Updated lbpm_segmented_pp based on Min (2010) to sovle Eikonal equation
This commit is contained in:
parent
631ba92bea
commit
61cbeb4220
@ -137,7 +137,7 @@ static inline void fgetl( char * str, int num, FILE * stream )
|
||||
|
||||
|
||||
|
||||
inline void SSO(DoubleArray &Distance, char *ID, Domain &Dm, int timesteps){
|
||||
inline double SSO(DoubleArray &Distance, char *ID, Domain &Dm, int timesteps){
|
||||
/*
|
||||
* This routine converts the data in the Distance array to a signed distance
|
||||
* by solving the equation df/dt = sign(1-|grad f|), where Distance provides
|
||||
@ -152,6 +152,7 @@ inline void SSO(DoubleArray &Distance, char *ID, Domain &Dm, int timesteps){
|
||||
int in,jn,kn;
|
||||
double Dqx,Dqy,Dqz,Dx,Dy,Dz,W;
|
||||
double nx,ny,nz,Cqx,Cqy,Cqz,sign,norm;
|
||||
double TotalVariation;
|
||||
|
||||
const static int D3Q27[26][3]={{1,0,0},{-1,0,0},{0,1,0},{0,-1,0},{0,0,1},{0,0,-1},
|
||||
{1,1,0},{-1,-1,0},{1,-1,0},{-1,1,0},{1,0,1},{-1,0,-1},{1,0,-1},{-1,0,1},
|
||||
@ -176,6 +177,7 @@ inline void SSO(DoubleArray &Distance, char *ID, Domain &Dm, int timesteps){
|
||||
// Communicate the halo of values
|
||||
fillData.fill(Distance);
|
||||
|
||||
TotalVariation=0.0;
|
||||
// Execute the next timestep
|
||||
for (k=1;k<Dm.Nz-1;k++){
|
||||
for (j=1;j<Dm.Ny-1;j++){
|
||||
@ -243,32 +245,35 @@ inline void SSO(DoubleArray &Distance, char *ID, Domain &Dm, int timesteps){
|
||||
// Only include upwind derivatives
|
||||
if (sign*(nx*Cqx + ny*Cqy + nz*Cqz) < 0.0 ){
|
||||
|
||||
Dx += Dqx;
|
||||
Dy += Dqy;
|
||||
Dz += Dqz;
|
||||
W += weights[q];
|
||||
Dx += Dqx;
|
||||
Dy += Dqy;
|
||||
Dz += Dqz;
|
||||
W += weights[q];
|
||||
}
|
||||
}
|
||||
// Normalize by the weight to get the approximation to the gradient
|
||||
Dx /= W;
|
||||
Dy /= W;
|
||||
Dz /= W;
|
||||
|
||||
if (fabs(W) > 0.0){
|
||||
Dx /= W;
|
||||
Dy /= W;
|
||||
Dz /= W;
|
||||
}
|
||||
norm = sqrt(Dx*Dx+Dy*Dy+Dz*Dz);
|
||||
}
|
||||
else{
|
||||
norm = 0.0;
|
||||
}
|
||||
Distance(i,j,k) += dt*sign*(1.0 - norm);
|
||||
|
||||
TotalVariation += dt*sign*(1.0 - norm);
|
||||
// Disallow any change in phase
|
||||
// if (Distance(i,j,k)*2.0*(ID[n]-1.0) < 0) Distance(i,j,k) = -Distance(i,j,k);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TotalVariation /= (Dm.Nx-2)*(Dm.Ny-2)*(Dm.Nz-2);
|
||||
count++;
|
||||
}
|
||||
|
||||
return TotalVariation;
|
||||
}
|
||||
|
||||
|
||||
|
@ -26,6 +26,151 @@ inline void MeanFilter(DoubleArray &Mesh){
|
||||
}
|
||||
}
|
||||
|
||||
inline double minmod(double &a, double &b){
|
||||
|
||||
double value;
|
||||
|
||||
value = a;
|
||||
if ( if a*b < 0.0) value=0.0;
