debugging componentLabel

This commit is contained in:
James E McClure 2015-07-13 09:42:44 -04:00
parent 94987c365f
commit 6b21967e57
2 changed files with 265 additions and 266 deletions

View File

@ -238,7 +238,7 @@ public:
} }
void Initialize(); void Initialize();
void SetupCubes(Domain &Dm); // void SetupCubes(Domain &Dm);
void UpdateMeshValues(); void UpdateMeshValues();
void UpdateSolid(); void UpdateSolid();
void ComputeDelPhi(); void ComputeDelPhi();
@ -334,7 +334,7 @@ void TwoPhase::Initialize(){
Jwn = Kwn = efawns = 0.0; Jwn = Kwn = efawns = 0.0;
trJwn = trawn = trRwn = 0.0; trJwn = trawn = trRwn = 0.0;
} }
/*
void TwoPhase::SetupCubes(Domain &Dm){ void TwoPhase::SetupCubes(Domain &Dm){
int i,j,k; int i,j,k;
kstart = 1; kstart = 1;
@ -354,7 +354,7 @@ void TwoPhase::SetupCubes(Domain &Dm){
} }
ncubes = nc; ncubes = nc;
} }
*/
void TwoPhase::UpdateSolid(){ void TwoPhase::UpdateSolid(){
Dm.CommunicateMeshHalo(SDs); Dm.CommunicateMeshHalo(SDs);
//........................................................................... //...........................................................................
@ -430,104 +430,104 @@ void TwoPhase::ComputeLocal(){
int i,j,k,n; int i,j,k,n;
int cube[8][3] = {{0,0,0},{1,0,0},{0,1,0},{1,1,0},{0,0,1},{1,0,1},{0,1,1},{1,1,1}}; int cube[8][3] = {{0,0,0},{1,0,0},{0,1,0},{1,1,0},{0,0,1},{1,0,1},{0,1,1},{1,1,1}};
for (int c=0;c<ncubes;c++){ for (k=1; k<Nz-1; k++){
// Get cube from the list for (j=1; j<Ny-1; j++){
i = cubeList(0,c); for (i=1; i<Nx-1; i++){
j = cubeList(1,c); //...........................................................................
k = cubeList(2,c); n_nw_pts=n_ns_pts=n_ws_pts=n_nws_pts=n_local_sol_pts=n_local_nws_pts=0;
//........................................................................... n_nw_tris=n_ns_tris=n_ws_tris=n_nws_seg=n_local_sol_tris=0;
n_nw_pts=n_ns_pts=n_ws_pts=n_nws_pts=n_local_sol_pts=n_local_nws_pts=0; //...........................................................................
n_nw_tris=n_ns_tris=n_ws_tris=n_nws_seg=n_local_sol_tris=0; // Compute volume averages
//........................................................................... for (int p=0;p<8;p++){
// Compute volume averages n = i+cube[p][0] + (j+cube[p][1])*Nx + (k+cube[p][2])*Nx*Ny;
for (int p=0;p<8;p++){ if ( Dm.id[n] != 0 ){
n = i+cube[p][0] + (j+cube[p][1])*Nx + (k+cube[p][2])*Nx*Ny; // 1-D index for this cube corner
if ( Dm.id[n] != 0 ){ // compute the norm of the gradient of the phase indicator field
// 1-D index for this cube corner // Compute the non-wetting phase volume contribution
// compute the norm of the gradient of the phase indicator field if ( Phase(i+cube[p][0],j+cube[p][1],k+cube[p][2]) > 0 ){
// Compute the non-wetting phase volume contribution nwp_volume += 0.125;
if ( Phase(i+cube[p][0],j+cube[p][1],k+cube[p][2]) > 0 ){ // velocity
nwp_volume += 0.125; van(0) += 0.125*Vel_x(n);
// velocity van(1) += 0.125*Vel_y(n);
van(0) += 0.125*Vel_x(n); van(2) += 0.125*Vel_z(n);
van(1) += 0.125*Vel_y(n); // volume the excludes the interfacial region
van(2) += 0.125*Vel_z(n); if (DelPhi(n) < 1e-4){
// volume the excludes the interfacial region vol_n += 0.125;
if (DelPhi(n) < 1e-4){ // pressure
vol_n += 0.125; pan += 0.125*Press(n);
// pressure
pan += 0.125*Press(n); }
}
else{
wp_volume += 0.125;
// velocity
vaw(0) += 0.125*Vel_x(n);
vaw(1) += 0.125*Vel_y(n);
vaw(2) += 0.125*Vel_z(n);
if (DelPhi(n) < 1e-4){
// volume the excludes the interfacial region
vol_w += 0.125;
// pressure
paw += 0.125*Press(n);
}
}
} }
} }
else{
wp_volume += 0.125; //...........................................................................
