double(100*n)+3.f;
dist[4*Np+n] = 0.055555555555555555; //double(100*n)+4.f;
dist[5*Np+n] = 0.055555555555555555; //double(100*n)+5.f;
dist[6*Np+n] = 0.055555555555555555; //double(100*n)+6.f;
dist[7*Np+n] = 0.0277777777777778; //double(100*n)+7.f;
dist[8*Np+n] = 0.0277777777777778; //double(100*n)+8.f;
dist[9*Np+n] = 0.0277777777777778; //double(100*n)+9.f;
dist[10*Np+n] = 0.0277777777777778; //double(100*n)+10.f;
dist[11*Np+n] = 0.0277777777777778; //double(100*n)+11.f;
dist[12*Np+n] = 0.0277777777777778; //double(100*n)+12.f;
dist[13*Np+n] = 0.0277777777777778; //double(100*n)+13.f;
dist[14*Np+n] = 0.0277777777777778; //double(100*n)+14.f;
dist[15*Np+n] = 0.0277777777777778; //double(100*n)+15.f;
dist[16*Np+n] = 0.0277777777777778; //double(100*n)+16.f;
dist[17*Np+n] = 0.0277777777777778; //double(100*n)+17.f;
dist[18*Np+n] = 0.0277777777777778; //double(100*n)+18.f;
}
}
//*************************************************************************
extern "C" void ScaLBL_D3Q19_Swap(char *ID, double *disteven, double *distodd, int Nx, int Ny, int Nz)
{

File diff suppressed because it is too large Load Diff

1396
cpu/GreyscaleColor.cpp Normal file

File diff suppressed because it is too large Load Diff

View File

@ -267,37 +267,6 @@ __global__ void dvc_ScaLBL_D3Q19_Init(double *dist, int Np)
}
}
__global__ void dvc_ScaLBL_D3Q19_GreyIMRT_Init(double *dist, int Np, double Den)
{
int n;
int S = Np/NBLOCKS/NTHREADS + 1;
for (int s=0; s<S; s++){
//........Get 1-D index for this thread....................
n = S*blockIdx.x*blockDim.x + s*blockDim.x + threadIdx.x;
if (n<Np ){
dist[n] = Den - 0.6666666666666667;
dist[Np+n] = 0.055555555555555555; //double(100*n)+1.f;
dist[2*Np+n] = 0.055555555555555555; //double(100*n)+2.f;
dist[3*Np+n] = 0.055555555555555555; //double(100*n)+3.f;
dist[4*Np+n] = 0.055555555555555555; //double(100*n)+4.f;
dist[5*Np+n] = 0.055555555555555555; //double(100*n)+5.f;
dist[6*Np+n] = 0.055555555555555555; //double(100*n)+6.f;
dist[7*Np+n] = 0.0277777777777778; //double(100*n)+7.f;
dist[8*Np+n] = 0.0277777777777778; //double(100*n)+8.f;
dist[9*Np+n] = 0.0277777777777778; //double(100*n)+9.f;
dist[10*Np+n] = 0.0277777777777778; //double(100*n)+10.f;
dist[11*Np+n] = 0.0277777777777778; //double(100*n)+11.f;
dist[12*Np+n] = 0.0277777777777778; //double(100*n)+12.f;
dist[13*Np+n] = 0.0277777777777778; //double(100*n)+13.f;
dist[14*Np+n] = 0.0277777777777778; //double(100*n)+14.f;
dist[15*Np+n] = 0.0277777777777778; //double(100*n)+15.f;
dist[16*Np+n] = 0.0277777777777778; //double(100*n)+16.f;
dist[17*Np+n] = 0.0277777777777778; //double(100*n)+17.f;
dist[18*Np+n] = 0.0277777777777778; //double(100*n)+18.f;
}
}
}
//*************************************************************************
__global__ void dvc_ScaLBL_D3Q19_Swap_Compact(int *neighborList, double *disteven, double *distodd, int Np, int q){
int n,nn;
@ -2395,13 +2364,6 @@ extern "C" void ScaLBL_D3Q19_Init(double *dist, int Np){
}
}
extern "C" void ScaLBL_D3Q19_GreyIMRT_Init(double *dist, int Np, double Den){
dvc_ScaLBL_D3Q19_GreyIMRT_Init<<<NBLOCKS,NTHREADS >>>(dist, Np, Den);
cudaError_t err = cudaGetLastError();
if (cudaSuccess != err){
printf("CUDA error in ScaLBL_D3Q19_GreyIMRT_Init: %s \n",cudaGetErrorString(err));
}
}
extern "C" void ScaLBL_D3Q19_Swap(char *ID, double *disteven, double *distodd, int Nx, int Ny, int Nz){
dvc_ScaLBL_D3Q19_Swap<<<NBLOCKS,NTHREADS >>>(ID, disteven, distodd, Nx, Ny, Nz);

