and welcomes little fishes in

This commit is contained in:
James E McClure 2018-05-21 10:13:23 -04:00
parent 71b9c88177
commit 6e7db1fa99
3 changed files with 19 additions and 931 deletions

View File

@ -214,8 +214,8 @@ void ScaLBL_ColorModel::Create(){
int rank=Dm->rank();
//.........................................................
// don't perform computations at the eight corners
id[0] = id[Nx-1] = id[(Ny-1)*Nx] = id[(Ny-1)*Nx + Nx-1] = 0;
id[(Nz-1)*Nx*Ny] = id[(Nz-1)*Nx*Ny+Nx-1] = id[(Nz-1)*Nx*Ny+(Ny-1)*Nx] = id[(Nz-1)*Nx*Ny+(Ny-1)*Nx + Nx-1] = 0;
//id[0] = id[Nx-1] = id[(Ny-1)*Nx] = id[(Ny-1)*Nx + Nx-1] = 0;
//id[(Nz-1)*Nx*Ny] = id[(Nz-1)*Nx*Ny+Nx-1] = id[(Nz-1)*Nx*Ny+(Ny-1)*Nx] = id[(Nz-1)*Nx*Ny+(Ny-1)*Nx + Nx-1] = 0;
//.........................................................
// Initialize communication structures in averaging domain
@ -386,7 +386,7 @@ void ScaLBL_ColorModel::Initialize(){
/*
* This function initializes model
*/
int rank=Dm->rank();
int rank=Dm->rank();
double count_wet=0.f;
double *PhaseLabel;
PhaseLabel=new double [Nx*Ny*Nz];
@ -411,11 +411,12 @@ void ScaLBL_ColorModel::Initialize(){
ScaLBL_CopyToDevice(Phi, PhaseLabel, Np*sizeof(double));
//...........................................................................
if (rank==0) printf ("Initializing distributions \n");
ScaLBL_D3Q19_Init(fq, Np);
if (rank==0) printf ("Initializing phase field \n");
ScaLBL_DFH_Init(Phi, Den, Aq, Bq, 0, ScaLBL_Comm->last_interior, Np);
if (rank==0) printf ("Initializing distributions \n");
ScaLBL_D3Q19_Init(fq, Np);
if (rank==0) printf ("Initializing phase field \n");
ScaLBL_DFH_Init(Phi, Den, Aq, Bq, 0, ScaLBL_Comm->LastExterior(), Np);
ScaLBL_DFH_Init(Phi, Den, Aq, Bq, ScaLBL_Comm->FirstInterior(), ScaLBL_Comm->LastInterior(), Np);
}
void ScaLBL_ColorModel::Run(){
@ -529,7 +530,6 @@ void ScaLBL_ColorModel::Run(){
cputime = (stoptime - starttime)/timestep;
// Performance obtained from each node
double MLUPS = double(Np)/cputime/1000000;
if (rank==0) printf("********************************************************\n");
if (rank==0) printf("CPU time = %f \n", cputime);
if (rank==0) printf("Lattice update rate (per core)= %f MLUPS \n", MLUPS);

View File

@ -52,7 +52,7 @@ inline void InitializeBubble(ScaLBL_ColorModel &ColorModel, double BubbleRadius)
}
}
}
// initialize the phase indicator field
}
//***************************************************************************************
int main(int argc, char **argv)

View File

@ -28,75 +28,6 @@ using namespace std;
//*************************************************************************
// Implementation of Two-Phase Immiscible LBM using CUDA
//*************************************************************************
inline void PackID(int *list, int count, char *sendbuf, char *ID){
// Fill in the phase ID values from neighboring processors
// This packs up the values that need to be sent from one processor to another
int idx,n;
for (idx=0; idx<count; idx++){
n = list[idx];
sendbuf[idx] = ID[n];
}
}
//***************************************************************************************
inline void UnpackID(int *list, int count, char *recvbuf, char *ID){
// Fill in the phase ID values from neighboring processors
// This unpacks the values once they have been recieved from neighbors
int idx,n;
for (idx=0; idx<count; idx++){
n = list[idx];
ID[n] = recvbuf[idx];
}
}
//***************************************************************************************
inline void ZeroHalo(double *Data, int Nx, int Ny, int Nz)
{
int i,j,k,n;
for (k=0;k<Nz;k++){
for (j=0;j<Ny;j++){
i=0;
n = k*Nx*Ny+j*Nx+i;
Data[2*n] = 0.0;
Data[2*n+1] = 0.0;
i=Nx-1;
n = k*Nx*Ny+j*Nx+i;
Data[2*n] = 0.0;
Data[2*n+1] = 0.0;
}
}
for (k=0;k<Nz;k++){
for (i=0;i<Nx;i++){
j=0;
n = k*Nx*Ny+j*Nx+i;
Data[2*n] = 0.0;
Data[2*n+1] = 0.0;
j=Ny-1;
n = k*Nx*Ny+j*Nx+i;
Data[2*n] = 0.0;
Data[2*n+1] = 0.0;
}
}
for (j=0;j<Ny;j++){
for (i=0;i<Nx;i++){
k=0;
n = k*Nx*Ny+j*Nx+i;
Data[2*n] = 0.0;
Data[2*n+1] = 0.0;
k=Nz-1;
n = k*Nx*Ny+j*Nx+i;
Data[2*n] = 0.0;
Data[2*n+1] = 0.0;
}
}
}
//***************************************************************************************
int main(int argc, char **argv)
{
@ -130,859 +61,16 @@ int main(int argc, char **argv)
PROFILE_START("Main");
Utilities::setErrorHandlers();
// Variables that specify the computational domain
string FILENAME;
unsigned int nBlocks, nthreads;
int Nx,Ny,Nz; // local sub-domain size
int nspheres; // number of spheres in the packing
double Lx,Ly,Lz; // Domain length
double D = 1.0; // reference length for non-dimensionalization
// Color Model parameters
int timestepMax;
double tau,Fx,Fy,Fz,tol,err;
double alpha, beta;
double das, dbs, phi_s;
double din,dout;
double wp_saturation;
int BoundaryCondition;
int InitialCondition;
// bool pBC,Restart;
int i,j,k;
// pmmc threshold values
//double fluid_isovalue,solid_isovalue;
//fluid_isovalue = 0.0;
//solid_isovalue = 0.0;
auto filename = argv[1];
ScaLBL_ColorModel ColorModel(rank,nprocs,comm);
ColorModel.ReadParams(filename);
ColorModel.SetDomain();
ColorModel.ReadInput();
ColorModel.Create(); // creating the model will create data structure to match the pore structure and allocate variables
ColorModel.Initialize(); // initializing the model will set initial conditions for variables
ColorModel.Run();
ColorModel.WriteDebug();
int RESTART_INTERVAL=20000;
//int ANALYSIS_)INTERVAL=1000;
int BLOB_ANALYSIS_INTERVAL=1000;
int timestep = -1;
if (rank==0){
//.............................................................
