Changed scope of file input so that once VOLUME is distributed rank 0 no longer holds the full array in lbpm_uCT_pp

This commit is contained in:
James E McClure 2016-04-24 11:08:16 -04:00
parent ecbd7d5eae
commit 6de7515b60

View File

@ -73,10 +73,10 @@ inline void Med3D(Array<float> &Input, Array<float> &Output){
inline void Sparsify(Array<float> &Fine, Array<float> &Coarse){
// Create sparse version of Fine mesh to reduce filtering costs
int i,j,k,ii,jj,kk;
float x,y,z;
int i,j,k,ii,jj,kk;
float x,y,z;
// Fine mesh
// Fine mesh
int Nx = int(Fine.size(0));
int Ny = int(Fine.size(1));
int Nz = int(Fine.size(2));
@ -115,8 +115,8 @@ inline void Sparsify(Array<float> &Fine, Array<float> &Coarse){
float v8 = Fine(ii+1,jj+1,kk+1);
Coarse(i,j,k)=0.125*(v1+v2+v3+v4+v5+v6+v7+v8);
//Coarse(i,j,k) = Fine(ii,jj,kk);
//Coarse(i,j,k) = Fine(ii,jj,kk);
}
}
@ -127,12 +127,12 @@ inline void InterpolateMesh(Array<float> &Coarse, Array<float> &Fine){
// Interpolate values from a Coarse mesh to a fine one
// This routine assumes that the mesh boundaries match
int i,j,k,ii,jj,kk;
float x,y,z;
Array<float> Corners(2,2,2);
float a,b,c,d,e,f,g,h;
int i,j,k,ii,jj,kk;
float x,y,z;
Array<float> Corners(2,2,2);
float a,b,c,d,e,f,g,h;
// Fine mesh
// Fine mesh
int Nx = int(Fine.size(0));
int Ny = int(Fine.size(1));
int Nz = int(Fine.size(2));
@ -215,76 +215,76 @@ inline float minmod(float &a, float &b){
inline float Eikonal3D(Array<float> &Distance, Array<char> &ID, Domain &Dm, int timesteps){
/*
* This routine converts the data in the Distance array to a signed distance
* by solving the equation df/dt = sign(1-|grad f|), where Distance provides
* the values of f on the mesh associated with domain Dm
* It has been tested with segmented data initialized to values [-1,1]
* and will converge toward the signed distance to the surface bounding the associated phases
*
* Reference:
* Min C (2010) On reinitializing level set functions, Journal of Computational Physics 229
*/
/*
* This routine converts the data in the Distance array to a signed distance
* by solving the equation df/dt = sign(1-|grad f|), where Distance provides
* the values of f on the mesh associated with domain Dm
* It has been tested with segmented data initialized to values [-1,1]
* and will converge toward the signed distance to the surface bounding the associated phases
*
* Reference:
* Min C (2010) On reinitializing level set functions, Journal of Computational Physics 229
*/
int i,j,k;
float dt=0.1;
float Dx,Dy,Dz;
float Dxp,Dxm,Dyp,Dym,Dzp,Dzm;
float Dxxp,Dxxm,Dyyp,Dyym,Dzzp,Dzzm;
float sign,norm;
float LocalVar,GlobalVar,LocalMax,GlobalMax;
int i,j,k;
float dt=0.1;
float Dx,Dy,Dz;
float Dxp,Dxm,Dyp,Dym,Dzp,Dzm;
float Dxxp,Dxxm,Dyyp,Dyym,Dzzp,Dzzm;