File diff suppressed because it is too large Load Diff

3036
gpu/GreyscaleColor.cu Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,95 @@
/*
Implementation of two-fluid greyscale color lattice boltzmann model
*/
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <iostream>
#include <exception>
#include <stdexcept>
#include <fstream>
#include "common/Communication.h"
#include "analysis/GreyPhase.h"
#include "common/MPI_Helpers.h"
#include "ProfilerApp.h"
#include "threadpool/thread_pool.h"
class ScaLBL_GreyscaleColorModel{
public:
ScaLBL_GreyscaleColorModel(int RANK, int NP, MPI_Comm COMM);
~ScaLBL_GreyscaleColorModel();
// functions in they should be run
void ReadParams(string filename);
void ReadParams(std::shared_ptr<Database> db0);
void SetDomain();
void ReadInput();
void Create();
void Initialize();
void Run();
void WriteDebug();
bool Restart,pBC;
bool REVERSE_FLOW_DIRECTION;
int timestep,timestepMax;
int BoundaryCondition;
double tauA,tauB,rhoA,rhoB,alpha,beta;
double tauA_eff,tauB_eff;
double Fx,Fy,Fz,flux;
double din,dout,inletA,inletB,outletA,outletB;
double GreyPorosity;
int Nx,Ny,Nz,N,Np;
int rank,nprocx,nprocy,nprocz,nprocs;
double Lx,Ly,Lz;
std::shared_ptr<Domain> Dm; // this domain is for analysis
std::shared_ptr<Domain> Mask; // this domain is for lbm
std::shared_ptr<ScaLBL_Communicator> ScaLBL_Comm;
std::shared_ptr<ScaLBL_Communicator> ScaLBL_Comm_Regular;
std::shared_ptr<GreyPhaseAnalysis> Averages;
// input database
std::shared_ptr<Database> db;
std::shared_ptr<Database> domain_db;
std::shared_ptr<Database> greyscaleColor_db;
std::shared_ptr<Database> analysis_db;
std::shared_ptr<Database> vis_db;
IntArray Map;
signed char *id;
int *NeighborList;
int *dvcMap;
double *fq, *Aq, *Bq;
double *Den, *Phi;
//double *GreySolidPhi; //Model 2 & 3
double *GreySolidGrad;//Model 1 & 4
//double *ColorGrad;
double *Velocity;
double *Pressure;
double *Porosity_dvc;
double *Permeability_dvc;
private:
MPI_Comm comm;
int dist_mem_size;
int neighborSize;
// filenames
char LocalRankString[8];
char LocalRankFilename[40];
char LocalRestartFile[40];
//int rank,nprocs;
void LoadParams(std::shared_ptr<Database> db0);
void AssignComponentLabels();
void AssignGreySolidLabels();
void AssignGreyPoroPermLabels();
void ImageInit(std::string filename);
double MorphInit(const double beta, const double morph_delta);
double SeedPhaseField(const double seed_water_in_oil);
double MorphOpenConnected(double target_volume_change);
void WriteVisFiles();
};