// velocity // Construct the interfaces and common curve
vaw(0) += 0.125*Vel_x(n); pmmc_ConstructLocalCube(SDs, SDn, solid_isovalue, fluid_isovalue,
vaw(1) += 0.125*Vel_y(n); nw_pts, nw_tris, Values, ns_pts, ns_tris, ws_pts, ws_tris,
vaw(2) += 0.125*Vel_z(n); local_nws_pts, nws_pts, nws_seg, local_sol_pts, local_sol_tris,
if (DelPhi(n) < 1e-4){ n_local_sol_tris, n_local_sol_pts, n_nw_pts, n_nw_tris,
// volume the excludes the interfacial region n_ws_pts, n_ws_tris, n_ns_tris, n_ns_pts, n_local_nws_pts, n_nws_pts, n_nws_seg,
vol_w += 0.125; i, j, k, Nx, Ny, Nz);
// pressure
paw += 0.125*Press(n);
// wn interface averages
} if (n_nw_pts > 0){
awn += pmmc_CubeSurfaceOrientation(Gwn,nw_pts,nw_tris,n_nw_tris);
Jwn += pmmc_CubeSurfaceInterpValue(CubeValues,MeanCurvature,nw_pts,nw_tris,Values,i,j,k,n_nw_pts,n_nw_tris);
Kwn += pmmc_CubeSurfaceInterpValue(CubeValues,GaussCurvature,nw_pts,nw_tris,Values,i,j,k,n_nw_pts,n_nw_tris);
// Integrate the trimmed mean curvature (hard-coded to use a distance of 4 pixels)
pmmc_CubeTrimSurfaceInterpValues(CubeValues,MeanCurvature,SDs,nw_pts,nw_tris,Values,DistanceValues,
i,j,k,n_nw_pts,n_nw_tris,trimdist,trawn,trJwn);
pmmc_CubeTrimSurfaceInterpInverseValues(CubeValues,MeanCurvature,SDs,nw_pts,nw_tris,Values,DistanceValues,
i,j,k,n_nw_pts,n_nw_tris,trimdist,dummy,trRwn);
// Compute the normal speed of the interface
pmmc_InterfaceSpeed(dPdt, SDn_x, SDn_y, SDn_z, CubeValues, nw_pts, nw_tris,
NormalVector, InterfaceSpeed, vawn, i, j, k, n_nw_pts, n_nw_tris);
} }
// wns common curve averages
if (n_local_nws_pts > 0){
efawns += pmmc_CubeContactAngle(CubeValues,Values,SDn_x,SDn_y,SDn_z,SDs_x,SDs_y,SDs_z,
local_nws_pts,i,j,k,n_local_nws_pts);
pmmc_CommonCurveSpeed(CubeValues, dPdt, vawns, SDn_x, SDn_y, SDn_z,SDs_x,SDs_y,SDs_z,
local_nws_pts,i,j,k,n_local_nws_pts);
pmmc_CurveCurvature(SDn, SDs, SDn_x, SDn_y, SDn_z, SDs_x, SDs_y,
SDs_z, KNwns_values, KGwns_values, KNwns, KGwns,
nws_pts, n_nws_pts, i, j, k);
lwns += pmmc_CubeCurveLength(local_nws_pts,n_local_nws_pts);
}
// Solid interface averagees
if (n_local_sol_tris > 0){
As += pmmc_CubeSurfaceArea(local_sol_pts,local_sol_tris,n_local_sol_tris);
// Compute the surface orientation and the interfacial area
ans += pmmc_CubeSurfaceOrientation(Gns,ns_pts,ns_tris,n_ns_tris);
aws += pmmc_CubeSurfaceOrientation(Gws,ws_pts,ws_tris,n_ws_tris);
}
//...........................................................................
} }
} }
//...........................................................................
