debugging
This commit is contained in:
parent
c4672a828b
commit
6c1ed15cda
@ -815,141 +815,139 @@ void ScaLBL_ColorModel::Run(){
|
|||||||
color_db->putVector<double>("F",{Fx,Fy,Fz});
|
color_db->putVector<double>("F",{Fx,Fy,Fz});
|
||||||
}
|
}
|
||||||
if ( isSteady ){
|
if ( isSteady ){
|
||||||
if (SET_CAPILLARY_NUMBER && fabs(capillary_number - Ca) / capillary_number > 2.0){
|
if (SET_CAPILLARY_NUMBER && fabs(capillary_number - Ca) / capillary_number > 2.0){
|
||||||
// reject steady points if they don't match the Ca well enough
|
// reject steady points if they don't match the Ca well enough
|
||||||
double RESCALE_FORCE_FACTOR = capillary_number / Ca;
|
double RESCALE_FORCE_FACTOR = capillary_number / Ca;
|
||||||
if (RESCALE_FORCE_FACTOR > 2.0) RESCALE_FORCE_FACTOR = 2.0;
|
if (RESCALE_FORCE_FACTOR > 2.0) RESCALE_FORCE_FACTOR = 2.0;
|
||||||
if (RESCALE_FORCE_FACTOR < 0.5) RESCALE_FORCE_FACTOR = 0.5;
|
if (RESCALE_FORCE_FACTOR < 0.5) RESCALE_FORCE_FACTOR = 0.5;
|
||||||
Fx *= RESCALE_FORCE_FACTOR;
|
Fx *= RESCALE_FORCE_FACTOR;
|
||||||
Fy *= RESCALE_FORCE_FACTOR;
|
Fy *= RESCALE_FORCE_FACTOR;
|
||||||
Fz *= RESCALE_FORCE_FACTOR;
|
Fz *= RESCALE_FORCE_FACTOR;
|
||||||
force_mag = sqrt(Fx*Fx+Fy*Fy+Fz*Fz);
|
force_mag = sqrt(Fx*Fx+Fy*Fy+Fz*Fz);
|
||||||
if (force_mag > 1e-3){
|
if (force_mag > 1e-3){
|
||||||
Fx *= 1e-3/force_mag; // impose ceiling for stability
|
Fx *= 1e-3/force_mag; // impose ceiling for stability
|
||||||
Fy *= 1e-3/force_mag;
|
Fy *= 1e-3/force_mag;
|
||||||
Fz *= 1e-3/force_mag;
|
Fz *= 1e-3/force_mag;
|
||||||
}
|
}
|
||||||
if (rank == 0) printf(" -- adjust force by factor %f \n ",capillary_number / Ca);
|
if (rank == 0) printf(" -- adjust force by factor %f \n ",capillary_number / Ca);
|
||||||
Averages->SetParams(rhoA,rhoB,tauA,tauB,Fx,Fy,Fz,alpha,beta);
|
Averages->SetParams(rhoA,rhoB,tauA,tauB,Fx,Fy,Fz,alpha,beta);
|
||||||
color_db->putVector<double>("F",{Fx,Fy,Fz});
|
color_db->putVector<double>("F",{Fx,Fy,Fz});
|
||||||
// simulate the point again with new force
|
// simulate the point again with new force
|
||||||
CURRENT_STEADY_TIMESTEPS=0;
|
CURRENT_STEADY_TIMESTEPS=0;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
MORPH_ADAPT = true;
|
||||||
|
CURRENT_MORPH_TIMESTEPS=0;
|
||||||
|
delta_volume_target = Dm->Volume*volA *morph_delta; // set target volume change
|
||||||
|
//****** ENDPOINT ADAPTATION ********/
|
||||||
|
double krA_TMP= fabs(muA*flow_rate_A / force_mag);
|
||||||
|
double krB_TMP= fabs(muB*flow_rate_B / force_mag);
|
||||||
|
log_krA = log(krA_TMP);
|
||||||
|
if (krA_TMP < 0.0){
|
||||||
|
// cannot do endpoint adaptation if kr is negative
|
||||||