View File

@ -44,7 +44,7 @@ void ScaLBL_GreyscaleModel::ReadParams(string filename){
din=dout=1.0;
flux=0.0;
dp = 10.0; //unit of 'dp': voxel
CollisionType = 1; //1: IMRT; 2: BGK
CollisionType = 1; //1: IMRT; 2: BGK; 3: MRT
// ---------------------- Greyscale Model parameters -----------------------//
if (greyscale_db->keyExists( "timestepMax" )){
@ -84,6 +84,9 @@ void ScaLBL_GreyscaleModel::ReadParams(string filename){
if (collision == "BGK"){
CollisionType=2;
}
else if (collision == "MRT"){
CollisionType=3;
}
// ------------------------------------------------------------------------//
//------------------------ Other Domain parameters ------------------------//
@ -202,9 +205,9 @@ void ScaLBL_GreyscaleModel::AssignComponentLabels(double *Porosity, double *Perm
for (int idx=0; idx<NLABELS; idx++) label_count[idx]=0;
for (int k=1;k<Nz-1;k++){
for (int j=1;j<Ny-1;j++){
for (int i=1;i<Nx-1;i++){
for (int k=0;k<Nz;k++){
for (int j=0;j<Ny;j++){
for (int i=0;i<Nx;i++){
int n = k*Nx*Ny+j*Nx+i;
VALUE=id[n];
// Assign the affinity from the paired list
@ -233,9 +236,9 @@ void ScaLBL_GreyscaleModel::AssignComponentLabels(double *Porosity, double *Perm
if (NLABELS != PermeabilityList.size()){
ERROR("Error: ComponentLabels and PermeabilityList must be the same length! \n");
}
for (int k=1;k<Nz-1;k++){
for (int j=1;j<Ny-1;j++){
for (int i=1;i<Nx-1;i++){
for (int k=0;k<Nz;k++){
for (int j=0;j<Ny;j++){
for (int i=0;i<Nx;i++){
int n = k*Nx*Ny+j*Nx+i;
VALUE=id[n];
// Assign the affinity from the paired list
@ -274,7 +277,7 @@ void ScaLBL_GreyscaleModel::AssignComponentLabels(double *Porosity, double *Perm
if (rank==0){
printf("Image resolution: %.5g [um/voxel]\n",Dm->voxel_length);
printf("Component labels: %lu \n",NLABELS);
printf("Number of component labels: %lu \n",NLABELS);
for (unsigned int idx=0; idx<NLABELS; idx++){
VALUE=LabelList[idx];
POROSITY=PorosityList[idx];
@ -288,6 +291,56 @@ void ScaLBL_GreyscaleModel::AssignComponentLabels(double *Porosity, double *Perm
}
}
void ScaLBL_GreyscaleModel::AssignComponentLabels(double *Porosity,double *Permeability,const vector<std::string> &File_poro,const vector<std::string> &File_perm)
{
double *Porosity_host, *Permeability_host;
Porosity_host = new double[N];
Permeability_host = new double[N];
double POROSITY=0.f;
double PERMEABILITY=0.f;
//Initialize a weighted porosity after considering grey voxels
double GreyPorosity_loc=0.0;
GreyPorosity=0.0;
//double label_count_loc = 0.0;
//double label_count_glb = 0.0;
Mask->ReadFromFile(File_poro[0],File_poro[1],Porosity_host);
Mask->ReadFromFile(File_perm[0],File_perm[1],Permeability_host);
for (int k=0;k<Nz;k++){
for (int j=0;j<Ny;j++){
for (int i=0;i<Nx;i++){
int idx = Map(i,j,k);
if (!(idx < 0)){
int n = k*Nx*Ny+j*Nx+i;
POROSITY = Porosity_host[n];
PERMEABILITY = Permeability_host[n];
if (POROSITY<=0.0){
ERROR("Error: Porosity for grey voxels must be 0.0 < Porosity <= 1.0 !\n");
}
else if (PERMEABILITY<=0.0){
ERROR("Error: Permeability for grey voxel must be > 0.0 ! \n");
}
else{
Porosity[idx] = POROSITY;
Permeability[idx] = PERMEABILITY;
GreyPorosity_loc += POROSITY;