float sign,norm;
float LocalVar,GlobalVar,LocalMax,GlobalMax;
int xdim,ydim,zdim;
xdim=Dm.Nx-2;
ydim=Dm.Ny-2;
zdim=Dm.Nz-2;
fillHalo<float> fillData(Dm.Comm, Dm.rank_info,xdim,ydim,zdim,1,1,1,0,1);
int xdim,ydim,zdim;
xdim=Dm.Nx-2;
ydim=Dm.Ny-2;
zdim=Dm.Nz-2;
fillHalo<float> fillData(Dm.Comm, Dm.rank_info,xdim,ydim,zdim,1,1,1,0,1);
// Arrays to store the second derivatives
Array<float> Dxx(Dm.Nx,Dm.Ny,Dm.Nz);
Array<float> Dyy(Dm.Nx,Dm.Ny,Dm.Nz);
Array<float> Dzz(Dm.Nx,Dm.Ny,Dm.Nz);
// Arrays to store the second derivatives
Array<float> Dxx(Dm.Nx,Dm.Ny,Dm.Nz);
Array<float> Dyy(Dm.Nx,Dm.Ny,Dm.Nz);
Array<float> Dzz(Dm.Nx,Dm.Ny,Dm.Nz);
int count = 0;
while (count < timesteps){
int count = 0;
while (count < timesteps){
// Communicate the halo of values
fillData.fill(Distance);
// Communicate the halo of values
fillData.fill(Distance);
// Compute second order derivatives
for (k=1;k<Dm.Nz-1;k++){
for (j=1;j<Dm.Ny-1;j++){
for (i=1;i<Dm.Nx-1;i++){
Dxx(i,j,k) = Distance(i+1,j,k) + Distance(i-1,j,k) - 2*Distance(i,j,k);
Dyy(i,j,k) = Distance(i,j+1,k) + Distance(i,j-1,k) - 2*Distance(i,j,k);
Dzz(i,j,k) = Distance(i,j,k+1) + Distance(i,j,k-1) - 2*Distance(i,j,k);
}
}
}
fillData.fill(Dxx);
fillData.fill(Dyy);
fillData.fill(Dzz);
// Compute second order derivatives
for (k=1;k<Dm.Nz-1;k++){
for (j=1;j<Dm.Ny-1;j++){
for (i=1;i<Dm.Nx-1;i++){
Dxx(i,j,k) = Distance(i+1,j,k) + Distance(i-1,j,k) - 2*Distance(i,j,k);
Dyy(i,j,k) = Distance(i,j+1,k) + Distance(i,j-1,k) - 2*Distance(i,j,k);
Dzz(i,j,k) = Distance(i,j,k+1) + Distance(i,j,k-1) - 2*Distance(i,j,k);
}
}
}
fillData.fill(Dxx);
fillData.fill(Dyy);
fillData.fill(Dzz);
LocalMax=LocalVar=0.0;
// Execute the next timestep
for (k=1;k<Dm.Nz-1;k++){
for (j=1;j<Dm.Ny-1;j++){
for (i=1;i<Dm.Nx-1;i++){
LocalMax=LocalVar=0.0;
// Execute the next timestep
for (k=1;k<Dm.Nz-1;k++){
for (j=1;j<Dm.Ny-1;j++){
for (i=1;i<Dm.Nx-1;i++){
int n = k*Dm.Nx*Dm.Ny + j*Dm.Nx + i;
int n = k*Dm.Nx*Dm.Ny + j*Dm.Nx + i;
sign = -1;
if (ID(i,j,k) == 1) sign = 1;
sign = -1;
if (ID(i,j,k) == 1) sign = 1;
// local second derivative terms
Dxxp = minmod(Dxx(i,j,k),Dxx(i+1,j,k));
Dyyp = minmod(Dyy(i,j,k),Dyy(i,j+1,k));
Dzzp = minmod(Dzz(i,j,k),Dzz(i,j,k+1));
Dxxm = minmod(Dxx(i,j,k),Dxx(i-1,j,k));
Dyym = minmod(Dyy(i,j,k),Dyy(i,j-1,k));
Dzzm = minmod(Dzz(i,j,k),Dzz(i,j,k-1));
// local second derivative terms
Dxxp = minmod(Dxx(i,j,k),Dxx(i+1,j,k));
Dyyp = minmod(Dyy(i,j,k),Dyy(i,j+1,k));
Dzzp = minmod(Dzz(i,j,k),Dzz(i,j,k+1));
Dxxm = minmod(Dxx(i,j,k),Dxx(i-1,j,k));
Dyym = minmod(Dyy(i,j,k),Dyy(i,j-1,k));
Dzzm = minmod(Dzz(i,j,k),Dzz(i,j,k-1));
/* //............Compute upwind derivatives ...................
/* //............Compute upwind derivatives ...................