// Construct the interfaces and common curve
pmmc_ConstructLocalCube(SDs, SDn, solid_isovalue, fluid_isovalue,
nw_pts, nw_tris, Values, ns_pts, ns_tris, ws_pts, ws_tris,
local_nws_pts, nws_pts, nws_seg, local_sol_pts, local_sol_tris,
n_local_sol_tris, n_local_sol_pts, n_nw_pts, n_nw_tris,
n_ws_pts, n_ws_tris, n_ns_tris, n_ns_pts, n_local_nws_pts, n_nws_pts, n_nws_seg,
i, j, k, Nx, Ny, Nz);
// wn interface averages
if (n_nw_pts > 0){
awn += pmmc_CubeSurfaceOrientation(Gwn,nw_pts,nw_tris,n_nw_tris);
Jwn += pmmc_CubeSurfaceInterpValue(CubeValues,MeanCurvature,nw_pts,nw_tris,Values,i,j,k,n_nw_pts,n_nw_tris);
Kwn += pmmc_CubeSurfaceInterpValue(CubeValues,GaussCurvature,nw_pts,nw_tris,Values,i,j,k,n_nw_pts,n_nw_tris);
// Integrate the trimmed mean curvature (hard-coded to use a distance of 4 pixels)
pmmc_CubeTrimSurfaceInterpValues(CubeValues,MeanCurvature,SDs,nw_pts,nw_tris,Values,DistanceValues,
i,j,k,n_nw_pts,n_nw_tris,trimdist,trawn,trJwn);
pmmc_CubeTrimSurfaceInterpInverseValues(CubeValues,MeanCurvature,SDs,nw_pts,nw_tris,Values,DistanceValues,
i,j,k,n_nw_pts,n_nw_tris,trimdist,dummy,trRwn);
// Compute the normal speed of the interface
pmmc_InterfaceSpeed(dPdt, SDn_x, SDn_y, SDn_z, CubeValues, nw_pts, nw_tris,
NormalVector, InterfaceSpeed, vawn, i, j, k, n_nw_pts, n_nw_tris);
}
// wns common curve averages
if (n_local_nws_pts > 0){
efawns += pmmc_CubeContactAngle(CubeValues,Values,SDn_x,SDn_y,SDn_z,SDs_x,SDs_y,SDs_z,
local_nws_pts,i,j,k,n_local_nws_pts);
pmmc_CommonCurveSpeed(CubeValues, dPdt, vawns, SDn_x, SDn_y, SDn_z,SDs_x,SDs_y,SDs_z,
local_nws_pts,i,j,k,n_local_nws_pts);
pmmc_CurveCurvature(SDn, SDs, SDn_x, SDn_y, SDn_z, SDs_x, SDs_y,
SDs_z, KNwns_values, KGwns_values, KNwns, KGwns,
nws_pts, n_nws_pts, i, j, k);
lwns += pmmc_CubeCurveLength(local_nws_pts,n_local_nws_pts);
}
// Solid interface averagees
if (n_local_sol_tris > 0){
As += pmmc_CubeSurfaceArea(local_sol_pts,local_sol_tris,n_local_sol_tris);
// Compute the surface orientation and the interfacial area
ans += pmmc_CubeSurfaceOrientation(Gns,ns_pts,ns_tris,n_ns_tris);
aws += pmmc_CubeSurfaceOrientation(Gws,ws_pts,ws_tris,n_ws_tris);
}
//...........................................................................
} }
} }
@ -549,168 +549,167 @@ void TwoPhase::ComponentAverages(){
printf("Number of non-wetting phase components is %i \n",NumberComponents_NWP); printf("Number of non-wetting phase components is %i \n",NumberComponents_NWP);
} }
for (int c=0;c<ncubes;c++){ for (k=1; k<Nz-1; k++){
// Get cube from the list for (j=1; j<Ny-1; j++){
i = cubeList(0,c); for (i=1; i<Nx-1; i++){
j = cubeList(1,c);
k = cubeList(2,c);
LabelWP=GetCubeLabel(i,j,k,Label_WP); LabelWP=GetCubeLabel(i,j,k,Label_WP);
LabelNWP=GetCubeLabel(i,j,k,Label_NWP); LabelNWP=GetCubeLabel(i,j,k,Label_NWP);
n_nw_pts=n_ns_pts=n_ws_pts=n_nws_pts=n_local_sol_pts=n_local_nws_pts=0; n_nw_pts=n_ns_pts=n_ws_pts=n_nws_pts=n_local_sol_pts=n_local_nws_pts=0;
n_nw_tris=n_ns_tris=n_ws_tris=n_nws_seg=n_local_sol_tris=0; n_nw_tris=n_ns_tris=n_ws_tris=n_nws_seg=n_local_sol_tris=0;
// Initialize the averaged quantities // Initialize the averaged quantities
awn = aws = ans = lwns = 0.0; awn = aws = ans = lwns = 0.0;
vawn(0) = vawn(1) = vawn(2) = 0.0; vawn(0) = vawn(1) = vawn(2) = 0.0;
vawns(0) = vawns(1) = vawns(2) = 0.0; vawns(0) = vawns(1) = vawns(2) = 0.0;
Gwn(0) = Gwn(1) = Gwn(2) = 0.0; Gwn(0) = Gwn(1) = Gwn(2) = 0.0;
Gwn(3) = Gwn(4) = Gwn(5) = 0.0; Gwn(3) = Gwn(4) = Gwn(5) = 0.0;
Gws(0) = Gws(1) = Gws(2) = 0.0; Gws(0) = Gws(1) = Gws(2) = 0.0;
Gws(3) = Gws(4) = Gws(5) = 0.0; Gws(3) = Gws(4) = Gws(5) = 0.0;
Gns(0) = Gns(1) = Gns(2) = 0.0; Gns(0) = Gns(1) = Gns(2) = 0.0;
Gns(3) = Gns(4) = Gns(5) = 0.0; Gns(3) = Gns(4) = Gns(5) = 0.0;
KGwns = KNwns = 0.0; KGwns = KNwns = 0.0;
Jwn = Kwn = efawns = 0.0; Jwn = Kwn = efawns = 0.0;
//........................................................................... //...........................................................................