//label_count_loc += 1.0;
}
}
}
}
}
GreyPorosity = sumReduce( Dm->Comm, GreyPorosity_loc);
GreyPorosity = GreyPorosity/double((Nx-2)*(Ny-2)*(Nz-2)*nprocs);
if (rank==0){
printf("Image resolution: %.5g [um/voxel]\n",Dm->voxel_length);
printf("The weighted porosity, considering both open and grey voxels, is %.3g\n",GreyPorosity);
}
delete [] Porosity_host;
delete [] Permeability_host;
}
void ScaLBL_GreyscaleModel::Create(){
/*
@ -326,7 +379,6 @@ void ScaLBL_GreyscaleModel::Create(){
neighborSize=18*(Np*sizeof(int));
//...........................................................................
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
ScaLBL_AllocateDeviceMemory((void **) &dvcMap, sizeof(int)*Np);
ScaLBL_AllocateDeviceMemory((void **) &fq, 19*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Permeability, sizeof(double)*Np);
ScaLBL_AllocateDeviceMemory((void **) &Porosity, sizeof(double)*Np);
@ -334,47 +386,31 @@ void ScaLBL_GreyscaleModel::Create(){
ScaLBL_AllocateDeviceMemory((void **) &Velocity, 3*sizeof(double)*Np);
//...........................................................................
// Update GPU data structures
if (rank==0) printf ("Setting up device map and neighbor list \n");
if (rank==0) printf ("Setting up device neighbor list \n");
fflush(stdout);
int *TmpMap;
TmpMap=new int[Np];
for (int k=1; k<Nz-1; k++){
for (int j=1; j<Ny-1; j++){
for (int i=1; i<Nx-1; i++){
int idx=Map(i,j,k);
if (!(idx < 0))
TmpMap[idx] = k*Nx*Ny+j*Nx+i;
}
}
}
// check that TmpMap is valid
for (int idx=0; idx<ScaLBL_Comm->LastExterior(); idx++){
int n = TmpMap[idx];
if (n > Nx*Ny*Nz){
printf("Bad value! idx=%i \n");
TmpMap[idx] = Nx*Ny*Nz-1;
}
}
for (int idx=ScaLBL_Comm->FirstInterior(); idx<ScaLBL_Comm->LastInterior(); idx++){
int n = TmpMap[idx];
if (n > Nx*Ny*Nz){
printf("Bad value! idx=%i \n");
TmpMap[idx] = Nx*Ny*Nz-1;
}
}
ScaLBL_CopyToDevice(dvcMap, TmpMap, sizeof(int)*Np);
ScaLBL_DeviceBarrier();
delete [] TmpMap;
// copy the neighbor list
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
// initialize phi based on PhaseLabel (include solid component labels)
double *Poros, *Perm;
Poros = new double[Np];
Perm = new double[Np];
AssignComponentLabels(Poros,Perm);
Perm = new double[Np];
if (greyscale_db->keyExists("FileVoxelPorosityMap")){
//NOTE: FileVoxel**Map is a vector, including "file_name, datatype"
auto File_poro = greyscale_db->getVector<std::string>( "FileVoxelPorosityMap" );
auto File_perm = greyscale_db->getVector<std::string>( "FileVoxelPermeabilityMap" );
AssignComponentLabels(Poros,Perm,File_poro,File_perm);
}
else if (greyscale_db->keyExists("PorosityList")){
//initialize voxel porosity and perm from the input list
AssignComponentLabels(Poros,Perm);
}
else {
ERROR("Error: PorosityList or FilenameVoxelPorosityMap cannot be found! \n");
}
ScaLBL_CopyToDevice(Porosity, Poros, Np*sizeof(double));
ScaLBL_CopyToDevice(Permeability, Perm, Np*sizeof(double));
delete [] Poros;
delete [] Perm;
}
@ -391,6 +427,10 @@ void ScaLBL_GreyscaleModel::Initialize(){
ScaLBL_D3Q19_Init(fq, Np);