Dxp = Distance(i+1,j,k) - Distance(i,j,k) + 0.5*Dxxp;
Dyp = Distance(i,j+1,k) - Distance(i,j,k) + 0.5*Dyyp;
Dzp = Distance(i,j,k+1) - Distance(i,j,k) + 0.5*Dzzp;
@ -292,68 +292,68 @@ inline float Eikonal3D(Array<float> &Distance, Array<char> &ID, Domain &Dm, int
Dxm = Distance(i,j,k) - Distance(i-1,j,k) + 0.5*Dxxm;
Dym = Distance(i,j,k) - Distance(i,j-1,k) + 0.5*Dyym;
Dzm = Distance(i,j,k) - Distance(i,j,k-1) + 0.5*Dzzm;
*/
Dxp = Distance(i+1,j,k);
Dyp = Distance(i,j+1,k);
Dzp = Distance(i,j,k+1);
*/
Dxp = Distance(i+1,j,k);
Dyp = Distance(i,j+1,k);
Dzp = Distance(i,j,k+1);
Dxm = Distance(i-1,j,k);
Dym = Distance(i,j-1,k);
Dzm = Distance(i,j,k-1);
Dxm = Distance(i-1,j,k);
Dym = Distance(i,j-1,k);
Dzm = Distance(i,j,k-1);
// Compute upwind derivatives for Godunov Hamiltonian
if (sign < 0.0){
if (Dxp > Dxm) Dx = Dxp - Distance(i,j,k) + 0.5*Dxxp;
else Dx = Distance(i,j,k) - Dxm + 0.5*Dxxm;
// Compute upwind derivatives for Godunov Hamiltonian
if (sign < 0.0){
if (Dxp > Dxm) Dx = Dxp - Distance(i,j,k) + 0.5*Dxxp;
else Dx = Distance(i,j,k) - Dxm + 0.5*Dxxm;
if (Dyp > Dym) Dy = Dyp - Distance(i,j,k) + 0.5*Dyyp;
else Dy = Distance(i,j,k) - Dym + 0.5*Dyym;
if (Dyp > Dym) Dy = Dyp - Distance(i,j,k) + 0.5*Dyyp;
else Dy = Distance(i,j,k) - Dym + 0.5*Dyym;
if (Dzp > Dzm) Dz = Dzp - Distance(i,j,k) + 0.5*Dzzp;
else Dz = Distance(i,j,k) - Dzm + 0.5*Dzzm;
}
else{
if (Dxp < Dxm) Dx = Dxp - Distance(i,j,k) + 0.5*Dxxp;
else Dx = Distance(i,j,k) - Dxm + 0.5*Dxxm;
if (Dzp > Dzm) Dz = Dzp - Distance(i,j,k) + 0.5*Dzzp;
else Dz = Distance(i,j,k) - Dzm + 0.5*Dzzm;
}
else{
if (Dxp < Dxm) Dx = Dxp - Distance(i,j,k) + 0.5*Dxxp;
else Dx = Distance(i,j,k) - Dxm + 0.5*Dxxm;
if (Dyp < Dym) Dy = Dyp - Distance(i,j,k) + 0.5*Dyyp;
else Dy = Distance(i,j,k) - Dym + 0.5*Dyym;
if (Dyp < Dym) Dy = Dyp - Distance(i,j,k) + 0.5*Dyyp;
else Dy = Distance(i,j,k) - Dym + 0.5*Dyym;
if (Dzp < Dzm) Dz = Dzp - Distance(i,j,k) + 0.5*Dzzp;
else Dz = Distance(i,j,k) - Dzm + 0.5*Dzzm;
}
if (Dzp < Dzm) Dz = Dzp - Distance(i,j,k) + 0.5*Dzzp;
else Dz = Distance(i,j,k) - Dzm + 0.5*Dzzm;
}
norm=sqrt(Dx*Dx+Dy*Dy+Dz*Dz);
if (norm > 1.0) norm=1.0;
norm=sqrt(Dx*Dx+Dy*Dy+Dz*Dz);
if (norm > 1.0) norm=1.0;
Distance(i,j,k) += dt*sign*(1.0 - norm);
LocalVar += dt*sign*(1.0 - norm);
Distance(i,j,k) += dt*sign*(1.0 - norm);
LocalVar += dt*sign*(1.0 - norm);
if (fabs(dt*sign*(1.0 - norm)) > LocalMax)
LocalMax = fabs(dt*sign*(1.0 - norm));
}
}
}
if (fabs(dt*sign*(1.0 - norm)) > LocalMax)
LocalMax = fabs(dt*sign*(1.0 - norm));
}
}
}
MPI_Allreduce(&LocalVar,&GlobalVar,1,MPI_FLOAT,MPI_SUM,Dm.Comm);
MPI_Allreduce(&LocalMax,&GlobalMax,1,MPI_FLOAT,MPI_MAX,Dm.Comm);
GlobalVar /= (Dm.Nx-2)*(Dm.Ny-2)*(Dm.Nz-2)*Dm.nprocx*Dm.nprocy*Dm.nprocz;
count++;
MPI_Allreduce(&LocalVar,&GlobalVar,1,MPI_FLOAT,MPI_SUM,Dm.Comm);
MPI_Allreduce(&LocalMax,&GlobalMax,1,MPI_FLOAT,MPI_MAX,Dm.Comm);
GlobalVar /= (Dm.Nx-2)*(Dm.Ny-2)*(Dm.Nz-2)*Dm.nprocx*Dm.nprocy*Dm.nprocz;
count++;
if (count%50 == 0 && Dm.rank==0 )
printf("Time=%i, Max variation=%f, Global variation=%f \n",count,GlobalMax,GlobalVar);
if (count%50 == 0 && Dm.rank==0 )
printf("Time=%i, Max variation=%f, Global variation=%f \n",count,GlobalMax,GlobalVar);
if (fabs(GlobalMax) < 1e-5){
if (Dm.rank==0) printf("Exiting with max tolerance of 1e-5 \n");
count=timesteps;
if (fabs(GlobalMax) < 1e-5){
if (Dm.rank==0) printf("Exiting with max tolerance of 1e-5 \n");