|
log_krA = log_krA_prev;
|
||||||
|
}
|
||||||
|
else if (krA_TMP < krB_TMP && morph_delta > 0.0){
|
||||||
|
/** morphological target based on relative permeability for A **/
|
||||||
|
log_krA_target = log(KRA_MORPH_FACTOR*(krA_TMP));
|
||||||
|
slope_krA_volume = (log_krA - log_krA_prev)/(Dm->Volume*(volA - volA_prev));
|
||||||
|
delta_volume_target=min(delta_volume_target,Dm->Volume*(volA+(log_krA_target - log_krA)/slope_krA_volume));
|
||||||
|
if (rank==0){
|
||||||
|
printf(" Enabling endpoint adaptation: krA = %f, krB = %f \n",krA_TMP,krB_TMP);
|
||||||
|
printf(" log(kr)=%f, volume=%f, TARGET log(kr)=%f, volume change=%f \n",log_krA, volA, log_krA_target, delta_volume_target/(volA*Dm->Volume));
|
||||||
}
|
}
|
||||||
else {
|
}
|
||||||
MORPH_ADAPT = true;
|
log_krA_prev = log_krA;
|
||||||
CURRENT_MORPH_TIMESTEPS=0;
|
volA_prev = volA;
|
||||||
delta_volume_target = Dm->Volume*volA *morph_delta; // set target volume change
|
//******************************** **/
|
||||||
//****** ENDPOINT ADAPTATION ********/
|
/** compute averages & write data **/
|
||||||
double krA_TMP= fabs(muA*flow_rate_A / force_mag);
|
Averages->Full();
|
||||||
double krB_TMP= fabs(muB*flow_rate_B / force_mag);
|
Averages->Write(timestep);
|
||||||
log_krA = log(krA_TMP);
|
analysis.WriteVisData(timestep, current_db, *Averages, Phi, Pressure, Velocity, fq, Den );
|
||||||
if (krA_TMP < 0.0){
|
analysis.finish();
|
||||||
// cannot do endpoint adaptation if kr is negative
|
|
||||||
log_krA = log_krA_prev;
|
|
||||||
}
|
|
||||||
else if (krA_TMP < krB_TMP && morph_delta > 0.0){
|
|
||||||
/** morphological target based on relative permeability for A **/
|
|
||||||
log_krA_target = log(KRA_MORPH_FACTOR*(krA_TMP));
|
|
||||||
slope_krA_volume = (log_krA - log_krA_prev)/(Dm->Volume*(volA - volA_prev));
|
|
||||||
delta_volume_target=min(delta_volume_target,Dm->Volume*(volA+(log_krA_target - log_krA)/slope_krA_volume));
|
|
||||||
if (rank==0){
|
|
||||||
printf(" Enabling endpoint adaptation: krA = %f, krB = %f \n",krA_TMP,krB_TMP);
|
|
||||||
printf(" log(kr)=%f, volume=%f, TARGET log(kr)=%f, volume change=%f \n",log_krA, volA, log_krA_target, delta_volume_target/(volA*Dm->Volume));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
log_krA_prev = log_krA;
|
|
||||||
volA_prev = volA;
|
|
||||||
//******************************** **/
|
|
||||||
/** compute averages & write data **/
|
|
||||||
Averages->Full();
|
|
||||||
Averages->Write(timestep);
|
|
||||||
analysis.WriteVisData(timestep, current_db, *Averages, Phi, Pressure, Velocity, fq, Den );
|
|
||||||
analysis.finish();
|
|
||||||
|
|
||||||
if (rank==0){
|