// READ SIMULATION PARMAETERS FROM INPUT FILE
//.............................................................
ifstream input("Color.in");
if (input.is_open()){
// Line 1: model parameters (tau, alpha, beta, das, dbs)
input >> tau; // Viscosity parameter
input >> alpha; // Surface Tension parameter
input >> beta; // Width of the interface
input >> phi_s; // value of phi at the solid surface
// Line 2: wetting phase saturation to initialize
input >> wp_saturation;
// Line 3: External force components (Fx,Fy, Fz)
input >> Fx;
input >> Fy;
input >> Fz;
// Line 4: Pressure Boundary conditions
input >> InitialCondition;
input >> BoundaryCondition;
input >> din;
input >> dout;
// Line 5: time-stepping criteria
input >> timestepMax; // max no. of timesteps
input >> RESTART_INTERVAL; // restart interval
input >> tol; // error tolerance
// Line 6: Analysis options
input >> BLOB_ANALYSIS_INTERVAL; // interval to analyze blob states
//.............................................................
}
else{
// Set default values
// Print warning
printf("WARNING: No input file provided (Color.in is missing)! Default parameters will be used. \n");
tau = 1.0;
alpha=0.005;
beta= 0.9;
Fx = Fy = Fz = 0.0;
InitialCondition=0;
BoundaryCondition=0;
din=dout=1.0;
timestepMax=0;
}
//.......................................................................
// Reading the domain information file
//.......................................................................
ifstream domain("Domain.in");
if (input.is_open()){
domain >> nprocx;
domain >> nprocy;
domain >> nprocz;
domain >> Nx;
domain >> Ny;
domain >> Nz;
domain >> nspheres;
domain >> Lx;
domain >> Ly;
domain >> Lz;
//.......................................................................
}
else{
// Set default values
// Print warning
printf("WARNING: No input file provided (Domain.in is missing)! Default parameters will be used. \n");
nprocx=nprocy=nprocz=1;
Nx=Ny=Nz=10;
nspheres=0;
Lx=Ly=Lz=1.0;
}
}
// **************************************************************
// Broadcast simulation parameters from rank 0 to all other procs
MPI_Barrier(comm);
//.................................................
MPI_Bcast(&tau,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&alpha,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&beta,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&das,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&dbs,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&phi_s,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&wp_saturation,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&BoundaryCondition,1,MPI_INT,0,comm);
MPI_Bcast(&InitialCondition,1,MPI_INT,0,comm);
MPI_Bcast(&din,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&dout,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Fx,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Fy,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Fz,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&timestepMax,1,MPI_INT,0,comm);
MPI_Bcast(&RESTART_INTERVAL,1,MPI_INT,0,comm);
MPI_Bcast(&tol,1,MPI_DOUBLE,0,comm);
// Computational domain
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
//.................................................