//........................................................................... //...........................................................................
// Compute volume averages // Compute volume averages
for (int p=0;p<8;p++){ for (int p=0;p<8;p++){
n = i+cube[p][0] + (j+cube[p][1])*Nx + (k+cube[p][2])*Nx*Ny; n = i+cube[p][0] + (j+cube[p][1])*Nx + (k+cube[p][2])*Nx*Ny;
if ( Dm.id[n] != 0 ){ if ( Dm.id[n] != 0 ){
// 1-D index for this cube corner // 1-D index for this cube corner
// compute the norm of the gradient of the phase indicator field // compute the norm of the gradient of the phase indicator field
// Compute the non-wetting phase volume contribution // Compute the non-wetting phase volume contribution
if ( Phase(i+cube[p][0],j+cube[p][1],k+cube[p][2]) > 0 ){ if ( Phase(i+cube[p][0],j+cube[p][1],k+cube[p][2]) > 0 ){
// volume // volume
ComponentAverages_NWP(VOL,LabelNWP) += 0.125; ComponentAverages_NWP(VOL,LabelNWP) += 0.125;
// velocity // velocity
ComponentAverages_NWP(VX,LabelNWP) += 0.125*Vel_x(n); ComponentAverages_NWP(VX,LabelNWP) += 0.125*Vel_x(n);
ComponentAverages_NWP(VY,LabelNWP) += 0.125*Vel_y(n); ComponentAverages_NWP(VY,LabelNWP) += 0.125*Vel_y(n);
ComponentAverages_NWP(VZ,LabelNWP) += 0.125*Vel_z(n); ComponentAverages_NWP(VZ,LabelNWP) += 0.125*Vel_z(n);
// volume the for pressure averaging excludes the interfacial region // volume the for pressure averaging excludes the interfacial region
if (DelPhi(n) < 1e-4 ){ if (DelPhi(n) < 1e-4 ){
ComponentAverages_NWP(TRIMVOL,LabelNWP) += 0.125; ComponentAverages_NWP(TRIMVOL,LabelNWP) += 0.125;
// pressure // pressure
ComponentAverages_NWP(PRS,LabelNWP ) += 0.125*Press(n); ComponentAverages_NWP(PRS,LabelNWP ) += 0.125*Press(n);
}
}
else{
ComponentAverages_WP(VOL,LabelWP) += 0.125;
// velocity
ComponentAverages_WP(VX,LabelWP) += 0.125*Vel_x(n);
ComponentAverages_WP(VY,LabelWP)+= 0.125*Vel_y(n);
ComponentAverages_WP(VZ,LabelWP) += 0.125*Vel_z(n);
// volume the for pressure averaging excludes the interfacial region
if (DelPhi(n) < 1e-4){
ComponentAverages_WP(TRIMVOL,LabelWP) += 0.125;
ComponentAverages_WP(PRS,LabelWP) += 0.125*Press(n);
}
}
} }
} }
else{ //...........................................................................
ComponentAverages_WP(VOL,LabelWP) += 0.125; // Construct the interfaces and common curve
// velocity pmmc_ConstructLocalCube(SDs, SDn, solid_isovalue, fluid_isovalue,
ComponentAverages_WP(VX,LabelWP) += 0.125*Vel_x(n); nw_pts, nw_tris, Values, ns_pts, ns_tris, ws_pts, ws_tris,
ComponentAverages_WP(VY,LabelWP)+= 0.125*Vel_y(n); local_nws_pts, nws_pts, nws_seg, local_sol_pts, local_sol_tris,
ComponentAverages_WP(VZ,LabelWP) += 0.125*Vel_z(n); n_local_sol_tris, n_local_sol_pts, n_nw_pts, n_nw_tris,
// volume the for pressure averaging excludes the interfacial region n_ws_pts, n_ws_tris, n_ns_tris, n_ns_pts, n_local_nws_pts, n_nws_pts, n_nws_seg,
if (DelPhi(n) < 1e-4){ i, j, k, Nx, Ny, Nz);
ComponentAverages_WP(TRIMVOL,LabelWP) += 0.125;
ComponentAverages_WP(PRS,LabelWP) += 0.125*Press(n); //...........................................................................