if (rank==0) printf("Collision model: BGK.\n");
}
else if (CollisionType==3){
ScaLBL_D3Q19_Init(fq, Np);
if (rank==0) printf("Collision model: MRT.\n");
}
else{
if (rank==0) printf("Unknown collison type! IMRT collision is used.\n");
ScaLBL_D3Q19_GreyIMRT_Init(fq, Np, Den);
@ -472,6 +512,9 @@ void ScaLBL_GreyscaleModel::Run(){
case 2:
ScaLBL_D3Q19_AAodd_Greyscale(NeighborList, fq, ScaLBL_Comm->FirstInterior(), ScaLBL_Comm->LastInterior(), Np, rlx, rlx_eff, Fx, Fy, Fz,Porosity,Permeability,Velocity,Pressure_dvc);
break;
case 3:
ScaLBL_D3Q19_AAodd_Greyscale_MRT(NeighborList, fq, ScaLBL_Comm->FirstInterior(), ScaLBL_Comm->LastInterior(), Np, rlx, rlx_eff, Fx, Fy, Fz,Porosity,Permeability,Velocity,Den,Pressure_dvc);
break;
default:
ScaLBL_D3Q19_AAodd_Greyscale_IMRT(NeighborList, fq, ScaLBL_Comm->FirstInterior(), ScaLBL_Comm->LastInterior(), Np, rlx, rlx_eff, Fx, Fy, Fz,Porosity,Permeability,Velocity,Den,Pressure_dvc);
break;
@ -490,6 +533,9 @@ void ScaLBL_GreyscaleModel::Run(){
case 2:
ScaLBL_D3Q19_AAodd_Greyscale(NeighborList, fq, 0, ScaLBL_Comm->LastExterior(), Np, rlx, rlx_eff, Fx, Fy, Fz,Porosity,Permeability,Velocity,Pressure_dvc);
break;
case 3:
ScaLBL_D3Q19_AAodd_Greyscale_MRT(NeighborList, fq, 0, ScaLBL_Comm->LastExterior(), Np, rlx, rlx_eff, Fx, Fy, Fz,Porosity,Permeability,Velocity,Den,Pressure_dvc);
break;
default:
ScaLBL_D3Q19_AAodd_Greyscale_IMRT(NeighborList, fq, 0, ScaLBL_Comm->LastExterior(), Np, rlx, rlx_eff, Fx, Fy, Fz,Porosity,Permeability,Velocity,Den,Pressure_dvc);
break;
@ -506,6 +552,9 @@ void ScaLBL_GreyscaleModel::Run(){
case 2:
ScaLBL_D3Q19_AAeven_Greyscale(fq, ScaLBL_Comm->FirstInterior(), ScaLBL_Comm->LastInterior(), Np, rlx, rlx_eff, Fx, Fy, Fz,Porosity,Permeability,Velocity,Pressure_dvc);
break;
case 3:
ScaLBL_D3Q19_AAeven_Greyscale_MRT(fq, ScaLBL_Comm->FirstInterior(), ScaLBL_Comm->LastInterior(), Np, rlx, rlx_eff, Fx, Fy, Fz,Porosity,Permeability,Velocity,Den,Pressure_dvc);
break;
default:
ScaLBL_D3Q19_AAeven_Greyscale_IMRT(fq, ScaLBL_Comm->FirstInterior(), ScaLBL_Comm->LastInterior(), Np, rlx, rlx_eff, Fx, Fy, Fz,Porosity,Permeability,Velocity,Den,Pressure_dvc);
break;
@ -524,6 +573,9 @@ void ScaLBL_GreyscaleModel::Run(){
case 2:
ScaLBL_D3Q19_AAeven_Greyscale(fq, 0, ScaLBL_Comm->LastExterior(), Np, rlx, rlx_eff, Fx, Fy, Fz,Porosity,Permeability,Velocity,Pressure_dvc);
break;
case 3:
ScaLBL_D3Q19_AAeven_Greyscale_MRT(fq, 0, ScaLBL_Comm->LastExterior(), Np, rlx, rlx_eff, Fx, Fy, Fz,Porosity,Permeability,Velocity,Den,Pressure_dvc);
break;
default:
ScaLBL_D3Q19_AAeven_Greyscale_IMRT(fq, 0, ScaLBL_Comm->LastExterior(), Np, rlx, rlx_eff, Fx, Fy, Fz,Porosity,Permeability,Velocity,Den,Pressure_dvc);
break;
@ -597,11 +649,6 @@ void ScaLBL_GreyscaleModel::Run(){
}
}
}
//MPI_Allreduce(&vax_loc,&vax,1,MPI_DOUBLE,MPI_SUM,Mask->Comm);
//MPI_Allreduce(&vay_loc,&vay,1,MPI_DOUBLE,MPI_SUM,Mask->Comm);
//MPI_Allreduce(&vaz_loc,&vaz,1,MPI_DOUBLE,MPI_SUM,Mask->Comm);
//MPI_Allreduce(&count_loc,&count,1,MPI_DOUBLE,MPI_SUM,Mask->Comm);
vax = sumReduce( Mask->Comm, vax_loc);
vay = sumReduce( Mask->Comm, vay_loc);
vaz = sumReduce( Mask->Comm, vaz_loc);