if (rank==0){
|
||||||
printf("** WRITE STEADY POINT *** ");
|
printf("** WRITE STEADY POINT *** ");
|
||||||
printf("Ca = %f, (previous = %f) \n",Ca,Ca_previous);
|
printf("Ca = %f, (previous = %f) \n",Ca,Ca_previous);
|
||||||
double h = Dm->voxel_length;
|
double h = Dm->voxel_length;
|
||||||
// pressures
|
// pressures
|
||||||
double pA = Averages->gnb.p;
|
double pA = Averages->gnb.p;
|
||||||
double pB = Averages->gwb.p;
|
double pB = Averages->gwb.p;
|
||||||
double pAc = Averages->gnc.p;
|
double pAc = Averages->gnc.p;
|
||||||
double pBc = Averages->gwc.p;
|
double pBc = Averages->gwc.p;
|
||||||
double pAB = (pA-pB)/(h*5.796*alpha);
|
double pAB = (pA-pB)/(h*5.796*alpha);
|
||||||
double pAB_connected = (pAc-pBc)/(h*5.796*alpha);
|
double pAB_connected = (pAc-pBc)/(h*5.796*alpha);
|
||||||
// connected contribution
|
// connected contribution
|
||||||
double Vol_nc = Averages->gnc.V/Dm->Volume;
|
double Vol_nc = Averages->gnc.V/Dm->Volume;
|
||||||
double Vol_wc = Averages->gwc.V/Dm->Volume;
|
double Vol_wc = Averages->gwc.V/Dm->Volume;
|
||||||
double Vol_nd = Averages->gnd.V/Dm->Volume;
|
double Vol_nd = Averages->gnd.V/Dm->Volume;
|
||||||
double Vol_wd = Averages->gwd.V/Dm->Volume;
|
double Vol_wd = Averages->gwd.V/Dm->Volume;
|
||||||
double Mass_n = Averages->gnc.M + Averages->gnd.M;
|
double Mass_n = Averages->gnc.M + Averages->gnd.M;
|
||||||
double Mass_w = Averages->gwc.M + Averages->gwd.M;
|
double Mass_w = Averages->gwc.M + Averages->gwd.M;
|
||||||
double vAc_x = Averages->gnc.Px/Mass_n;
|
double vAc_x = Averages->gnc.Px/Mass_n;
|
||||||
double vAc_y = Averages->gnc.Py/Mass_n;
|
double vAc_y = Averages->gnc.Py/Mass_n;
|
||||||
double vAc_z = Averages->gnc.Pz/Mass_n;
|
double vAc_z = Averages->gnc.Pz/Mass_n;
|
||||||
double vBc_x = Averages->gwc.Px/Mass_w;
|
double vBc_x = Averages->gwc.Px/Mass_w;
|
||||||
double vBc_y = Averages->gwc.Py/Mass_w;
|
double vBc_y = Averages->gwc.Py/Mass_w;
|
||||||
double vBc_z = Averages->gwc.Pz/Mass_w;
|
double vBc_z = Averages->gwc.Pz/Mass_w;
|
||||||
// disconnected contribution
|
// disconnected contribution
|
||||||
double vAd_x = Averages->gnd.Px/Mass_n;
|
double vAd_x = Averages->gnd.Px/Mass_n;
|
||||||
double vAd_y = Averages->gnd.Py/Mass_n;
|
double vAd_y = Averages->gnd.Py/Mass_n;
|
||||||
double vAd_z = Averages->gnd.Pz/Mass_n;
|
double vAd_z = Averages->gnd.Pz/Mass_n;
|
||||||
double vBd_x = Averages->gwd.Px/Mass_w;
|
double vBd_x = Averages->gwd.Px/Mass_w;
|
||||||
double vBd_y = Averages->gwd.Py/Mass_w;
|
double vBd_y = Averages->gwd.Py/Mass_w;
|
||||||
double vBd_z = Averages->gwd.Pz/Mass_w;
|
double vBd_z = Averages->gwd.Pz/Mass_w;
|
||||||
|