// Get the rank info
const RankInfoStruct rank_info(rank,nprocx,nprocy,nprocz);
MPI_Barrier(comm);
// **************************************************************
// **************************************************************
double Ps = -(das-dbs)/(das+dbs);
double rlxA = 1.f/tau;
double rlxB = 8.f*(2.f-rlxA)/(8.f-rlxA);
//double xIntPos = log((1.0+phi_s)/(1.0-phi_s))/(2.0*beta);
// Set the density values inside the solid based on the input value phi_s
das = (phi_s+1.0)*0.5;
dbs = 1.0 - das;
if (nprocs != nprocx*nprocy*nprocz){
printf("nprocx = %i \n",nprocx);
printf("nprocy = %i \n",nprocy);
printf("nprocz = %i \n",nprocz);
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
}
if (rank==0){
printf("********************************************************\n");
printf("tau = %f \n", tau);
printf("alpha = %f \n", alpha);
printf("beta = %f \n", beta);
printf("das = %f \n", das);
printf("dbs = %f \n", dbs);
printf("gamma_{wn} = %f \n", 5.796*alpha);
printf("Force(x) = %f \n", Fx);
printf("Force(y) = %f \n", Fy);
printf("Force(z) = %f \n", Fz);
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
printf("Parallel domain size = %i x %i x %i\n",nprocx,nprocy,nprocz);
if (BoundaryCondition==0) printf("Periodic boundary conditions will applied \n");
if (BoundaryCondition==1) printf("Pressure boundary conditions will be applied \n");
if (BoundaryCondition==2) printf("Velocity boundary conditions will be applied \n");
if (BoundaryCondition==3) printf("Dynamic pressure boundary conditions will be applied \n");
if (InitialCondition==0) printf("Initial conditions assigned from phase ID file \n");
if (InitialCondition==1) printf("Initial conditions assigned from restart file \n");
printf("********************************************************\n");
}
// Initialized domain and averaging framework for Two-Phase Flow
bool pBC,velBC;
if (BoundaryCondition==1 || BoundaryCondition==3)
pBC=true;
else pBC=false;
if (BoundaryCondition==2) velBC=true;
else velBC=false;
bool Restart;
if (InitialCondition==1) Restart=true;
else Restart=false;
NULL_USE(pBC); NULL_USE(velBC);
// Full domain used for averaging (do not use mask for analysis)
Domain Dm(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BoundaryCondition);
for (i=0; i<Dm.Nx*Dm.Ny*Dm.Nz; i++) Dm.id[i] = 1;
std::shared_ptr<TwoPhase> Averages( new TwoPhase(Dm) );
Dm.CommInit();
// Mask that excludes the solid phase
Domain Mask(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BoundaryCondition);
MPI_Barrier(comm);
Nx+=2; Ny+=2; Nz += 2;
//Nx = Ny = Nz; // Cubic domain
int N = Nx*Ny*Nz;
int dist_mem_size = N*sizeof(double);
//.......................................................................
if (rank == 0) printf("Read input media... \n");
//.......................................................................
//.......................................................................
// Filenames used
char LocalRankString[8];
char LocalRankFilename[40];
char LocalRestartFile[40];
char tmpstr[10];
sprintf(LocalRankString,"%05d",rank);
sprintf(LocalRankFilename,"%s%s","ID.",LocalRankString);
sprintf(LocalRestartFile,"%s%s","Restart.",LocalRankString);
// printf("Local File Name = %s \n",LocalRankFilename);
// .......... READ THE INPUT FILE .......................................
// char value;
char *id;
id = new char[N];
int sum = 0;
double sum_local;
double iVol_global = 1.0/(1.0*(Nx-2)*(Ny-2)*(Nz-2)*nprocs);
if (BoundaryCondition > 0) iVol_global = 1.0/(1.0*(Nx-2)*nprocx*(Ny-2)*nprocy*((Nz-2)*nprocz-6));
double porosity, pore_vol;
//...........................................................................
if (rank == 0) cout << "Reading in domain from signed distance function..." << endl;
//.......................................................................
sprintf(LocalRankString,"%05d",rank);
// sprintf(LocalRankFilename,"%s%s","ID.",LocalRankString);
// WriteLocalSolidID(LocalRankFilename, id, N);
sprintf(LocalRankFilename,"%s%s","SignDist.",LocalRankString);
ReadBinaryFile(LocalRankFilename, Averages->SDs.data(), N);
MPI_Barrier(comm);
if (rank == 0) cout << "Domain set." << endl;
//.......................................................................
// Assign the phase ID field based on the signed distance
//.......................................................................
for (k=0;k<Nz;k++){
for (j=0;j<Ny;j++){
for (i=0;i<Nx;i++){
int n = k*Nx*Ny+j*Nx+i;
id[n] = 0;
}
}
}
sum=0;
pore_vol = 0.0;
for ( k=0;k<Nz;k++){
for ( j=0;j<Ny;j++){
for ( i=0;i<Nx;i++){
int n = k*Nx*Ny+j*Nx+i;
if (Averages->SDs(n) > 0.0){
id[n] = 2;
}
// compute the porosity (actual interface location used)
if (Averages->SDs(n) > 0.0){
sum++;
}
}
}
}
if (rank==0) printf("Initialize from segmented data: solid=0, NWP=1, WP=2 \n");
sprintf(LocalRankFilename,"ID.%05i",rank);
size_t readID;
FILE *IDFILE = fopen(LocalRankFilename,"rb");
if (IDFILE==NULL) ERROR("Error opening file: ID.xxxxx");
readID=fread(id,1,N,IDFILE);
if (readID != size_t(N)) printf("lbpm_segmented_pp: Error reading ID (rank=%i) \n",rank);
fclose(IDFILE);
/* for ( k=0;k<Nz;k++){
for ( j=0;j<Ny;j++){
for ( i=0;i<Nx;i++){
int n = k*Nx*Ny+j*Nx+i;
// The following turns off communication if external BC are being set
if (BoundaryCondition > 0){
if (kproc==0 && k==0) id[n]=0;
if (kproc==0 && k==1) id[n]=0;
if (kproc==nprocz-1 && k==Nz-2) id[n]=0;
if (kproc==nprocz-1 && k==Nz-1) id[n]=0;
}
}
}
}
*/
// Set up kstart, kfinish so that the reservoirs are excluded from averaging
int kstart,kfinish;
kstart = 1;
kfinish = Nz-1;
if (BoundaryCondition > 0 && Dm.kproc==0) kstart = 4;
if (BoundaryCondition > 0 && Dm.kproc==nprocz-1) kfinish = Nz-4;
// Compute the pore volume
sum_local = 0.0;
for ( k=kstart;k<kfinish;k++){
for ( j=1;j<Ny-1;j++){
for ( i=1;i<Nx-1;i++){
int n = k*Nx*Ny+j*Nx+i;
if (id[n] > 0){
sum_local += 1.0;
}
}
}
}
MPI_Allreduce(&sum_local,&pore_vol,1,MPI_DOUBLE,MPI_SUM,comm);
// MPI_Allreduce(&sum_local,&porosity,1,MPI_DOUBLE,MPI_SUM,comm);
porosity = pore_vol*iVol_global;
if (rank==0) printf("Media porosity = %f \n",porosity);
//.........................................................