View File

@ -62,7 +62,6 @@ public:
signed char *id;
int *NeighborList;
int *dvcMap;
double *fq;
double *Permeability;//grey voxel permeability
double *Porosity;
@ -87,6 +86,6 @@ private:
char LocalRestartFile[40];
void AssignComponentLabels(double *Porosity, double *Permeablity);
void AssignComponentLabels(double *Porosity,double *Permeability,const vector<std::string> &File_poro,const vector<std::string> &File_perm);
};

View File

@ -5,6 +5,7 @@ ADD_LBPM_EXECUTABLE( lbpm_color_simulator )
ADD_LBPM_EXECUTABLE( lbpm_permeability_simulator )
ADD_LBPM_EXECUTABLE( lbpm_greyscale_simulator )
ADD_LBPM_EXECUTABLE( lbpm_electrokinetic_SingleFluid_simulator )
ADD_LBPM_EXECUTABLE( lbpm_greyscaleColor_simulator )
#ADD_LBPM_EXECUTABLE( lbpm_BGK_simulator )
#ADD_LBPM_EXECUTABLE( lbpm_color_macro_simulator )
ADD_LBPM_EXECUTABLE( lbpm_dfh_simulator )
@ -37,6 +38,7 @@ ADD_LBPM_EXECUTABLE( GenerateSphereTest )
#ADD_LBPM_EXECUTABLE( BlobAnalyzeParallel )
ADD_LBPM_EXECUTABLE( lbpm_minkowski_scalar )
CONFIGURE_FILE( ${CMAKE_CURRENT_SOURCE_DIR}/cylindertest ${CMAKE_CURRENT_BINARY_DIR}/cylindertest COPYONLY )
# Add the tests

View File

@ -0,0 +1,71 @@
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <iostream>
#include <exception>
#include <stdexcept>
#include <fstream>
#include "models/GreyscaleColorModel.h"
#include "common/Utilities.h"
//#define WRITE_SURFACES
//*************************************************************************
// Implementation of Greyscale Two-Fluid Color LBM using CUDA
//*************************************************************************
using namespace std;
int main(int argc, char **argv)
{
// Initialize MPI and error handlers
Utilities::startup( argc, argv );
{ // Limit scope so variables that contain communicators will free before MPI_Finialize
MPI_Comm comm;
MPI_Comm_dup(MPI_COMM_WORLD,&comm);
int rank = comm_rank(comm);
int nprocs = comm_size(comm);
if (rank == 0){
printf("****************************************\n");
printf("Running Greyscale Two-Phase Calculation \n");
printf("****************************************\n");
}
// Initialize compute device
ScaLBL_SetDevice(rank);
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
PROFILE_ENABLE(1);
//PROFILE_ENABLE_TRACE();
//PROFILE_ENABLE_MEMORY();
PROFILE_SYNCHRONIZE();
PROFILE_START("Main");
Utilities::setErrorHandlers();
auto filename = argv[1];
ScaLBL_GreyscaleColorModel GreyscaleColor(rank,nprocs,comm);
GreyscaleColor.ReadParams(filename);
GreyscaleColor.SetDomain();
GreyscaleColor.ReadInput();
GreyscaleColor.Create(); // creating the model will create data structure to match the pore structure and allocate variables
GreyscaleColor.Initialize(); // initializing the model will set initial conditions for variables
GreyscaleColor.Run();
GreyscaleColor.WriteDebug();
PROFILE_STOP("Main");
PROFILE_SAVE("lbpm_greyscaleColor_simulator",1);
// ****************************************************
MPI_Barrier(comm);
MPI_Comm_free(&comm);
} // Limit scope so variables that contain communicators will free before MPI_Finialize
Utilities::shutdown();
}