count=timesteps;
}
}
}
return GlobalVar;
return GlobalVar;
}
inline int NLM3D(Array<float> &Input, Array<float> &Mean, Array<float> &Distance, Array<float> &Output,
const int d, const float h){
const int d, const float h){
// Implemenation of 3D non-local means filter
// d determines the width of the search volume
// h is a free parameter for non-local means (i.e. 1/sigma^2)
@ -405,15 +405,15 @@ inline int NLM3D(Array<float> &Input, Array<float> &Mean, Array<float> &Distance
if (fabs(Distance(i,j,k)) < THRESHOLD_DIST){
// compute the expensive non-local means
// compute the expensive non-local means
sum = 0; weight=0;
imin = max(0,i-d);
jmin = max(0,j-d);
kmin = max(0,k-d);
imax = min(Nx-1,i+d);
jmax = min(Ny-1,j+d);
kmax = min(Nz-1,k+d);
imin = max(0,i-d);
jmin = max(0,j-d);
kmin = max(0,k-d);
imax = min(Nx-1,i+d);
jmax = min(Ny-1,j+d);
kmax = min(Nz-1,k+d);
for (kk=kmin; kk<kmax; kk++){
for (jj=jmin; jj<jmax; jj++){
@ -424,11 +424,11 @@ inline int NLM3D(Array<float> &Input, Array<float> &Mean, Array<float> &Distance
}
}
}
returnCount++;
//Output(i,j,k) = Mean(i,j,k);
Output(i,j,k) = sum / weight;
}
}
else{
// Just return the mean
Output(i,j,k) = Mean(i,j,k);
@ -446,45 +446,45 @@ int main(int argc, char **argv)
// Initialize MPI
int rank, nprocs;
MPI_Init(&argc,&argv);
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Comm_rank(comm,&rank);
MPI_Comm_size(comm,&nprocs);
//std::vector<std::string> filenames;
std::string filename;
if (rank==0){
if ( argc==0 ) {
printf("At least one filename must be specified\n");
return 1;
if ( argc==0 ) {
printf("At least one filename must be specified\n");
return 1;
}
else {
filename=std::string(argv[1]);
printf("Input data file: %s\n",filename.c_str());
}
}
else {
filename=std::string(argv[1]);
printf("Input data file: %s\n",filename.c_str());
}
}
//.......................................................................
// Reading the domain information file
//.......................................................................
int nprocx, nprocy, nprocz, nx, ny, nz, nspheres;
double Lx, Ly, Lz;
int Nx,Ny,Nz;
int i,j,k,n;
//.......................................................................
// Reading the domain information file
//.......................................................................
int nprocx, nprocy, nprocz, nx, ny, nz, nspheres;
double Lx, Ly, Lz;
int Nx,Ny,Nz;
int i,j,k,n;
int BC=0;
if (rank==0){
ifstream domain("Domain.in");
domain >> nprocx;
domain >> nprocy;
domain >> nprocz;
domain >> nx;
domain >> ny;
domain >> nz;
domain >> nspheres;
domain >> Lx;
domain >> Ly;
domain >> Lz;
if (rank==0){
ifstream domain("Domain.in");
domain >> nprocx;
domain >> nprocy;
domain >> nprocz;
domain >> nx;
domain >> ny;
domain >> nz;
domain >> nspheres;
domain >> Lx;
domain >> Ly;
domain >> Lz;
}
}
MPI_Barrier(comm);
// Computational domain
//.................................................
@ -498,70 +498,25 @@ int main(int argc, char **argv)
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
/* //.................................................
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
MPI_Bcast(&xStart,1,MPI_INT,0,comm);
MPI_Bcast(&yStart,1,MPI_INT,0,comm);
MPI_Bcast(&zStart,1,MPI_INT,0,comm);
*/ //.................................................
//.................................................