// If external boundary conditions are applied remove solid
if (BoundaryCondition > 0 && Dm.kproc == 0){
for (k=0; k<3; k++){
for (j=0;j<Ny;j++){
for (i=0;i<Nx;i++){
int n = k*Nx*Ny+j*Nx+i;
//id[n] = 1;
Averages->SDs(n) = max(Averages->SDs(n),1.0*(2.5-k));
}
}
}
}
if (BoundaryCondition > 0 && Dm.kproc == nprocz-1){
for (k=Nz-3; k<Nz; k++){
for (j=0;j<Ny;j++){
for (i=0;i<Nx;i++){
int n = k*Nx*Ny+j*Nx+i;
//id[n] = 2;
Averages->SDs(n) = max(Averages->SDs(n),1.0*(k-Nz+2.5));
}
}
}
}
//.........................................................
// don't perform computations at the eight corners
id[0] = id[Nx-1] = id[(Ny-1)*Nx] = id[(Ny-1)*Nx + Nx-1] = 0;
id[(Nz-1)*Nx*Ny] = id[(Nz-1)*Nx*Ny+Nx-1] = id[(Nz-1)*Nx*Ny+(Ny-1)*Nx] = id[(Nz-1)*Nx*Ny+(Ny-1)*Nx + Nx-1] = 0;
//.........................................................
// Initialize communication structures in averaging domain
for (i=0; i<Mask.Nx*Mask.Ny*Mask.Nz; i++) Mask.id[i] = id[i];
Mask.CommInit(comm);
//...........................................................................
if (rank==0) printf ("Create ScaLBL_Communicator \n");
// Create a communicator for the device
ScaLBL_Communicator ScaLBL_Comm(Mask);
// set reservoirs
if (BoundaryCondition > 0){
for ( k=0;k<Nz;k++){
for ( j=0;j<Ny;j++){
for ( i=0;i<Nx;i++){
int n = k*Nx*Ny+j*Nx+i;
if (Dm.kproc==0 && k==0) id[n]=1;
if (Dm.kproc==0 && k==1) id[n]=1;
if (Dm.kproc==nprocz-1 && k==Nz-2) id[n]=2;
if (Dm.kproc==nprocz-1 && k==Nz-1) id[n]=2;
Mask.id[n] = id[n];
}
}
}
}
//...........device phase ID.................................................
if (rank==0) printf ("Copy phase ID to device \n");
char *ID;
ScaLBL_AllocateDeviceMemory((void **) &ID, N); // Allocate device memory
// Don't compute in the halo
for (k=0;k<Nz;k++){
for (j=0;j<Ny;j++){
for (i=0;i<Nx;i++){
int n = k*Nx*Ny+j*Nx+i;
if (i==0 || i==Nx-1 || j==0 || j==Ny-1 || k==0 || k==Nz-1) id[n] = 0;
}
}
}
// Copy to the device
ScaLBL_CopyToDevice(ID, id, N);
ScaLBL_DeviceBarrier();
//...........................................................................
//...........................................................................
// MAIN VARIABLES ALLOCATED HERE
//...........................................................................
// LBM variables
if (rank==0) printf ("Allocating distributions \n");
//......................device distributions.................................
double *f_even,*f_odd;
double *A_even,*A_odd,*B_even,*B_odd;
//...........................................................................
ScaLBL_AllocateDeviceMemory((void **) &f_even, 10*dist_mem_size); // Allocate device memory
ScaLBL_AllocateDeviceMemory((void **) &f_odd, 9*dist_mem_size); // Allocate device memory
ScaLBL_AllocateDeviceMemory((void **) &A_even, 4*dist_mem_size); // Allocate device memory
ScaLBL_AllocateDeviceMemory((void **) &A_odd, 3*dist_mem_size); // Allocate device memory
ScaLBL_AllocateDeviceMemory((void **) &B_even, 4*dist_mem_size); // Allocate device memory
ScaLBL_AllocateDeviceMemory((void **) &B_odd, 3*dist_mem_size); // Allocate device memory
//...........................................................................
double *Phi,*Den;
double *ColorGrad, *Velocity, *Pressure, *dvcSignDist;
//...........................................................................
ScaLBL_AllocateDeviceMemory((void **) &Phi, dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Pressure, dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &dvcSignDist, dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Den, 2*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Velocity, 3*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &ColorGrad, 3*dist_mem_size);
//...........................................................................
// Copy signed distance for device initialization
ScaLBL_CopyToDevice(dvcSignDist, Averages->SDs.data(), dist_mem_size);
//...........................................................................
int logcount = 0; // number of surface write-outs
//...........................................................................