} // wn interface averages
if (n_nw_pts>0 && LabelNWP >=0 ){
// Mean curvature
TempLocal = pmmc_CubeSurfaceInterpValue(CubeValues,MeanCurvature,nw_pts,nw_tris,Values,i,j,k,n_nw_pts,n_nw_tris);
ComponentAverages_WP(JWN,LabelWP) += TempLocal;
ComponentAverages_NWP(JWN,LabelNWP) += TempLocal;
// Gaussian curvature
TempLocal = pmmc_CubeSurfaceInterpValue(CubeValues,GaussCurvature,nw_pts,nw_tris,Values,i,j,k,n_nw_pts,n_nw_tris);
ComponentAverages_WP(KWN,LabelWP) += TempLocal;
ComponentAverages_NWP(KWN,LabelNWP) += TempLocal;
// Compute the normal speed of the interface
pmmc_InterfaceSpeed(dPdt, SDn_x, SDn_y, SDn_z, CubeValues, nw_pts, nw_tris,
NormalVector, InterfaceSpeed, vawn, i, j, k, n_nw_pts, n_nw_tris);
ComponentAverages_WP(VWNX,LabelWP) += vawn(0);
ComponentAverages_WP(VWNY,LabelWP) += vawn(1);
ComponentAverages_WP(VWNZ,LabelWP) += vawn(2);
ComponentAverages_NWP(VWNX,LabelNWP) += vawn(0);
ComponentAverages_NWP(VWNY,LabelNWP) += vawn(1);
ComponentAverages_NWP(VWNZ,LabelNWP) += vawn(2);
// Interfacial Area
TempLocal = pmmc_CubeSurfaceOrientation(Gwn,nw_pts,nw_tris,n_nw_tris);
ComponentAverages_WP(AWN,LabelWP) += TempLocal;
ComponentAverages_NWP(AWN,LabelNWP) += TempLocal;
ComponentAverages_WP(GWNXX,LabelWP) += Gwn(0);
ComponentAverages_WP(GWNYY,LabelWP) += Gwn(1);
ComponentAverages_WP(GWNZZ,LabelWP) += Gwn(2);
ComponentAverages_WP(GWNXY,LabelWP) += Gwn(3);
ComponentAverages_WP(GWNXZ,LabelWP) += Gwn(4);
ComponentAverages_WP(GWNYZ,LabelWP) += Gwn(5);
ComponentAverages_NWP(GWNXX,LabelNWP) += Gwn(0);
ComponentAverages_NWP(GWNYY,LabelNWP) += Gwn(1);
ComponentAverages_NWP(GWNZZ,LabelNWP) += Gwn(2);
ComponentAverages_NWP(GWNXY,LabelNWP) += Gwn(3);
ComponentAverages_NWP(GWNXZ,LabelNWP) += Gwn(4);
ComponentAverages_NWP(GWNYZ,LabelNWP) += Gwn(5);
} }
//...........................................................................
// Common curve averages
if (n_local_nws_pts > 0 && LabelNWP >=0 ){
// Contact angle
TempLocal = pmmc_CubeContactAngle(CubeValues,Values,SDn_x,SDn_y,SDn_z,SDs_x,SDs_y,SDs_z,
local_nws_pts,i,j,k,n_local_nws_pts);
ComponentAverages_WP(CWNS,LabelWP) += TempLocal;
ComponentAverages_NWP(CWNS,LabelNWP) += TempLocal;
// Kinematic velocity of the common curve
pmmc_CommonCurveSpeed(CubeValues, dPdt, vawns, SDn_x, SDn_y, SDn_z,SDs_x,SDs_y,SDs_z,
local_nws_pts,i,j,k,n_local_nws_pts);
ComponentAverages_WP(VWNSX,LabelWP) += vawns(0);
ComponentAverages_WP(VWNSY,LabelWP) += vawns(1);
ComponentAverages_WP(VWNSZ,LabelWP) += vawns(2);
ComponentAverages_NWP(VWNSX,LabelNWP) += vawns(0);
ComponentAverages_NWP(VWNSY,LabelNWP) += vawns(1);
ComponentAverages_NWP(VWNSZ,LabelNWP) += vawns(2);
// Curvature of the common curve
pmmc_CurveCurvature(SDn, SDs, SDn_x, SDn_y, SDn_z, SDs_x, SDs_y,
SDs_z, KNwns_values, KGwns_values, KNwns, KGwns,
nws_pts, n_nws_pts, i, j, k);
ComponentAverages_WP(KNWNS,LabelWP) += KNwns;
ComponentAverages_WP(KGWNS,LabelWP) += KGwns;
ComponentAverages_NWP(KNWNS,LabelNWP) += KNwns;
ComponentAverages_NWP(KGWNS,LabelNWP) += KGwns;
// Length of the common curve
TempLocal = pmmc_CubeCurveLength(local_nws_pts,n_local_nws_pts);
ComponentAverages_NWP(LWNS,LabelNWP) += TempLocal;
}
//...........................................................................
// Solid interface averages
if (n_local_sol_pts > 0 && LabelWP >=0 ){
As += pmmc_CubeSurfaceArea(local_sol_pts,local_sol_tris,n_local_sol_tris);
// Compute the surface orientation and the interfacial area
TempLocal = pmmc_CubeSurfaceOrientation(Gws,ws_pts,ws_tris,n_ws_tris);
ComponentAverages_WP(AS,LabelWP) += TempLocal;
}
if (n_ns_pts > 0 && LabelNWP >=0 ){
TempLocal = pmmc_CubeSurfaceOrientation(Gns,ns_pts,ns_tris,n_ns_tris);
ComponentAverages_NWP(AS,LabelNWP) += TempLocal;
}
//...........................................................................