MPI_Barrier(comm);
// Check that the number of processors >= the number of ranks
if ( rank==0 ) {
printf("Number of MPI ranks required: %i \n", nprocx*nprocy*nprocz);
printf("Number of MPI ranks used: %i \n", nprocs);
printf("Full domain size: %i x %i x %i \n",nx*nprocx,ny*nprocy,nz*nprocz);
}
if ( nprocs < nprocx*nprocy*nprocz ){
ERROR("Insufficient number of processors");
}
PROFILE_START("ReadVolume");
Array<float> VOLUME;
// Read the input volume to rank 0 only, then distribute pieces to workers
if (rank==0){
// Open the netcdf file
int fid = netcdf::open(filename);
// Read all of the attributes
std::vector<std::string> attr = netcdf::getAttNames( fid );
for (size_t i=0; i<attr.size(); i++) {
printf("Reading attribute %s\n",attr[i].c_str());
netcdf::VariableType type = netcdf::getAttType( fid, attr[i] );
if ( type == netcdf::STRING ){
Array<std::string> tmp = netcdf::getAtt<std::string>( fid, attr[i] );
}
else{
//Array<double> tmp = netcdf::getAtt<double>( fid, attr[i] );
}
}
// Read the VOLUME data array
std::string varname("VOLUME");
printf("Reading %s\n",varname.c_str());
VOLUME = netcdf::getVar<float>( fid, varname);
Nx = int(VOLUME.size(0));
Ny = int(VOLUME.size(1));
Nz = int(VOLUME.size(2));
printf("VOLUME dims = %i x %i x %i \n",Nx,Ny,Nz);
printf("Sucess!! \n");
netcdf::close( fid );
// Check that the number of processors >= the number of ranks
if ( rank==0 ) {
printf("Number of MPI ranks required: %i \n", nprocx*nprocy*nprocz);
printf("Number of MPI ranks used: %i \n", nprocs);
printf("Full domain size: %i x %i x %i \n",nx*nprocx,ny*nprocy,nz*nprocz);
}
if ( nprocs < nprocx*nprocy*nprocz ){
ERROR("Insufficient number of processors");
}
PROFILE_SAVE("ReadVolume");
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
// Allocate local arrays for every MPI rank
Array<float> LOCVOL(nx+2,ny+2,nz+2);
MPI_Barrier(comm);
// Get the rank info
int N = (nx+2)*(ny+2)*(nz+2);
// Get the rank info
int N = (nx+2)*(ny+2)*(nz+2);
Domain Dm(nx,ny,nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BC);
for (k=0;k<nz+2;k++){
for (j=0;j<ny+2;j++){
@ -573,61 +528,100 @@ int main(int argc, char **argv)
}
Dm.CommInit(comm);
// Allocate local arrays for every MPI rank
Array<float> LOCVOL(nx+2,ny+2,nz+2);
PROFILE_START("ReadVolume");
{
Array<float> VOLUME;
// Set up the sub-domains
int xStart,yStart,zStart;
xStart=Nx/2;
yStart=Ny/2;
zStart=Nz/2;
if (rank==0){
printf("Distributing subdomains across %i processors \n",nprocs);
printf("Process grid: %i x %i x %i \n",Dm.nprocx,Dm.nprocy,Dm.nprocz);
printf("Subdomain size: %i \n",N);
// printf("Size of transition region: %i \n", z_transition_size);
float *tmp;
tmp = new float[N];
for (int kp=0; kp<nprocz; kp++){
for (int jp=0; jp<nprocy; jp++){
for (int ip=0; ip<nprocx; ip++){
// rank of the process that gets this subdomain
int rnk = kp*Dm.nprocx*Dm.nprocy + jp*Dm.nprocx + ip;
// Pack and send the subdomain for rnk
for (k=0;k<nz+2;k++){
for (j=0;j<ny+2;j++){
for (i=0;i<nx+2;i++){
int x = xStart + ip*nx + i-1;
int y = yStart + jp*ny + j-1;
int z = zStart + kp*nz + k-1;
// Read the input volume to rank 0 only, then distribute pieces to workers
if (rank==0){
// Open the netcdf file
int fid = netcdf::open(filename);
int nlocal = k*(nx+2)*(ny+2) + j*(nx+2) + i;
tmp[nlocal] = VOLUME(x,y,z);
}
}
}
if (rnk==0){
// Read all of the attributes
std::vector<std::string> attr = netcdf::getAttNames( fid );
for (size_t i=0; i<attr.size(); i++) {
printf("Reading attribute %s\n",attr[i].c_str());
netcdf::VariableType type = netcdf::getAttType( fid, attr[i] );
if ( type == netcdf::STRING ){
Array<std::string> tmp = netcdf::getAtt<std::string>( fid, attr[i] );
}
else{
//Array<double> tmp = netcdf::getAtt<double>( fid, attr[i] );
}
