added color model formulation
This commit is contained in:
parent
a928e17505
commit
343a439f3b
@ -67,94 +67,107 @@ Model Formulation
|
||||
|
||||
|
||||
Two LBEs are constructed to model the mass transport, incorporating the anti-diffusion
|
||||
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
\\begin{eqnarray}
|
||||
A_q(\bm{x} + \bm{\xi}_q \delta t, t+\delta t) &=& w_q N_a \Big[1 + \frac{\bm{u} \cdot \bm{\xi}_q}{c_s^2}
|
||||
A_q(\bm{x} + \bm{\xi}_q \delta t, t+\delta t) = w_q N_a \Big[1 + \frac{\bm{u} \cdot \bm{\xi}_q}{c_s^2}
|
||||
+ \beta \frac{N_b}{N_a+N_b} \bm{n} \cdot \bm{\xi}_q\Big] \;
|
||||
\\
|
||||
B_q(\bm{x} + \bm{\xi}_q \delta t, t+\delta t) &=&
|
||||
$$
|
||||
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
B_q(\bm{x} + \bm{\xi}_q \delta t, t+\delta t) =
|
||||
w_q N_b \Big[1 + \frac{\bm{u} \cdot \bm{\xi}_q}{c_s^2}
|
||||
- \beta \frac{N_a}{N_a+N_b} \bm{n} \cdot \bm{\xi}_q\Big]\;,
|
||||
\\end{eqnarray}
|
||||
$$
|
||||
|
||||
The number density is obtained directly for each fluid as the sum of the mass transport distributions
|
||||
The number density for each fluid is obtained from the sum of the mass transport distributions
|
||||
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
\\begin{equation}
|
||||
N_a = \sum_q A_q\;, \quad N_b = \sum_q B_q\;
|
||||
\\end{equation}
|
||||
$$
|
||||
|
||||
|
||||
The phase indicator field is then defined as
|
||||
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
\\begin{equation}
|
||||
\phi = \frac{N_a-N_b}{N_a+N_b}
|
||||
\\end{equation}
|
||||
$$
|
||||
|
||||
The local fluid viscosity and density are determined based on linear interpolation
|
||||
The fluid density and kinematic viscosity are determined based on linear interpolation
|
||||
|
||||
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
\\begin{equation}
|
||||
\nu = \frac{(1+\phi) \nu_n}{2}+\frac{(1-\phi) \nu_w}{2} \;,
|
||||
\\end{equation}
|
||||
$$
|
||||
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
\\begin{equation}
|
||||
\rho_0 = \frac{(1+\phi) \rho_n}{2}+ \frac{(1-\phi) \rho_w}{2} \;,
|
||||
\\end{equation}
|
||||
$$
|
||||
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
\nu = \frac{(1+\phi) \nu_n}{2}+\frac{(1-\phi) \nu_w}{2} \;,
|
||||
$$
|
||||
|
||||
where
|
||||
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
\nu_w = \frac{1}{3}\Big(\tau_w - \frac{1}{2} \Big) \;, \quad
|
||||
\nu_n = \frac{1}{3}\Big(\tau_n - \frac{1}{2} \Big) \;.
|
||||
$$
|
||||
|
||||
|
||||
These values are then used to model the momentum transport.
|
||||
The LBE governing momentum transport is defined based on a MRT relaxation process with additional
|
||||
terms to account for the interfacial stresses
|
||||
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
\\begin{equation}
|
||||
f_q(\bm{x}_i + \bm{\xi}_q \delta t,t + \delta t) - f_q(\bm{x}_i,t) = \sum^{Q-1}_{k=0} M^{-1}_{qk} \lambda_{k} (m_k^{eq}-m_k) + t_q \bm{\xi}_q \cdot \frac{\bm{F}}{c_s^2} \;,
|
||||
\\end{equation}
|
||||
$$
|
||||
|
||||
|
||||
The moments are linearly indepdendent
|
||||
The moments are linearly indepdendent:
|
||||
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
\\begin{equation}
|
||||
m_k = \sum_{q=0}^{18} M_{qk} f_q\;.