// MAIN VARIABLES INITIALIZED HERE
//...........................................................................
//...........................................................................
//...........................................................................
if (rank==0) printf("Setting the distributions, size = %i\n", N);
//...........................................................................
ScaLBL_DeviceBarrier();
ScaLBL_D3Q19_Init(ID, f_even, f_odd, Nx, Ny, Nz);
ScaLBL_Color_Init(ID, Den, Phi, das, dbs, Nx, Ny, Nz);
ScaLBL_DeviceBarrier();
//......................................................................
if (Restart == true){
if (rank==0){
printf("Reading restart file! \n");
ifstream restart("Restart.txt");
if (restart.is_open()){
restart >> timestep;
printf("Restarting from timestep =%i \n",timestep);
}
else{
printf("WARNING:No Restart.txt file, setting timestep=0 \n");
timestep=5;
}
}
MPI_Bcast(&timestep,1,MPI_INT,0,comm);
// Read in the restart file to CPU buffers
double *cDen = new double[2*N];
double *cDistEven = new double[10*N];
double *cDistOdd = new double[9*N];
ReadCheckpoint(LocalRestartFile, cDen, cDistEven, cDistOdd, N);
// Copy the restart data to the GPU
ScaLBL_CopyToDevice(f_even,cDistEven,10*N*sizeof(double));
ScaLBL_CopyToDevice(f_odd,cDistOdd,9*N*sizeof(double));
ScaLBL_CopyToDevice(Den,cDen,2*N*sizeof(double));
ScaLBL_DeviceBarrier();
delete [] cDen;
delete [] cDistEven;
delete [] cDistOdd;
MPI_Barrier(comm);
}
//......................................................................
ScaLBL_D3Q7_Init(ID, A_even, A_odd, &Den[0], Nx, Ny, Nz);
ScaLBL_D3Q7_Init(ID, B_even, B_odd, &Den[N], Nx, Ny, Nz);
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
//.......................................................................
// Once phase has been initialized, map solid to account for 'smeared' interface
//for (i=0; i<N; i++) Averages->SDs(i) -= (1.0);
// Make sure the id match for the two domains
for (i=0; i<N; i++) Dm.id[i] = Mask.id[i];
//.......................................................................
// Finalize setup for averaging domain
//Averages->SetupCubes(Mask);
Averages->UpdateSolid();
//.......................................................................
//*************************************************************************
// Compute the phase indicator field and reset Copy, Den
//*************************************************************************
ScaLBL_ComputePhaseField(ID, Phi, Den, N);
//*************************************************************************
ScaLBL_DeviceBarrier();
ScaLBL_Comm.SendHalo(Phi);
ScaLBL_Comm.RecvHalo(Phi);
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
//*************************************************************************
if (rank==0 && BoundaryCondition==1){
printf("Setting inlet pressure = %f \n", din);
printf("Setting outlet pressure = %f \n", dout);
}
if (BoundaryCondition==1 && Mask.kproc == 0) {
ScaLBL_D3Q19_Pressure_BC_z(f_even,f_odd,din,Nx,Ny,Nz);
ScaLBL_D3Q19_Velocity(ID,f_even,f_odd,Velocity,Nx,Ny,Nz);
ScaLBL_Color_BC_z(Phi,Den,Velocity,A_even,A_odd,B_even,B_odd,Nx,Ny,Nz);
ScaLBL_SetSlice_z(Phi,1.0,Nx,Ny,Nz,0);
}
if (BoundaryCondition==1 && Mask.kproc == nprocz-1){
ScaLBL_D3Q19_Pressure_BC_Z(f_even,f_odd,dout,Nx,Ny,Nz,Nx*Ny*(Nz-2));
ScaLBL_D3Q19_Velocity(ID,f_even,f_odd,Velocity,Nx,Ny,Nz);
ScaLBL_Color_BC_Z(Phi,Den,Velocity,A_even,A_odd,B_even,B_odd,Nx,Ny,Nz);
ScaLBL_SetSlice_z(Phi,-1.0,Nx,Ny,Nz,Nz-1);
}
if (rank==0 && BoundaryCondition==2){
printf("Setting inlet velocity = %f \n", din);
printf("Setting outlet velocity = %f \n", dout);
}
if (BoundaryCondition==2 && Mask.kproc == 0) {
ScaLBL_D3Q19_Velocity_BC_z(f_even,f_odd,din,Nx,Ny,Nz);
ScaLBL_D3Q19_Velocity(ID,f_even,f_odd,Velocity,Nx,Ny,Nz);
ScaLBL_Color_BC_z(Phi,Den,Velocity,A_even,A_odd,B_even,B_odd,Nx,Ny,Nz);
ScaLBL_SetSlice_z(Phi,1.0,Nx,Ny,Nz,0);
}
if (BoundaryCondition==2 && Mask.kproc == nprocz-1){
ScaLBL_D3Q19_Velocity_BC_Z(f_even,f_odd,dout,Nx,Ny,Nz,Nx*Ny*(Nz-2));
ScaLBL_D3Q19_Velocity(ID,f_even,f_odd,Velocity,Nx,Ny,Nz);
ScaLBL_Color_BC_Z(Phi,Den,Velocity,A_even,A_odd,B_even,B_odd,Nx,Ny,Nz);
ScaLBL_SetSlice_z(Phi,-1.0,Nx,Ny,Nz,Nz-1);
}
// Set dynamic pressure boundary conditions