}
// Read the VOLUME data array
std::string varname("VOLUME");
printf("Reading %s\n",varname.c_str());
VOLUME = netcdf::getVar<float>( fid, varname);
Nx = int(VOLUME.size(0));
Ny = int(VOLUME.size(1));
Nz = int(VOLUME.size(2));
printf("VOLUME dims = %i x %i x %i \n",Nx,Ny,Nz);
printf("Sucess!! \n");
netcdf::close( fid );
}
PROFILE_SAVE("ReadVolume");
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
MPI_Barrier(comm);
// Set up the sub-domains
int xStart,yStart,zStart;
xStart=Nx/2;
yStart=Ny/2;
zStart=Nz/2;
if (rank==0){
printf("Distributing subdomains across %i processors \n",nprocs);
printf("Process grid: %i x %i x %i \n",Dm.nprocx,Dm.nprocy,Dm.nprocz);
printf("Subdomain size: %i \n",N);
// printf("Size of transition region: %i \n", z_transition_size);
float *tmp;
tmp = new float[N];
for (int kp=0; kp<nprocz; kp++){
for (int jp=0; jp<nprocy; jp++){
for (int ip=0; ip<nprocx; ip++){
// rank of the process that gets this subdomain
int rnk = kp*Dm.nprocx*Dm.nprocy + jp*Dm.nprocx + ip;
// Pack and send the subdomain for rnk
for (k=0;k<nz+2;k++){
for (j=0;j<ny+2;j++){
for (i=0;i<nx+2;i++){
int x = xStart + ip*nx + i-1;
int y = yStart + jp*ny + j-1;
int z = zStart + kp*nz + k-1;
int nlocal = k*(nx+2)*(ny+2) + j*(nx+2) + i;
LOCVOL(i,j,k) = tmp[nlocal];
tmp[nlocal] = VOLUME(x,y,z);
}
}
}
}
else{
//printf("Sending data to process %i \n", rnk);
MPI_Send(tmp,N,MPI_FLOAT,rnk,15,comm);
if (rnk==0){
for (k=0;k<nz+2;k++){
for (j=0;j<ny+2;j++){
for (i=0;i<nx+2;i++){
int nlocal = k*(nx+2)*(ny+2) + j*(nx+2) + i;
LOCVOL(i,j,k) = tmp[nlocal];
}
}
}
}
else{
//printf("Sending data to process %i \n", rnk);
MPI_Send(tmp,N,MPI_FLOAT,rnk,15,comm);
}
}
}
}
}
}
else{
// Recieve the subdomain from rank = 0
//printf("Ready to recieve data %i at process %i \n", N,rank);
MPI_Recv(LOCVOL.get(),N,MPI_FLOAT,0,15,comm,MPI_STATUS_IGNORE);
else{
// Recieve the subdomain from rank = 0
//printf("Ready to recieve data %i at process %i \n", N,rank);
MPI_Recv(LOCVOL.get(),N,MPI_FLOAT,0,15,comm,MPI_STATUS_IGNORE);
}
}
MPI_Barrier(comm);
@ -651,10 +645,10 @@ int main(int argc, char **argv)
}
spDm.CommInit(comm);
fillHalo<float> fillFloat(Dm.Comm, Dm.rank_info,nx-2,ny-2,nz-2,1,1,1,0,1);
fillHalo<char> fillChar(Dm.Comm, Dm.rank_info,nx-2,ny-2,nz-2,1,1,1,0,1);
fillHalo<float> fillFloat_sp(spDm.Comm, spDm.rank_info,nsx-2,nsy-2,nsz-2,1,1,1,0,1);
fillHalo<char> fillChar_sp(spDm.Comm, spDm.rank_info,nsx-2,nsy-2,nsz-2,1,1,1,0,1);
fillHalo<float> fillFloat(Dm.Comm, Dm.rank_info,nx-2,ny-2,nz-2,1,1,1,0,1);
fillHalo<char> fillChar(Dm.Comm, Dm.rank_info,nx-2,ny-2,nz-2,1,1,1,0,1);
fillHalo<float> fillFloat_sp(spDm.Comm, spDm.rank_info,nsx-2,nsy-2,nsz-2,1,1,1,0,1);
fillHalo<char> fillChar_sp(spDm.Comm, spDm.rank_info,nsx-2,nsy-2,nsz-2,1,1,1,0,1);
Array<float> spLOCVOL(nsx,nsy,nsz); // this holds sparse original data
Array<float> spM(nsx,nsy,nsz); // this holds sparse median filter
@ -731,72 +725,72 @@ int main(int argc, char **argv)
SEG=fopen(LocalRankFilename,"wb");
fwrite(LOCVOL.get(),4,N,SEG);
fclose(SEG);
*/
*/
if (rank==0) printf("Writing output \n");
std::vector<IO::MeshDataStruct> meshData(2);
meshData[0].meshName = "Full domain";
meshData[0].mesh = std::shared_ptr<IO::DomainMesh>( new IO::DomainMesh(Dm.rank_info,nx-2,ny-2,nz-2,Lx,Ly,Lz) );
meshData[1].meshName = "Sparse domain";
meshData[1].mesh = std::shared_ptr<IO::DomainMesh>( new IO::DomainMesh(Dm.rank_info,nsx-2,nsy-2,nsz-2,Lx,Ly,Lz) );
std::vector<IO::MeshDataStruct> meshData(2);
meshData[0].meshName = "Full domain";
meshData[0].mesh = std::shared_ptr<IO::DomainMesh>( new IO::DomainMesh(Dm.rank_info,nx-2,ny-2,nz-2,Lx,Ly,Lz) );
meshData[1].meshName = "Sparse domain";
meshData[1].mesh = std::shared_ptr<IO::DomainMesh>( new IO::DomainMesh(Dm.rank_info,nsx-2,nsy-2,nsz-2,Lx,Ly,Lz) );