|
||||
else if (fabs(a) > fabs(b) value = b;
|
||||
|
||||
return value;
|
||||
}
|
||||
|
||||
|
||||
inline double Eikonal(DoubleArray &Distance, char *ID, Domain &Dm, int timesteps){
|
||||
|
||||
/*
|
||||
* This routine converts the data in the Distance array to a signed distance
|
||||
* by solving the equation df/dt = sign(1-|grad f|), where Distance provides
|
||||
* the values of f on the mesh associated with domain Dm
|
||||
* It has been tested with segmented data initialized to values [-1,1]
|
||||
* and will converge toward the signed distance to the surface bounding the associated phases
|
||||
*
|
||||
* Reference:
|
||||
* Min C (2010) On reinitializing level set functions, Journal of Computational Physics 229
|
||||
*/
|
||||
|
||||
int i,j,k;
|
||||
double dt=0.25;
|
||||
double Dx,Dy,Dz;
|
||||
double Dxp,Dxm,Dyp,Dym,Dzp,Dzm;
|
||||
double Dxxp,Dxxm,Dyyp,Dyym,Dzzp,Dzzm;
|
||||
double sign,norm;
|
||||
double LocalVar,GlobalVar,LocalMax,GlobalMax;
|
||||
|
||||
int xdim,ydim,zdim;
|
||||
xdim=Dm.Nx-2;
|
||||
ydim=Dm.Ny-2;
|
||||
zdim=Dm.Nz-2;
|
||||
fillHalo<double> fillData(Dm.Comm, Dm.rank_info,xdim,ydim,zdim,1,1,1,0,1);
|
||||
|
||||
// Arrays to store the second derivatives
|
||||
DoubleArray Dxx(Nx,Ny,Nz);
|
||||
DoubleArray Dyy(Nx,Ny,Nz);
|
||||
DoubleArray Dzz(Nx,Ny,Nz);
|
||||
|
||||
int count = 0;
|
||||
while (count < timesteps){
|
||||
|
||||
// Communicate the halo of values
|
||||
fillData.fill(Distance);
|
||||
|
||||
// Compute second order derivatives
|
||||
for (k=1;k<Dm.Nz-1;k++){
|
||||
for (j=1;j<Dm.Ny-1;j++){
|
||||
for (i=1;i<Dm.Nx-1;i++){
|
||||
Dxx(i,j,k) = Distance(i+1,j,k) + Distance(i-1,j,k) - 2*Distance(i,j,k);
|
||||
Dyy(i,j,k) = Distance(i,j+1,k) + Distance(i,j-1,k) - 2*Distance(i,j,k);
|
||||
Dzz(i,j,k) = Distance(i,j,k+1) + Distance(i,j,k-1) - 2*Distance(i,j,k);
|
||||
}
|
||||
}
|
||||
}
|
||||
fillData.fill(Dxx);
|
||||
fillData.fill(Dyy);
|
||||
fillData.fill(Dzz);
|
||||
|
||||
LocalMax=LocalVar=0.0;
|
||||
// Execute the next timestep
|
||||
for (k=1;k<Dm.Nz-1;k++){
|
||||
for (j=1;j<Dm.Ny-1;j++){
|
||||
for (i=1;i<Dm.Nx-1;i++){
|
||||
|
||||
int n = k*Dm.Nx*Dm.Ny + j*Dm.Nx + i;
|
||||
|
||||
sign = -1;
|
||||
if (ID[n] == 1) sign = 1;
|
||||
|
||||
// local second derivative terms
|
||||
Dxxp = minmod(Dxx(i,j,k),Dxx(i+1,j,k));
|
||||
Dyyp = minmod(Dyy(i,j,k),Dyy(i,j+1,k));
|
||||
Dzzp = minmod(Dzz(i,j,k),Dzz(i,j,k+1));
|
||||
Dxxm = minmod(Dxx(i,j,k),Dxx(i-1,j,k));
|
||||
Dyym = minmod(Dyy(i,j,k),Dyy(i,j-1,k));
|
||||
Dzzm = minmod(Dzz(i,j,k),Dzz(i,j,k-1));
|
||||
|
||||
/* //............Compute upwind derivatives ...................