double dp, slope;
dp = slope = 0.0;
if (BoundaryCondition==3){
slope = abs(dout-din)/timestepMax;
dp = abs(timestep)*slope;
if (rank==0) printf("Change in pressure / time =%.3e \n",slope);
// set the initial value
din = 1.0+0.5*dp;
dout = 1.0-0.5*dp;
// set the initial boundary conditions
if (Mask.kproc == 0) {
ScaLBL_D3Q19_Pressure_BC_z(f_even,f_odd,din,Nx,Ny,Nz);
ScaLBL_D3Q19_Velocity(ID,f_even,f_odd,Velocity,Nx,Ny,Nz);
ScaLBL_Color_BC_z(Phi,Den,Velocity,A_even,A_odd,B_even,B_odd,Nx,Ny,Nz);
ScaLBL_SetSlice_z(Phi,1.0,Nx,Ny,Nz,0);
}
if (Mask.kproc == nprocz-1){
ScaLBL_D3Q19_Pressure_BC_Z(f_even,f_odd,dout,Nx,Ny,Nz,Nx*Ny*(Nz-2));
ScaLBL_D3Q19_Velocity(ID,f_even,f_odd,Velocity,Nx,Ny,Nz);
ScaLBL_Color_BC_Z(Phi,Den,Velocity,A_even,A_odd,B_even,B_odd,Nx,Ny,Nz);
ScaLBL_SetSlice_z(Phi,-1.0,Nx,Ny,Nz,Nz-1);
}
}
ScaLBL_D3Q19_Pressure(ID,f_even,f_odd,Pressure,Nx,Ny,Nz);
ScaLBL_D3Q19_Velocity(ID,f_even,f_odd,Velocity,Nx,Ny,Nz);
//...........................................................................
// Copy the phase indicator field for the earlier timestep
ScaLBL_DeviceBarrier();
ScaLBL_CopyToHost(Averages->Phase_tplus.data(),Phi,N*sizeof(double));
//...........................................................................
//...........................................................................
// Copy the data for for the analysis timestep
//...........................................................................
// Copy the phase from the GPU -> CPU
//...........................................................................
ScaLBL_DeviceBarrier();
ScaLBL_D3Q19_Pressure(ID,f_even,f_odd,Pressure,Nx,Ny,Nz);
ScaLBL_CopyToHost(Averages->Phase.data(),Phi,N*sizeof(double));
ScaLBL_CopyToHost(Averages->Press.data(),Pressure,N*sizeof(double));
ScaLBL_CopyToHost(Averages->Vel_x.data(),&Velocity[0],N*sizeof(double));
ScaLBL_CopyToHost(Averages->Vel_y.data(),&Velocity[N],N*sizeof(double));
ScaLBL_CopyToHost(Averages->Vel_z.data(),&Velocity[2*N],N*sizeof(double));
//...........................................................................
if (rank==0) printf("********************************************************\n");
if (rank==0) printf("No. of timesteps: %i \n", timestepMax);
//.......create and start timer............
double starttime,stoptime,cputime;
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
starttime = MPI_Wtime();
//.........................................
err = 1.0;
double sat_w_previous = 1.01; // slightly impossible value!
if (rank==0) printf("Begin timesteps: error tolerance is %f \n", tol);
// Create the thread pool
int N_threads = 4;
if ( provided_thread_support < MPI_THREAD_MULTIPLE )
N_threads = 0;
if ( N_threads > 0 ) {
// Set the affinity
int N_procs = ThreadPool::getNumberOfProcessors();
std::vector<int> procs(N_procs);
for (int i=0; i<N_procs; i++)
procs[i] = i;
ThreadPool::setProcessAffinity(procs);
}
ThreadPool tpool(N_threads);
// Create the MeshDataStruct
fillHalo<double> fillData(Dm.Comm,Dm.rank_info,Nx-2,Ny-2,Nz-2,1,1,1,0,1);
std::vector<IO::MeshDataStruct> meshData(1);
meshData[0].meshName = "domain";
meshData[0].mesh = std::shared_ptr<IO::DomainMesh>( new IO::DomainMesh(Dm.rank_info,Nx-2,Ny-2,Nz-2,Lx,Ly,Lz) );
std::shared_ptr<IO::Variable> PhaseVar( new IO::Variable() );
std::shared_ptr<IO::Variable> PressVar( new IO::Variable() );
std::shared_ptr<IO::Variable> SignDistVar( new IO::Variable() );
std::shared_ptr<IO::Variable> BlobIDVar( new IO::Variable() );
PhaseVar->name = "phase";
PhaseVar->type = IO::VariableType::VolumeVariable;
PhaseVar->dim = 1;
PhaseVar->data.resize(Nx-2,Ny-2,Nz-2);
meshData[0].vars.push_back(PhaseVar);
PressVar->name = "Pressure";
PressVar->type = IO::VariableType::VolumeVariable;
PressVar->dim = 1;
PressVar->data.resize(Nx-2,Ny-2,Nz-2);
meshData[0].vars.push_back(PressVar);
SignDistVar->name = "SignDist";
SignDistVar->type = IO::VariableType::VolumeVariable;
SignDistVar->dim = 1;
SignDistVar->data.resize(Nx-2,Ny-2,Nz-2);
meshData[0].vars.push_back(SignDistVar);
BlobIDVar->name = "BlobID";
BlobIDVar->type = IO::VariableType::VolumeVariable;
BlobIDVar->dim = 1;
BlobIDVar->data.resize(Nx-2,Ny-2,Nz-2);
meshData[0].vars.push_back(BlobIDVar);
//************ MAIN ITERATION LOOP ***************************************/