std::shared_ptr<IO::Variable> OrigData( new IO::Variable() );
std::shared_ptr<IO::Variable> spMedianData( new IO::Variable() );
std::shared_ptr<IO::Variable> spSegData( new IO::Variable() );
std::shared_ptr<IO::Variable> spDistData( new IO::Variable() );
std::shared_ptr<IO::Variable> DistData( new IO::Variable() );
std::shared_ptr<IO::Variable> NonLocMean( new IO::Variable() );
std::shared_ptr<IO::Variable> SegData( new IO::Variable() );
std::shared_ptr<IO::Variable> OrigData( new IO::Variable() );
std::shared_ptr<IO::Variable> spMedianData( new IO::Variable() );
std::shared_ptr<IO::Variable> spSegData( new IO::Variable() );
std::shared_ptr<IO::Variable> spDistData( new IO::Variable() );
std::shared_ptr<IO::Variable> DistData( new IO::Variable() );
std::shared_ptr<IO::Variable> NonLocMean( new IO::Variable() );
std::shared_ptr<IO::Variable> SegData( new IO::Variable() );
// Full resolution data
OrigData->name = "Source Data";
OrigData->type = IO::VolumeVariable;
OrigData->dim = 1;
OrigData->data.resize(nx-2,ny-2,nz-2);
meshData[0].vars.push_back(OrigData);
// Full resolution data
OrigData->name = "Source Data";
OrigData->type = IO::VolumeVariable;
OrigData->dim = 1;
OrigData->data.resize(nx-2,ny-2,nz-2);
meshData[0].vars.push_back(OrigData);
DistData->name = "Signed Distance";
DistData->type = IO::VolumeVariable;
DistData->dim = 1;
DistData->data.resize(nx-2,ny-2,nz-2);
meshData[0].vars.push_back(DistData);
NonLocMean->name = "Non-Local Mean";
NonLocMean->type = IO::VolumeVariable;
NonLocMean->dim = 1;
NonLocMean->data.resize(nx-2,ny-2,nz-2);
meshData[0].vars.push_back(NonLocMean);
NonLocMean->name = "Non-Local Mean";
NonLocMean->type = IO::VolumeVariable;
NonLocMean->dim = 1;
NonLocMean->data.resize(nx-2,ny-2,nz-2);
meshData[0].vars.push_back(NonLocMean);
SegData->name = "Segmented Data";
SegData->type = IO::VolumeVariable;
SegData->dim = 1;
SegData->data.resize(nx-2,ny-2,nz-2);
meshData[0].vars.push_back(SegData);
SegData->name = "Segmented Data";
SegData->type = IO::VolumeVariable;
SegData->dim = 1;
SegData->data.resize(nx-2,ny-2,nz-2);
meshData[0].vars.push_back(SegData);
//..........................................
DistData->name = "Signed Distance";
DistData->type = IO::VolumeVariable;
DistData->dim = 1;
DistData->data.resize(nx-2,ny-2,nz-2);
meshData[0].vars.push_back(DistData);
//..........................................
// ....... Sparse resolution data .......
spMedianData->name = "Sparse Median Filter";
spMedianData->type = IO::VolumeVariable;
spMedianData->dim = 1;
spMedianData->data.resize(nsx-2,nsy-2,nsz-2);
meshData[1].vars.push_back(spMedianData);
// ....... Sparse resolution data .......
spMedianData->name = "Sparse Median Filter";
spMedianData->type = IO::VolumeVariable;
spMedianData->dim = 1;
spMedianData->data.resize(nsx-2,nsy-2,nsz-2);
meshData[1].vars.push_back(spMedianData);
spSegData->name = "Sparse Segmentation";
spSegData->type = IO::VolumeVariable;
spSegData->dim = 1;
spSegData->data.resize(nsx-2,nsy-2,nsz-2);
meshData[1].vars.push_back(spSegData);
spSegData->name = "Sparse Segmentation";
spSegData->type = IO::VolumeVariable;
spSegData->dim = 1;
spSegData->data.resize(nsx-2,nsy-2,nsz-2);
meshData[1].vars.push_back(spSegData);
spDistData->name = "Sparse Distance";
spDistData->type = IO::VolumeVariable;
spDistData->dim = 1;
spDistData->data.resize(nsx-2,nsy-2,nsz-2);
meshData[1].vars.push_back(spDistData);
//..........................................
spDistData->name = "Sparse Distance";
spDistData->type = IO::VolumeVariable;
spDistData->dim = 1;
spDistData->data.resize(nsx-2,nsy-2,nsz-2);
meshData[1].vars.push_back(spDistData);
//..........................................