} }
} }
//...........................................................................
// Construct the interfaces and common curve
pmmc_ConstructLocalCube(SDs, SDn, solid_isovalue, fluid_isovalue,
nw_pts, nw_tris, Values, ns_pts, ns_tris, ws_pts, ws_tris,
local_nws_pts, nws_pts, nws_seg, local_sol_pts, local_sol_tris,
n_local_sol_tris, n_local_sol_pts, n_nw_pts, n_nw_tris,
n_ws_pts, n_ws_tris, n_ns_tris, n_ns_pts, n_local_nws_pts, n_nws_pts, n_nws_seg,
i, j, k, Nx, Ny, Nz);
//...........................................................................
// wn interface averages
if (n_nw_pts>0 && LabelNWP >=0 ){
// Mean curvature
TempLocal = pmmc_CubeSurfaceInterpValue(CubeValues,MeanCurvature,nw_pts,nw_tris,Values,i,j,k,n_nw_pts,n_nw_tris);
ComponentAverages_WP(JWN,LabelWP) += TempLocal;
ComponentAverages_NWP(JWN,LabelNWP) += TempLocal;
// Gaussian curvature
TempLocal = pmmc_CubeSurfaceInterpValue(CubeValues,GaussCurvature,nw_pts,nw_tris,Values,i,j,k,n_nw_pts,n_nw_tris);
ComponentAverages_WP(KWN,LabelWP) += TempLocal;
ComponentAverages_NWP(KWN,LabelNWP) += TempLocal;
// Compute the normal speed of the interface
pmmc_InterfaceSpeed(dPdt, SDn_x, SDn_y, SDn_z, CubeValues, nw_pts, nw_tris,
NormalVector, InterfaceSpeed, vawn, i, j, k, n_nw_pts, n_nw_tris);
ComponentAverages_WP(VAWNX,LabelWP) += vawn(0);
ComponentAverages_WP(VAWNY,LabelWP) += vawn(1);
ComponentAverages_WP(VAWNZ,LabelWP) += vawn(2);
ComponentAverages_NWP(VAWNX,LabelNWP) += vawn(0);
ComponentAverages_NWP(VAWNY,LabelNWP) += vawn(1);
ComponentAverages_NWP(VAWNZ,LabelNWP) += vawn(2);
// Interfacial Area
TempLocal = pmmc_CubeSurfaceOrientation(Gwn,nw_pts,nw_tris,n_nw_tris);
ComponentAverages_WP(AWN,LabelWP) += TempLocal;
ComponentAverages_NWP(AWN,LabelNWP) += TempLocal;
ComponentAverages_WP(GWNXX,LabelWP) += Gwn(0);
ComponentAverages_WP(GWNYY,LabelWP) += Gwn(1);
ComponentAverages_WP(GWNZZ,LabelWP) += Gwn(2);
ComponentAverages_WP(GWNXY,LabelWP) += Gwn(3);
ComponentAverages_WP(GWNXZ,LabelWP) += Gwn(4);
ComponentAverages_WP(GWNYZ,LabelWP) += Gwn(5);
ComponentAverages_NWP(GWNXX,LabelNWP) += Gwn(0);
ComponentAverages_NWP(GWNYY,LabelNWP) += Gwn(1);
ComponentAverages_NWP(GWNZZ,LabelNWP) += Gwn(2);
ComponentAverages_NWP(GWNXY,LabelNWP) += Gwn(3);
ComponentAverages_NWP(GWNXZ,LabelNWP) += Gwn(4);
ComponentAverages_NWP(GWNYZ,LabelNWP) += Gwn(5);
}
//...........................................................................
// Common curve averages
if (n_local_nws_pts > 0 && LabelNWP >=0 ){
// Contact angle
TempLocal = pmmc_CubeContactAngle(CubeValues,Values,SDn_x,SDn_y,SDn_z,SDs_x,SDs_y,SDs_z,
local_nws_pts,i,j,k,n_local_nws_pts);
ComponentAverages_WP(CWNS,LabelWP) += TempLocal;
ComponentAverages_NWP(CWNS,LabelNWP) += TempLocal;
// Kinematic velocity of the common curve
pmmc_CommonCurveSpeed(CubeValues, dPdt, vawns, SDn_x, SDn_y, SDn_z,SDs_x,SDs_y,SDs_z,
local_nws_pts,i,j,k,n_local_nws_pts);
ComponentAverages_WP(VAWNSX,LabelWP) += vawns(0);
ComponentAverages_WP(VAWNSY,LabelWP) += vawns(1);
ComponentAverages_WP(VAWNSZ,LabelWP) += vawns(2);
ComponentAverages_NWP(VAWNSX,LabelNWP) += vawns(0);
ComponentAverages_NWP(VAWNSY,LabelNWP) += vawns(1);
ComponentAverages_NWP(VAWNSZ,LabelNWP) += vawns(2);
// Curvature of the common curve
pmmc_CurveCurvature(SDn, SDs, SDn_x, SDn_y, SDn_z, SDs_x, SDs_y,
SDs_z, KNwns_values, KGwns_values, KNwns, KGwns,
nws_pts, n_nws_pts, i, j, k);
ComponentAverages_WP(KNWNS,LabelWP) += KNwns;
ComponentAverages_WP(KGWNS,LabelWP) += KGwns;
ComponentAverages_NWP(KNWNS,LabelNWP) += KNwns;
ComponentAverages_NWP(KGWNS,LabelNWP) += KGwns;
// Length of the common curve
TempLocal = pmmc_CubeCurveLength(local_nws_pts,n_local_nws_pts);
ComponentAverages_NWP(LWNS,LabelNWP) += TempLocal;
}
//...........................................................................