|
||||
\\end{equation}
|
||||
$$
|
||||
|
||||
|
||||
The relaxation parameters are determined from the relaxation time:
|
||||
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
\\begin{eqnarray}
|
||||
\lambda_1 = \lambda_2= \lambda_9 = \lambda_{10}= \lambda_{11}= \lambda_{12}= \lambda_{13}= \lambda_{14}= \lambda_{15} = s_\nu\;, \\
|
||||
\lambda_1 = \lambda_2= \lambda_9 = \lambda_{10}= \lambda_{11}= \lambda_{12}= \lambda_{13}= \lambda_{14}= \lambda_{15} = s_\nu\;,
|
||||
$$
|
||||
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
\lambda_{4}= \lambda_{6}= \lambda_{8} = \lambda_{16} = \lambda_{17} = \lambda_{18}= \frac{8(2-s_\nu)}{8-s_\nu} \;,
|
||||
\\end{eqnarray}
|
||||
$$
|
||||
|
||||
The non-zero equilibrium moments are defined as
|
||||
@ -163,34 +176,60 @@ The non-zero equilibrium moments are defined as
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
\\begin{eqnarray}
|
||||
m_1^{eq} &=& (j_x^2+j_y^2+j_z^2) - \alpha |\textbf{C}|, \\
|
||||
m_9^{eq} &=& (2j_x^2-j_y^2-j_z^2)+ \alpha \frac{|\textbf{C}|}{2}(2n_x^2-n_y^2-n_z^2), \\
|
||||
m_{11}^{eq} &=& (j_y^2-j_z^2) + \alpha \frac{|\textbf{C}|}{2}(n_y^2-n_z^2), \\
|
||||
m_{13}^{eq} &=& j_x j_y + \alpha \frac{|\textbf{C}|}{2} n_x n_y\;, \\
|
||||
m_{14}^{eq} &=& j_y j_z + \alpha \frac{|\textbf{C}|}{2} n_y n_z\;, \\
|
||||
m_{15}^{eq} &=& j_x j_z + \alpha \frac{|\textbf{C}|}{2} n_x n_z\;,
|
||||
\\end{eqnarray}
|
||||
m_1^{eq} = (j_x^2+j_y^2+j_z^2) - \alpha |\textbf{C}|, \\
|
||||
$$
|
||||
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
m_9^{eq} = (2j_x^2-j_y^2-j_z^2)+ \alpha \frac{|\textbf{C}|}{2}(2n_x^2-n_y^2-n_z^2), \\
|
||||
$$
|
||||
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
m_{11}^{eq} = (j_y^2-j_z^2) + \alpha \frac{|\textbf{C}|}{2}(n_y^2-n_z^2), \\
|
||||
$$
|
||||
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
m_{13}^{eq} = j_x j_y + \alpha \frac{|\textbf{C}|}{2} n_x n_y\;, \\
|
||||
$$
|
||||
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
m_{14}^{eq} = j_y j_z + \alpha \frac{|\textbf{C}|}{2} n_y n_z\;, \\
|
||||
$$
|
||||
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
m_{15}^{eq} = j_x j_z + \alpha \frac{|\textbf{C}|}{2} n_x n_z\;,
|
||||
$$
|
||||
|
||||
where the color gradient is determined from the phase indicator field
|
||||
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
\\begin{equation}
|
||||
\textbf{C}=\nabla \phi\;.
|
||||
\\end{equation}
|
||||
$$
|
||||
|
||||
and the unit normal vector is
|
||||
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
\\begin{equation}
|
||||
\bm{n} = \frac{\textbf{C}}{|\textbf{C}|}\;.
|
||||
\\end{equation}
|
||||
$$
|
||||
|
||||
****************************
|
||||
|
Loading…
Reference in New Issue
Block a user