|
||||||
double flow_rate_A_connected = Vol_nc*(vAc_x*dir_x + vAc_y*dir_y + vAc_z*dir_z);
|
double flow_rate_A_connected = Vol_nc*(vAc_x*dir_x + vAc_y*dir_y + vAc_z*dir_z);
|
||||||
double flow_rate_B_connected = Vol_wc*(vBc_x*dir_x + vBc_y*dir_y + vBc_z*dir_z);
|
double flow_rate_B_connected = Vol_wc*(vBc_x*dir_x + vBc_y*dir_y + vBc_z*dir_z);
|
||||||
double flow_rate_A_disconnected = (Vol_nd)*(vAd_x*dir_x + vAd_y*dir_y + vAd_z*dir_z);
|
double flow_rate_A_disconnected = (Vol_nd)*(vAd_x*dir_x + vAd_y*dir_y + vAd_z*dir_z);
|
||||||
double flow_rate_B_disconnected = (Vol_wd)*(vBd_x*dir_x + vBd_y*dir_y + vBd_z*dir_z);
|
double flow_rate_B_disconnected = (Vol_wd)*(vBd_x*dir_x + vBd_y*dir_y + vBd_z*dir_z);
|
||||||
|
|
||||||
double kAeff_connected = h*h*muA*flow_rate_A_connected/(force_mag);
|
double kAeff_connected = h*h*muA*flow_rate_A_connected/(force_mag);
|
||||||
double kBeff_connected = h*h*muB*flow_rate_B_connected/(force_mag);
|
double kBeff_connected = h*h*muB*flow_rate_B_connected/(force_mag);
|
||||||
|
|
||||||
double kAeff_disconnected = h*h*muA*flow_rate_A_disconnected/(force_mag);
|
double kAeff_disconnected = h*h*muA*flow_rate_A_disconnected/(force_mag);
|
||||||
double kBeff_disconnected = h*h*muB*flow_rate_B_disconnected/(force_mag);
|
double kBeff_disconnected = h*h*muB*flow_rate_B_disconnected/(force_mag);
|
||||||
|
|
||||||
double kAeff = h*h*muA*(flow_rate_A)/(force_mag);
|
double kAeff = h*h*muA*(flow_rate_A)/(force_mag);
|
||||||
double kBeff = h*h*muB*(flow_rate_B)/(force_mag);
|
double kBeff = h*h*muB*(flow_rate_B)/(force_mag);
|
||||||
|
|
||||||
double viscous_pressure_drop = (rhoA*volA + rhoB*volB)*force_mag;
|
double viscous_pressure_drop = (rhoA*volA + rhoB*volB)*force_mag;
|
||||||
double Mobility = muA/muB;
|
double Mobility = muA/muB;
|
||||||
|
|
||||||
bool WriteHeader=false;
|
bool WriteHeader=false;
|
||||||
FILE * kr_log_file = fopen("relperm.csv","r");
|
FILE * kr_log_file = fopen("relperm.csv","r");
|
||||||
if (kr_log_file != NULL)
|
if (kr_log_file != NULL)
|
||||||
fclose(kr_log_file);
|
fclose(kr_log_file);
|
||||||
else
|
else
|
||||||
WriteHeader=true;
|
WriteHeader=true;
|
||||||
kr_log_file = fopen("relperm.csv","a");
|
kr_log_file = fopen("relperm.csv","a");
|
||||||
if (WriteHeader)
|
if (WriteHeader)
|
||||||
fprintf(kr_log_file,"timesteps sat.water eff.perm.oil eff.perm.water eff.perm.oil.connected eff.perm.water.connected eff.perm.oil.disconnected eff.perm.water.disconnected cap.pressure cap.pressure.connected pressure.drop Ca M\n");
|
fprintf(kr_log_file,"timesteps sat.water eff.perm.oil eff.perm.water eff.perm.oil.connected eff.perm.water.connected eff.perm.oil.disconnected eff.perm.water.disconnected cap.pressure cap.pressure.connected pressure.drop Ca M\n");