// Solid interface averages
if (n_local_sol_pts > 0 && LabelWP >=0 ){
As += pmmc_CubeSurfaceArea(local_sol_pts,local_sol_tris,n_local_sol_tris);
// Compute the surface orientation and the interfacial area
TempLocal = pmmc_CubeSurfaceOrientation(Gws,ws_pts,ws_tris,n_ws_tris);
ComponentAverages_WP(AS,LabelWP) += TempLocal;
}
if (n_ns_pts > 0 && LabelNWP >=0 ){
TempLocal = pmmc_CubeSurfaceOrientation(Gns,ns_pts,ns_tris,n_ns_tris);
ComponentAverages_NWP(AS,LabelNWP) += TempLocal;
}
//...........................................................................
} }
} }
@ -850,12 +849,12 @@ void TwoPhase::SortBlobs(){
//printf("-----------------------------------------------\n"); //printf("-----------------------------------------------\n");
int TempLabel,a,aa,bb,i,j,k,idx; int TempLabel,a,aa,bb,i,j,k,idx;
double TempValue; double TempValue;
IntArray OldLabel(nblobs_global); IntArray OldLabel(NumberComponents_NWP);
for (a=0; a<nblobs_global; a++) OldLabel(a) = a; for (a=0; a<NumberComponents_NWP; a++) OldLabel(a) = a;
// Sort the blob averages based on volume // Sort the blob averages based on volume
for (aa=0; aa<nblobs_global-1; aa++){ for (aa=0; aa<nblobs_global-1; aa++){
for ( bb=aa+1; bb<nblobs_global; bb++){ for ( bb=aa+1; bb<nblobs_global; bb++){
if (BlobAverages(0,aa) < BlobAverages(0,bb)){ if (ComponentAverages_NWP(0,aa) < ComponentAverages_NWP(0,bb)){
// Exchange location of blobs aa and bb // Exchange location of blobs aa and bb
//printf("Switch blob %i with %i \n", OldLabel(aa),OldLabel(bb)); //printf("Switch blob %i with %i \n", OldLabel(aa),OldLabel(bb));
// switch the label // switch the label
@ -864,16 +863,16 @@ void TwoPhase::SortBlobs(){
OldLabel(aa) = TempLabel; OldLabel(aa) = TempLabel;
// switch the averages // switch the averages
for (idx=0; idx<BLOB_AVG_COUNT; idx++){ for (idx=0; idx<BLOB_AVG_COUNT; idx++){
TempValue = BlobAverages(idx,bb); TempValue = ComponentAverages_NWP(idx,bb);
BlobAverages(idx,bb) = BlobAverages(idx,aa); ComponentAverages_NWP(idx,bb) = ComponentAverages_NWP(idx,aa);
BlobAverages(idx,aa) = TempValue; ComponentAverages_NWP(idx,aa) = TempValue;
} }
} }
} }
} }
IntArray NewLabel(nblobs_global); IntArray NewLabel(NumberComponents_NWP);
for (aa=0; aa<nblobs_global; aa++){ for (aa=0; aa<NumberComponents_NWP; aa++){
// Match the new label for original blob aa // Match the new label for original blob aa
bb=0; bb=0;
while (OldLabel(bb) != aa) bb++; while (OldLabel(bb) != aa) bb++;
@ -885,9 +884,9 @@ void TwoPhase::SortBlobs(){
for (k=0; k<Nz; k++){ for (k=0; k<Nz; k++){
for (j=0; j<Ny; j++){ for (j=0; j<Ny; j++){
for (i=0; i<Nx; i++){ for (i=0; i<Nx; i++){
if (BlobLabel(i,j,k) > -1){ if (Label_NWP(i,j,k) > -1){
TempLabel = NewLabel(BlobLabel(i,j,k)); TempLabel = NewLabel(Label_NWP(i,j,k));
BlobLabel(i,j,k) = TempLabel; Label_NWP(i,j,k) = TempLabel;
} }
} }
} }

View File

@ -67,11 +67,11 @@ inline void WriteBlobStates(TwoPhase TCAT, double D, double porosity){
pw = TCAT.paw_global; pw = TCAT.paw_global;
aws = TCAT.aws; aws = TCAT.aws;
// Compute the averages over the entire non-wetting phase // Compute the averages over the entire non-wetting phase
printf("Writing blobstates.tcat for %i components \n",TCAT.nblobs_global); printf("Writing blobstates.tcat for %i components \n",TCAT.NumberComponents_NWP);
FILE *BLOBSTATES; FILE *BLOBSTATES;
BLOBSTATES = fopen("./blobstates.tcat","w"); BLOBSTATES = fopen("./blobstates.tcat","w");