|
||||
Dxp = Distance(i+1,j,k) - Distance(i,j,k) + 0.5*Dxxp;
|
||||
Dyp = Distance(i,j+1,k) - Distance(i,j,k) + 0.5*Dyyp;
|
||||
Dzp = Distance(i,j,k+1) - Distance(i,j,k) + 0.5*Dzzp;
|
||||
|
||||
Dxm = Distance(i,j,k) - Distance(i-1,j,k) + 0.5*Dxxm;
|
||||
Dym = Distance(i,j,k) - Distance(i,j-1,k) + 0.5*Dyym;
|
||||
Dzm = Distance(i,j,k) - Distance(i,j,k-1) + 0.5*Dzzm;
|
||||
*/
|
||||
Dxp = Distance(i+1,j,k);
|
||||
Dyp = Distance(i,j+1,k);
|
||||
Dzp = Distance(i,j,k+1);
|
||||
|
||||
Dxm = Distance(i-1,j,k);
|
||||
Dym = Distance(i,j-1,k);
|
||||
Dzm = Distance(i,j,k-1);
|
||||
|
||||
// Compute upwind derivatives for Godunov Hamiltonian
|
||||
if (sign < 0.0){
|
||||
if (Dxp > Dxm) Dx = Dxp - Distance(i,j,k) + 0.5*Dxxp;
|
||||
else Dx = Distance(i,j,k) - Dxm + 0.5*Dxxm;
|
||||
|
||||
if (Dyp > Dym) Dy = Dyp - Distance(i,j,k) + 0.5*Dyyp;
|
||||
else Dy = Distance(i,j,k) - Dym + 0.5*Dyym;
|
||||
|
||||
if (Dzp > Dzm) Dz = Dzp - Distance(i,j,k) + 0.5*Dzzp;
|
||||
else Dz = Distance(i,j,k) - Dzm + 0.5*Dzzm;
|
||||
}
|
||||
else{
|
||||
if (Dxp < Dxm) Dx = Dxp - Distance(i,j,k) + 0.5*Dxxp;
|
||||
else Dx = Distance(i,j,k) - Dxm + 0.5*Dxxm;
|
||||
|
||||
if (Dyp < Dym) Dy = Dyp - Distance(i,j,k) + 0.5*Dyyp;
|
||||
else Dy = Distance(i,j,k) - Dym + 0.5*Dyym;
|
||||
|
||||
if (Dzp < Dzm) Dz = Dzp - Distance(i,j,k) + 0.5*Dzzp;
|
||||
else Dz = Distance(i,j,k) - Dzm + 0.5*Dzzm;
|
||||
}
|
||||
|
||||
norm=sqrt(Dx*Dx+Dy*Dy+Dz*Dz);
|
||||
|
||||
Distance(i,j,k) += dt*sign*(1.0 - norm);
|
||||
LocalVar += dt*sign*(1.0 - norm);
|
||||
|
||||
if (fabs(dt*sign*(1.0 - norm)) > LocalMax)
|
||||
LocalMax = fabs(dt*sign*(1.0 - norm));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
MPI_Allreduce(&LocalVar,&GlobalVar,1,MPI_DOUBLE,MPI_SUM,Dm.comm);
|
||||
GlobalVar /= (Dm.Nx-2)*(Dm.Ny-2)*(Dm.Nz-2)*Dm.nprocx*Dm.nprocy*Dm.nprocz;
|
||||
count++;
|
||||
|
||||
if (count%50 == 0 && Dm.rank==0 )
|
||||
printf("Time=%i, Global variation=%f \n",count,GlobalVar);
|
||||
}
|
||||
|
||||
return GlobalVar;
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
// Initialize MPI
|
||||
@ -146,8 +291,13 @@ int main(int argc, char **argv)
|
||||
}
|
||||
MeanFilter(Averages.SDs);
|
||||
|
||||
double LocalVar, TotalVar;
|
||||
if (rank==0) printf("Initialized solid phase -- Converting to Signed Distance function \n");
|
||||
SSO(Averages.SDs,id,Dm,100);
|
||||
LocalVar = Eikonal(Averages.SDs,id,Dm,100);
|
||||
|
||||
MPI_Allreduce(&LocalVar,&TotalVar,1,MPI_DOUBLE,MPI_SUM,comm);
|
||||
TotalVar /= nprocs;
|
||||
if (rank==0) printf("Final variation in signed distance function %f \n",TotalVar);
|
||||
|
||||
sprintf(LocalRankFilename,"SignDist.%05i",rank);
|
||||
FILE *DIST = fopen(LocalRankFilename,"wb");
|
||||
|
Loading…
Reference in New Issue
Block a user