|
||||||
|
|
||||||
fprintf(kr_log_file,"%i %.5g %.5g %.5g %.5g %.5g %.5g %.5g %.5g %.5g %.5g %.5g %.5g\n",CURRENT_STEADY_TIMESTEPS,current_saturation,kAeff,kBeff,kAeff_connected,kBeff_connected,kAeff_disconnected,kBeff_disconnected,pAB,pAB_connected,viscous_pressure_drop,Ca,Mobility);
|
fprintf(kr_log_file,"%i %.5g %.5g %.5g %.5g %.5g %.5g %.5g %.5g %.5g %.5g %.5g %.5g\n",CURRENT_STEADY_TIMESTEPS,current_saturation,kAeff,kBeff,kAeff_connected,kBeff_connected,kAeff_disconnected,kBeff_disconnected,pAB,pAB_connected,viscous_pressure_drop,Ca,Mobility);
|
||||||
fclose(kr_log_file);
|
fclose(kr_log_file);
|
||||||
|
|
||||||
printf(" Measured capillary number %f \n ",Ca);
|
printf(" Measured capillary number %f \n ",Ca);
|
||||||
}
|
}
|
||||||
if (SET_CAPILLARY_NUMBER ){
|
if (SET_CAPILLARY_NUMBER ){
|
||||||
double RESCALE_FORCE_FACTOR = capillary_number / Ca;
|
double RESCALE_FORCE_FACTOR = capillary_number / Ca;
|
||||||
if (RESCALE_FORCE_FACTOR > 2.0) RESCALE_FORCE_FACTOR = 2.0;
|
if (RESCALE_FORCE_FACTOR > 2.0) RESCALE_FORCE_FACTOR = 2.0;
|
||||||
if (RESCALE_FORCE_FACTOR < 0.5) RESCALE_FORCE_FACTOR = 0.5;
|
if (RESCALE_FORCE_FACTOR < 0.5) RESCALE_FORCE_FACTOR = 0.5;
|
||||||
Fx *= RESCALE_FORCE_FACTOR;
|
Fx *= RESCALE_FORCE_FACTOR;
|
||||||
Fy *= RESCALE_FORCE_FACTOR;
|
Fy *= RESCALE_FORCE_FACTOR;
|
||||||
Fz *= RESCALE_FORCE_FACTOR;
|
Fz *= RESCALE_FORCE_FACTOR;
|
||||||
force_mag = sqrt(Fx*Fx+Fy*Fy+Fz*Fz);
|
force_mag = sqrt(Fx*Fx+Fy*Fy+Fz*Fz);
|
||||||
if (force_mag > 1e-3){
|
if (force_mag > 1e-3){
|
||||||
Fx *= 1e-3/force_mag; // impose ceiling for stability
|
Fx *= 1e-3/force_mag; // impose ceiling for stability
|
||||||
Fy *= 1e-3/force_mag;
|
Fy *= 1e-3/force_mag;
|
||||||
Fz *= 1e-3/force_mag;
|
Fz *= 1e-3/force_mag;
|
||||||
}
|
|
||||||
if (rank == 0) printf(" -- adjust force by factor %f \n ",capillary_number / Ca);
|
|
||||||
Averages->SetParams(rhoA,rhoB,tauA,tauB,Fx,Fy,Fz,alpha,beta);
|
|
||||||
color_db->putVector<double>("F",{Fx,Fy,Fz});
|
|
||||||
}
|
|
||||||
|
|
||||||
CURRENT_STEADY_TIMESTEPS = 0;
|
|
||||||
}
|
}
|
||||||
|
if (rank == 0) printf(" -- adjust force by factor %f \n ",capillary_number / Ca);
|
||||||
|
Averages->SetParams(rhoA,rhoB,tauA,tauB,Fx,Fy,Fz,alpha,beta);
|
||||||
|
color_db->putVector<double>("F",{Fx,Fy,Fz});
|
||||||
|
}
|
||||||
|
}
|
||||||
else{
|
else{
|
||||||
if (rank==0){
|
if (rank==0){
|
||||||
printf("** Continue to simulate steady *** \n ");
|
printf("** Continue to simulate steady *** \n ");
|
||||||
|
Loading…
Reference in New Issue
Block a user