PROFILE_START("Loop");
BlobIDstruct last_ids, last_index;
BlobIDList last_id_map;
writeIDMap(ID_map_struct(),0,id_map_filename);
AnalysisWaitIdStruct work_ids;
while (timestep < timestepMax && err > tol ) {
//if ( rank==0 ) { printf("Running timestep %i (%i MB)\n",timestep+1,(int)(Utilities::getMemoryUsage()/1048576)); }
PROFILE_START("Update");
//*************************************************************************
// Fused Color Gradient and Collision
//*************************************************************************
ScaLBL_D3Q19_ColorCollide( ID,f_even,f_odd,Phi,ColorGrad,
Velocity,Nx,Ny,Nz,rlxA,rlxB,alpha,beta,Fx,Fy,Fz);
//*************************************************************************
ScaLBL_DeviceBarrier();
//*************************************************************************
// Pack and send the D3Q19 distributions
ScaLBL_Comm.SendD3Q19(f_even, f_odd);
//*************************************************************************
//*************************************************************************
// Carry out the density streaming step for mass transport
//*************************************************************************
ScaLBL_D3Q7_ColorCollideMass(ID, A_even, A_odd, B_even, B_odd, Den, Phi,
ColorGrad, Velocity, beta, N, pBC);
//*************************************************************************
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
//*************************************************************************
// Swap the distributions for momentum transport
//*************************************************************************
ScaLBL_D3Q19_Swap(ID, f_even, f_odd, Nx, Ny, Nz);
//*************************************************************************
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
//*************************************************************************
// Wait for communications to complete and unpack the distributions
ScaLBL_Comm.RecvD3Q19(f_even, f_odd);
//*************************************************************************
ScaLBL_DeviceBarrier();
//*************************************************************************
// Pack and send the D3Q7 distributions
ScaLBL_Comm.BiSendD3Q7(A_even, A_odd, B_even, B_odd);
//*************************************************************************
ScaLBL_DeviceBarrier();
ScaLBL_D3Q7_Swap(ID, A_even, A_odd, Nx, Ny, Nz);
ScaLBL_D3Q7_Swap(ID, B_even, B_odd, Nx, Ny, Nz);
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
//*************************************************************************
// Wait for communication and unpack the D3Q7 distributions
ScaLBL_Comm.BiRecvD3Q7(A_even, A_odd, B_even, B_odd);
//*************************************************************************
ScaLBL_DeviceBarrier();
//..................................................................................
ScaLBL_D3Q7_Density(ID, A_even, A_odd, &Den[0], Nx, Ny, Nz);
ScaLBL_D3Q7_Density(ID, B_even, B_odd, &Den[N], Nx, Ny, Nz);
//*************************************************************************
// Compute the phase indicator field
//*************************************************************************
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
ScaLBL_ComputePhaseField(ID, Phi, Den, N);
//*************************************************************************
ScaLBL_Comm.SendHalo(Phi);
ScaLBL_DeviceBarrier();
ScaLBL_Comm.RecvHalo(Phi);
//*************************************************************************
ScaLBL_DeviceBarrier();
// Pressure boundary conditions
if (BoundaryCondition==1 && Mask.kproc == 0) {
ScaLBL_D3Q19_Pressure_BC_z(f_even,f_odd,din,Nx,Ny,Nz);
ScaLBL_D3Q19_Velocity(ID,f_even,f_odd,Velocity,Nx,Ny,Nz);
ScaLBL_Color_BC_z(Phi,Den,Velocity,A_even,A_odd,B_even,B_odd,Nx,Ny,Nz);
ScaLBL_SetSlice_z(Phi,1.0,Nx,Ny,Nz,0);
}
if (BoundaryCondition==1 && Mask.kproc == nprocz-1){
ScaLBL_D3Q19_Pressure_BC_Z(f_even,f_odd,dout,Nx,Ny,Nz,Nx*Ny*(Nz-2));
ScaLBL_D3Q19_Velocity(ID,f_even,f_odd,Velocity,Nx,Ny,Nz);
ScaLBL_Color_BC_Z(Phi,Den,Velocity,A_even,A_odd,B_even,B_odd,Nx,Ny,Nz);
ScaLBL_SetSlice_z(Phi,-1.0,Nx,Ny,Nz,Nz-1);
}
// Velocity boundary conditions
if (BoundaryCondition==2 && Mask.kproc == 0) {
ScaLBL_D3Q19_Velocity_BC_z(f_even,f_odd,din,Nx,Ny,Nz);
