added color model formulation

This commit is contained in:
James McClure 2021-09-03 06:04:19 -04:00
parent a928e17505
commit 343a439f3b

View File

@ -67,94 +67,107 @@ Model Formulation
Two LBEs are constructed to model the mass transport, incorporating the anti-diffusion
.. math::
:nowrap:
$$
\\begin{eqnarray}
A_q(\bm{x} + \bm{\xi}_q \delta t, t+\delta t) &=& w_q N_a \Big[1 + \frac{\bm{u} \cdot \bm{\xi}_q}{c_s^2}
A_q(\bm{x} + \bm{\xi}_q \delta t, t+\delta t) = w_q N_a \Big[1 + \frac{\bm{u} \cdot \bm{\xi}_q}{c_s^2}
+ \beta \frac{N_b}{N_a+N_b} \bm{n} \cdot \bm{\xi}_q\Big] \;
\\
B_q(\bm{x} + \bm{\xi}_q \delta t, t+\delta t) &=&
$$
.. math::
:nowrap:
$$
B_q(\bm{x} + \bm{\xi}_q \delta t, t+\delta t) =
w_q N_b \Big[1 + \frac{\bm{u} \cdot \bm{\xi}_q}{c_s^2}
- \beta \frac{N_a}{N_a+N_b} \bm{n} \cdot \bm{\xi}_q\Big]\;,
\\end{eqnarray}
$$
The number density is obtained directly for each fluid as the sum of the mass transport distributions
The number density for each fluid is obtained from the sum of the mass transport distributions
.. math::
:nowrap:
$$
\\begin{equation}
N_a = \sum_q A_q\;, \quad N_b = \sum_q B_q\;
\\end{equation}
$$
The phase indicator field is then defined as
.. math::
:nowrap:
$$
\\begin{equation}
\phi = \frac{N_a-N_b}{N_a+N_b}
\\end{equation}
$$
The local fluid viscosity and density are determined based on linear interpolation
The fluid density and kinematic viscosity are determined based on linear interpolation
.. math::
:nowrap:
$$
\\begin{equation}
\nu = \frac{(1+\phi) \nu_n}{2}+\frac{(1-\phi) \nu_w}{2} \;,
\\end{equation}
$$
.. math::
:nowrap:
$$
\\begin{equation}
\rho_0 = \frac{(1+\phi) \rho_n}{2}+ \frac{(1-\phi) \rho_w}{2} \;,
\\end{equation}
$$
.. math::
:nowrap:
$$
\nu = \frac{(1+\phi) \nu_n}{2}+\frac{(1-\phi) \nu_w}{2} \;,
$$
where
.. math::
:nowrap:
$$
\nu_w = \frac{1}{3}\Big(\tau_w - \frac{1}{2} \Big) \;, \quad
\nu_n = \frac{1}{3}\Big(\tau_n - \frac{1}{2} \Big) \;.
$$
These values are then used to model the momentum transport.
The LBE governing momentum transport is defined based on a MRT relaxation process with additional
terms to account for the interfacial stresses
.. math::
:nowrap:
$$
\\begin{equation}
f_q(\bm{x}_i + \bm{\xi}_q \delta t,t + \delta t) - f_q(\bm{x}_i,t) = \sum^{Q-1}_{k=0} M^{-1}_{qk} \lambda_{k} (m_k^{eq}-m_k) + t_q \bm{\xi}_q \cdot \frac{\bm{F}}{c_s^2} \;,
\\end{equation}
$$
The moments are linearly indepdendent
The moments are linearly indepdendent:
.. math::
:nowrap:
$$
\\begin{equation}
m_k = \sum_{q=0}^{18} M_{qk} f_q\;.
\\end{equation}
$$
The relaxation parameters are determined from the relaxation time:
.. math::
:nowrap:
$$
\\begin{eqnarray}
\lambda_1 = \lambda_2= \lambda_9 = \lambda_{10}= \lambda_{11}= \lambda_{12}= \lambda_{13}= \lambda_{14}= \lambda_{15} = s_\nu\;, \\
\lambda_1 = \lambda_2= \lambda_9 = \lambda_{10}= \lambda_{11}= \lambda_{12}= \lambda_{13}= \lambda_{14}= \lambda_{15} = s_\nu\;,
$$
.. math::
:nowrap:
$$
\lambda_{4}= \lambda_{6}= \lambda_{8} = \lambda_{16} = \lambda_{17} = \lambda_{18}= \frac{8(2-s_\nu)}{8-s_\nu} \;,
\\end{eqnarray}
$$
The non-zero equilibrium moments are defined as
@ -163,34 +176,60 @@ The non-zero equilibrium moments are defined as
:nowrap:
$$
\\begin{eqnarray}
m_1^{eq} &=& (j_x^2+j_y^2+j_z^2) - \alpha |\textbf{C}|, \\
m_9^{eq} &=& (2j_x^2-j_y^2-j_z^2)+ \alpha \frac{|\textbf{C}|}{2}(2n_x^2-n_y^2-n_z^2), \\
m_{11}^{eq} &=& (j_y^2-j_z^2) + \alpha \frac{|\textbf{C}|}{2}(n_y^2-n_z^2), \\
m_{13}^{eq} &=& j_x j_y + \alpha \frac{|\textbf{C}|}{2} n_x n_y\;, \\
m_{14}^{eq} &=& j_y j_z + \alpha \frac{|\textbf{C}|}{2} n_y n_z\;, \\
m_{15}^{eq} &=& j_x j_z + \alpha \frac{|\textbf{C}|}{2} n_x n_z\;,
\\end{eqnarray}
m_1^{eq} = (j_x^2+j_y^2+j_z^2) - \alpha |\textbf{C}|, \\
$$
.. math::
:nowrap:
$$
m_9^{eq} = (2j_x^2-j_y^2-j_z^2)+ \alpha \frac{|\textbf{C}|}{2}(2n_x^2-n_y^2-n_z^2), \\
$$
.. math::
:nowrap:
$$
m_{11}^{eq} = (j_y^2-j_z^2) + \alpha \frac{|\textbf{C}|}{2}(n_y^2-n_z^2), \\
$$
.. math::
:nowrap:
$$
m_{13}^{eq} = j_x j_y + \alpha \frac{|\textbf{C}|}{2} n_x n_y\;, \\
$$
.. math::
:nowrap:
$$
m_{14}^{eq} = j_y j_z + \alpha \frac{|\textbf{C}|}{2} n_y n_z\;, \\
$$
.. math::
:nowrap:
$$
m_{15}^{eq} = j_x j_z + \alpha \frac{|\textbf{C}|}{2} n_x n_z\;,
$$
where the color gradient is determined from the phase indicator field
.. math::
:nowrap:
$$
\\begin{equation}
\textbf{C}=\nabla \phi\;.
\\end{equation}
$$
and the unit normal vector is
.. math::
:nowrap:
$$
\\begin{equation}
\bm{n} = \frac{\textbf{C}}{|\textbf{C}|}\;.
\\end{equation}
$$
****************************