/*
* Only Array<double> works right now :(
*
/*
* Only Array<double> works right now :(
*
Array<float>& INPUT = meshData[0].vars[0]->data;
Array<float>& spMEDIAN = meshData[1].vars[0]->data;
Array<char>& spSEGMENTED = meshData[1].vars[1]->data;
@ -806,42 +800,42 @@ int main(int argc, char **argv)
fillFloat_sp.copy(spM,spMEDIAN);
fillChar_sp.copy(spID,spSEGMENTED);
fillFloat_sp.copy(spDist,spDISTANCE);
*/
*/
Array<double>& INPUT = meshData[0].vars[0]->data;
Array<double>& SEGMENTED = meshData[0].vars[1]->data;
Array<double>& DISTANCE = meshData[0].vars[2]->data;
Array<double>& NONLOCALMEAN = meshData[0].vars[3]->data;
Array<double>& INPUT = meshData[0].vars[0]->data;
Array<double>& SEGMENTED = meshData[0].vars[1]->data;
Array<double>& DISTANCE = meshData[0].vars[2]->data;
Array<double>& NONLOCALMEAN = meshData[0].vars[3]->data;
Array<double>& spMEDIAN = meshData[1].vars[0]->data;
Array<double>& spSEGMENTED = meshData[1].vars[1]->data;
Array<double>& spDISTANCE = meshData[1].vars[2]->data;
Array<double>& spMEDIAN = meshData[1].vars[0]->data;
Array<double>& spSEGMENTED = meshData[1].vars[1]->data;
Array<double>& spDISTANCE = meshData[1].vars[2]->data;
// manually change to double and write
for (k=1;k<nz-1;k++){
for (j=1;j<ny-1;j++){
for (i=1;i<nx-1;i++){
INPUT(i-1,j-1,k-1) = double( LOCVOL(i,j,k));
SEGMENTED(i-1,j-1,k-1) = double( ID(i,j,k));
DISTANCE(i-1,j-1,k-1) = double( Dist(i,j,k));
NONLOCALMEAN(i-1,j-1,k-1) = double( NonLocalMean(i,j,k));
}
}
}
// manually change to double and write
for (k=1;k<nz-1;k++){
for (j=1;j<ny-1;j++){
for (i=1;i<nx-1;i++){
INPUT(i-1,j-1,k-1) = double( LOCVOL(i,j,k));
SEGMENTED(i-1,j-1,k-1) = double( ID(i,j,k));
DISTANCE(i-1,j-1,k-1) = double( Dist(i,j,k));
NONLOCALMEAN(i-1,j-1,k-1) = double( NonLocalMean(i,j,k));
}
}
}
for (k=1;k<nsz-1;k++){
for (j=1;j<nsy-1;j++){
for (i=1;i<nsx-1;i++){
spMEDIAN(i-1,j-1,k-1) = double( spM(i,j,k));
spSEGMENTED(i-1,j-1,k-1) = double( spID(i,j,k));
spDISTANCE(i-1,j-1,k-1) = double( spDist(i,j,k));
}
}
}
for (k=1;k<nsz-1;k++){
for (j=1;j<nsy-1;j++){
for (i=1;i<nsx-1;i++){
spMEDIAN(i-1,j-1,k-1) = double( spM(i,j,k));
spSEGMENTED(i-1,j-1,k-1) = double( spID(i,j,k));
spDISTANCE(i-1,j-1,k-1) = double( spDist(i,j,k));
}
}
}
IO::writeData( 0, meshData, 2, comm );
if (rank==0) printf("Finished. \n");
IO::writeData( 0, meshData, 2, comm );
if (rank==0) printf("Finished. \n");
/* for (k=0;k<nz;k++){
for (j=0;j<ny;j++){
@ -865,10 +859,10 @@ int main(int argc, char **argv)
SEG=fopen(LocalRankFilename,"wb");
fwrite(LOCVOL.get(),4,N,SEG);
fclose(SEG);
*/
MPI_Barrier(comm);
MPI_Finalize();
*/
MPI_Barrier(comm);
MPI_Finalize();
return 0;
}