View File

@ -6,58 +6,67 @@
#include <stdexcept>
#include <fstream>
#include "common/ScaLBL.h"
#include "common/Communication.h"
#include "common/MPI_Helpers.h"
#include "models/GreyscaleModel.h"
#include "common/Utilities.h"
//#define WRITE_SURFACES
/*
* Simulator for two-phase flow in porous media
* James E. McClure 2013-2014
*/
//****************************************************************
// Implementation of Greyscale Single-Fluid LBM using CUDA
//****************************************************************
using namespace std;
int main(int argc, char **argv)
{
//*****************************************
// ***** MPI STUFF ****************
//*****************************************
// Initialize MPI
int rank,nprocs;
MPI_Init(&argc,&argv);
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Comm_rank(comm,&rank);
MPI_Comm_size(comm,&nprocs);
{
// parallel domain size (# of sub-domains)
if (rank == 0){
printf("********************************************************\n");
printf("Running Greyscale Single Phase Permeability Calculation \n");
printf("********************************************************\n");
}
// Initialize compute device
int device=ScaLBL_SetDevice(rank);
NULL_USE(device);
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
ScaLBL_GreyscaleModel Greyscale(rank,nprocs,comm);
auto filename = argv[1];
Greyscale.ReadParams(filename);
Greyscale.SetDomain(); // this reads in the domain
Greyscale.ReadInput();
Greyscale.Create(); // creating the model will create data structure to match the pore structure and allocate variables
Greyscale.Initialize(); // initializing the model will set initial conditions for variables
Greyscale.Run();
//Greyscale.VelocityField();
//Greyscale.WriteDebug();
}
// ****************************************************
MPI_Barrier(comm);
MPI_Finalize();
// ****************************************************
// Initialize MPI and error handlers
Utilities::startup( argc, argv );
{ // Limit scope so variables that contain communicators will free before MPI_Finialize
MPI_Comm comm;
MPI_Comm_dup(MPI_COMM_WORLD,&comm);
int rank = comm_rank(comm);
int nprocs = comm_size(comm);
if (rank == 0){
printf("********************************************************\n");
printf("Running Greyscale Single Phase Permeability Calculation \n");
printf("********************************************************\n");
}
// Initialize compute device
ScaLBL_SetDevice(rank);
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
PROFILE_ENABLE(1);
//PROFILE_ENABLE_TRACE();
//PROFILE_ENABLE_MEMORY();
PROFILE_SYNCHRONIZE();
PROFILE_START("Main");
Utilities::setErrorHandlers();
auto filename = argv[1];
ScaLBL_GreyscaleModel Greyscale(rank,nprocs,comm);
Greyscale.ReadParams(filename);
Greyscale.SetDomain();
Greyscale.ReadInput();
Greyscale.Create(); // creating the model will create data structure to match the pore structure and allocate variables
Greyscale.Initialize(); // initializing the model will set initial conditions for variables
Greyscale.Run();
Greyscale.VelocityField();
//Greyscale.WriteDebug();
PROFILE_STOP("Main");
PROFILE_SAVE("lbpm_greyscale_simulator",1);
// ****************************************************
MPI_Barrier(comm);
MPI_Comm_free(&comm);
} // Limit scope so variables that contain communicators will free before MPI_Finialize
Utilities::shutdown();
}