if (BLOBSTATES==NULL) ERROR("Cannot open blobstates.tcat for writing"); if (BLOBSTATES==NULL) ERROR("Cannot open blobstates.tcat for writing");
for (a=0; a<TCAT.nblobs_global; a++){ for (a=0; a<TCAT.NumberComponents_NWP; a++){
vol_n += TCAT.ComponentAverages_NWP(0,a); vol_n += TCAT.ComponentAverages_NWP(0,a);
pan += TCAT.ComponentAverages_NWP(2,a)*TCAT.ComponentAverages_NWP(0,a); pan += TCAT.ComponentAverages_NWP(2,a)*TCAT.ComponentAverages_NWP(0,a);
awn += TCAT.ComponentAverages_NWP(3,a); awn += TCAT.ComponentAverages_NWP(3,a);
@ -87,7 +87,7 @@ inline void WriteBlobStates(TwoPhase TCAT, double D, double porosity){
// Compute the pore voume (sum of wetting an non-wetting phase volumes) // Compute the pore voume (sum of wetting an non-wetting phase volumes)
PoreVolume=TCAT.wp_volume_global + nwp_volume; PoreVolume=TCAT.wp_volume_global + nwp_volume;
// Subtract off portions of non-wetting phase in order of size // Subtract off portions of non-wetting phase in order of size
for (a=TCAT.nblobs_global-1; a>0; a--){ for (a=TCAT.NumberComponents_NWP-1; a>0; a--){
// Subtract the features one-by-one // Subtract the features one-by-one
vol_n -= TCAT.ComponentAverages_NWP(0,a); vol_n -= TCAT.ComponentAverages_NWP(0,a);
pan -= TCAT.ComponentAverages_NWP(2,a)*TCAT.ComponentAverages_NWP(0,a); pan -= TCAT.ComponentAverages_NWP(2,a)*TCAT.ComponentAverages_NWP(0,a);
@ -356,11 +356,11 @@ int main(int argc, char **argv)
pw = Averages.paw_global; pw = Averages.paw_global;
aws = Averages.aws; aws = Averages.aws;
// Compute the averages over the entire non-wetting phase // Compute the averages over the entire non-wetting phase
printf("Writing blobstates.tcat for %i components \n",Averages.nblobs_global); printf("Writing blobstates.tcat for %i components \n",Averages.NumberComponents_NWP);
FILE *BLOBSTATES; FILE *BLOBSTATES;
BLOBSTATES = fopen("./blobstates.tcat","w"); BLOBSTATES = fopen("./blobstates.tcat","w");
if (BLOBSTATES==NULL) ERROR("Cannot open blobstates.tcat for writing"); if (BLOBSTATES==NULL) ERROR("Cannot open blobstates.tcat for writing");
for (a=0; a<Averages.nblobs_global; a++){ for (a=0; a<Averages.NumberComponents_NWP; a++){
vol_n += Averages.ComponentAverages_NWP(0,a); vol_n += Averages.ComponentAverages_NWP(0,a);
pan += Averages.ComponentAverages_NWP(2,a)*Averages.ComponentAverages_NWP(0,a); pan += Averages.ComponentAverages_NWP(2,a)*Averages.ComponentAverages_NWP(0,a);
awn += Averages.ComponentAverages_NWP(3,a); awn += Averages.ComponentAverages_NWP(3,a);
@ -376,7 +376,7 @@ int main(int argc, char **argv)
// Compute the pore voume (sum of wetting an non-wetting phase volumes) // Compute the pore voume (sum of wetting an non-wetting phase volumes)
PoreVolume=Averages.wp_volume_global + nwp_volume; PoreVolume=Averages.wp_volume_global + nwp_volume;
// Subtract off portions of non-wetting phase in order of size // Subtract off portions of non-wetting phase in order of size
for (a=Averages.nblobs_global-1; a>0; a--){ for (a=Averages.NumberComponents_NWP-1; a>0; a--){
// Subtract the features one-by-one // Subtract the features one-by-one
vol_n -= Averages.ComponentAverages_NWP(0,a); vol_n -= Averages.ComponentAverages_NWP(0,a);
pan -= Averages.ComponentAverages_NWP(2,a)*Averages.ComponentAverages_NWP(0,a); pan -= Averages.ComponentAverages_NWP(2,a)*Averages.ComponentAverages_NWP(0,a);