ScaLBL_D3Q19_Velocity(ID,f_even,f_odd,Velocity,Nx,Ny,Nz);
ScaLBL_Color_BC_z(Phi,Den,Velocity,A_even,A_odd,B_even,B_odd,Nx,Ny,Nz);
ScaLBL_SetSlice_z(Phi,-1.0,Nx,Ny,Nz,0);
}
if (BoundaryCondition==2 && Mask.kproc == nprocz-1){
ScaLBL_D3Q19_Velocity_BC_Z(f_even,f_odd,dout,Nx,Ny,Nz,Nx*Ny*(Nz-2));
ScaLBL_D3Q19_Velocity(ID,f_even,f_odd,Velocity,Nx,Ny,Nz);
ScaLBL_Color_BC_Z(Phi,Den,Velocity,A_even,A_odd,B_even,B_odd,Nx,Ny,Nz);
ScaLBL_SetSlice_z(Phi,1.0,Nx,Ny,Nz,Nz-1);
}
if (BoundaryCondition==3){
// Increase the pressure difference
dp += slope;
din = 1.0+0.5*dp;
dout = 1.0-0.5*dp;
// set the initial boundary conditions
if (Mask.kproc == 0) {
ScaLBL_D3Q19_Pressure_BC_z(f_even,f_odd,din,Nx,Ny,Nz);
ScaLBL_D3Q19_Velocity(ID,f_even,f_odd,Velocity,Nx,Ny,Nz);
ScaLBL_Color_BC_z(Phi,Den,Velocity,A_even,A_odd,B_even,B_odd,Nx,Ny,Nz);
ScaLBL_SetSlice_z(Phi,1.0,Nx,Ny,Nz,0);
}
if (Mask.kproc == nprocz-1){
ScaLBL_D3Q19_Pressure_BC_Z(f_even,f_odd,dout,Nx,Ny,Nz,Nx*Ny*(Nz-2));
ScaLBL_D3Q19_Velocity(ID,f_even,f_odd,Velocity,Nx,Ny,Nz);
ScaLBL_Color_BC_Z(Phi,Den,Velocity,A_even,A_odd,B_even,B_odd,Nx,Ny,Nz);
ScaLBL_SetSlice_z(Phi,-1.0,Nx,Ny,Nz,Nz-1);
}
}
//...................................................................................
MPI_Barrier(comm);
PROFILE_STOP("Update");
// Timestep completed!
timestep++;
// Run the analysis, blob identification, and write restart files
// if (BLOB_ANALYSIS_INTERVAL > 0){
//if (timestep > 5)
run_analysis(timestep,RESTART_INTERVAL,rank_info,*Averages,last_ids,last_index,last_id_map,
Nx,Ny,Nz,pBC,beta,err,Phi,Pressure,Velocity,ID,f_even,f_odd,Den,
LocalRestartFile,meshData,fillData,tpool,work_ids);
/* }
else{
ComputeMacroscaleAverages(timestep,ANALYSIS_INTERVAL,RESTART_INTERVAL,rank_info,*Averages,
Nx,Ny,Nz,pBC,beta,err,Phi,Pressure,Velocity,ID,f_even,f_odd,Den,
LocalRestartFile,meshData,fillData,tpool,work_ids);
}
*/
// Save the timers
if ( timestep%50==0 )
PROFILE_SAVE("lbpm_color_simulator",1);
}
tpool.wait_pool_finished();
PROFILE_STOP("Loop");
//************************************************************************
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
stoptime = MPI_Wtime();
if (rank==0) printf("-------------------------------------------------------------------\n");
// Compute the walltime per timestep
cputime = (stoptime - starttime)/timestep;
// Performance obtained from each node
double MLUPS = double(Nx*Ny*Nz)/cputime/1000000;
if (rank==0) printf("********************************************************\n");
if (rank==0) printf("CPU time = %f \n", cputime);
if (rank==0) printf("Lattice update rate (per core)= %f MLUPS \n", MLUPS);
MLUPS *= nprocs;
if (rank==0) printf("Lattice update rate (total)= %f MLUPS \n", MLUPS);
if (rank==0) printf("********************************************************\n");
// ************************************************************************
/* // Perform component averaging and write tcat averages
Averages->Initialize();
Averages->ComponentAverages();
Averages->SortBlobs();
Averages->PrintComponents(timestep);
// ************************************************************************
int NumberComponents_NWP = ComputeGlobalPhaseComponent(Mask.Nx-2,Mask.Ny-2,Mask.Nz-2,Mask.rank_info,Averages->PhaseID,1,Averages->Label_NWP);
printf("Number of non-wetting phase components: %i \n ",NumberComponents_NWP);
ScaLBL_DeviceBarrier();
ScaLBL_CopyToHost(Averages->Phase.data(),Phi,N*sizeof(double));
*/
/* Averages->WriteSurfaces(0);
sprintf(LocalRankFilename,"%s%s","Phase.",LocalRankString);
FILE *PHASE;
PHASE = fopen(LocalRankFilename,"wb");
fwrite(Averages->SDn.data(),8,N,PHASE);
fclose(PHASE);
*/
/* sprintf(LocalRankFilename,"%s%s","Pressure.",LocalRankString);
FILE *PRESS;
PRESS = fopen(LocalRankFilename,"wb");
fwrite(Averages->Press.data(),8,N,PRESS);
fclose(PRESS);
ScaLBL_CopyToHost(Averages->Phase.data(),Phi,N*sizeof(double));
double * Grad;
Grad = new double [3*N];
ScaLBL_CopyToHost(Grad,ColorGrad,3*N*sizeof(double));
sprintf(LocalRankFilename,"%s%s","ColorGrad.",LocalRankString);
FILE *GRAD;
GRAD = fopen(LocalRankFilename,"wb");
fwrite(Grad,8,3*N,GRAD);
fclose(GRAD);
*/
PROFILE_STOP("Main");
PROFILE_SAVE("lbpm_color_simulator",1);
// ****************************************************