Cleaning up lbpm_segmented_pp, remove comments, re-indent,etc.

This commit is contained in:
James E McClure 2016-11-16 16:14:56 -05:00
parent 4fb098c8c0
commit 84d9fed6e7

View File

@ -40,140 +40,141 @@ inline double minmod(double &a, double &b){
inline double Eikonal(DoubleArray &Distance, char *ID, Domain &Dm, int timesteps){
/*
* This routine converts the data in the Distance array to a signed distance
* by solving the equation df/dt = sign(1-|grad f|), where Distance provides
* the values of f on the mesh associated with domain Dm
* It has been tested with segmented data initialized to values [-1,1]
* and will converge toward the signed distance to the surface bounding the associated phases
*
* Reference:
* Min C (2010) On reinitializing level set functions, Journal of Computational Physics 229
*/
/*
* This routine converts the data in the Distance array to a signed distance
* by solving the equation df/dt = sign(1-|grad f|), where Distance provides
* the values of f on the mesh associated with domain Dm
* It has been tested with segmented data initialized to values [-1,1]
* and will converge toward the signed distance to the surface bounding the associated phases
*
* Reference:
* Min C (2010) On reinitializing level set functions, Journal of Computational Physics 229
*/
int i,j,k;
double dt=0.1;
double Dx,Dy,Dz;
double Dxp,Dxm,Dyp,Dym,Dzp,Dzm;
double Dxxp,Dxxm,Dyyp,Dyym,Dzzp,Dzzm;
double sign,norm;
double LocalVar,GlobalVar,LocalMax,GlobalMax;
int i,j,k;
double dt=0.1;
double Dx,Dy,Dz;
double Dxp,Dxm,Dyp,Dym,Dzp,Dzm;
double Dxxp,Dxxm,Dyyp,Dyym,Dzzp,Dzzm;
double sign,norm;
double LocalVar,GlobalVar,LocalMax,GlobalMax;
int xdim,ydim,zdim;
xdim=Dm.Nx-2;
ydim=Dm.Ny-2;
zdim=Dm.Nz-2;
fillHalo<double> fillData(Dm.Comm, Dm.rank_info,xdim,ydim,zdim,1,1,1,0,1);
int xdim,ydim,zdim;
xdim=Dm.Nx-2;
ydim=Dm.Ny-2;
zdim=Dm.Nz-2;
fillHalo<double> fillData(Dm.Comm, Dm.rank_info,xdim,ydim,zdim,1,1,1,0,1);
// Arrays to store the second derivatives
DoubleArray Dxx(Dm.Nx,Dm.Ny,Dm.Nz);
DoubleArray Dyy(Dm.Nx,Dm.Ny,Dm.Nz);
DoubleArray Dzz(Dm.Nx,Dm.Ny,Dm.Nz);
// Arrays to store the second derivatives
DoubleArray Dxx(Dm.Nx,Dm.Ny,Dm.Nz);
DoubleArray Dyy(Dm.Nx,Dm.Ny,Dm.Nz);
DoubleArray Dzz(Dm.Nx,Dm.Ny,Dm.Nz);
int count = 0;
while (count < timesteps){
int count = 0;
while (count < timesteps){
// Communicate the halo of values
fillData.fill(Distance);
// Communicate the halo of values
fillData.fill(Distance);
// Compute second order derivatives
for (k=1;k<Dm.Nz-1;k++){
for (j=1;j<Dm.Ny-1;j++){
for (i=1;i<Dm.Nx-1;i++){
Dxx(i,j,k) = Distance(i+1,j,k) + Distance(i-1,j,k) - 2*Distance(i,j,k);
Dyy(i,j,k) = Distance(i,j+1,k) + Distance(i,j-1,k) - 2*Distance(i,j,k);
Dzz(i,j,k) = Distance(i,j,k+1) + Distance(i,j,k-1) - 2*Distance(i,j,k);
}
}
}
fillData.fill(Dxx);
fillData.fill(Dyy);
fillData.fill(Dzz);
// Compute second order derivatives
for (k=1;k<Dm.Nz-1;k++){
for (j=1;j<Dm.Ny-1;j++){
for (i=1;i<Dm.Nx-1;i++){
Dxx(i,j,k) = Distance(i+1,j,k) + Distance(i-1,j,k) - 2*Distance(i,j,k);
Dyy(i,j,k) = Distance(i,j+1,k) + Distance(i,j-1,k) - 2*Distance(i,j,k);
Dzz(i,j,k) = Distance(i,j,k+1) + Distance(i,j,k-1) - 2*Distance(i,j,k);
}
}
}
fillData.fill(Dxx);
fillData.fill(Dyy);
fillData.fill(Dzz);
LocalMax=LocalVar=0.0;
// Execute the next timestep
for (k=1;k<Dm.Nz-1;k++){
for (j=1;j<Dm.Ny-1;j++){
for (i=1;i<Dm.Nx-1;i++){
LocalMax=LocalVar=0.0;
// Execute the next timestep
for (k=1;k<Dm.Nz-1;k++){
for (j=1;j<Dm.Ny-1;j++){
for (i=1;i<Dm.Nx-1;i++){
int n = k*Dm.Nx*Dm.Ny + j*Dm.Nx + i;
int n = k*Dm.Nx*Dm.Ny + j*Dm.Nx + i;
sign = -1;
if (ID[n] == 1) sign = 1;
sign = -1;
if (ID[n] == 1) sign = 1;
// local second derivative terms
Dxxp = minmod(Dxx(i,j,k),Dxx(i+1,j,k));
Dyyp = minmod(Dyy(i,j,k),Dyy(i,j+1,k));
Dzzp = minmod(Dzz(i,j,k),Dzz(i,j,k+1));
Dxxm = minmod(Dxx(i,j,k),Dxx(i-1,j,k));
Dyym = minmod(Dyy(i,j,k),Dyy(i,j-1,k));
Dzzm = minmod(Dzz(i,j,k),Dzz(i,j,k-1));
// local second derivative terms
Dxxp = minmod(Dxx(i,j,k),Dxx(i+1,j,k));
Dyyp = minmod(Dyy(i,j,k),Dyy(i,j+1,k));
Dzzp = minmod(Dzz(i,j,k),Dzz(i,j,k+1));
Dxxm = minmod(Dxx(i,j,k),Dxx(i-1,j,k));
Dyym = minmod(Dyy(i,j,k),Dyy(i,j-1,k));
Dzzm = minmod(Dzz(i,j,k),Dzz(i,j,k-1));
/* //............Compute upwind derivatives ...................
/* //............Compute upwind derivatives ...................
Dxp = Distance(i+1,j,k) - Distance(i,j,k) + 0.5*Dxxp;
Dyp = Distance(i,j+1,k) - Distance(i,j,k) + 0.5*Dyyp;
Dzp = Distance(i,j,k+1) - Distance(i,j,k) + 0.5*Dzzp;
Dxm = Distance(i,j,k) - Distance(i-1,j,k) + 0.5*Dxxm;
Dym = Distance(i,j,k) - Distance(i,j-1,k) + 0.5*Dyym;
Dzm = Distance(i,j,k) - Distance(i,j,k-1) + 0.5*Dzzm;
*/
Dxp = Distance(i+1,j,k);
Dyp = Distance(i,j+1,k);
Dzp = Distance(i,j,k+1);
*/
Dxp = Distance(i+1,j,k);
Dyp = Distance(i,j+1,k);
Dzp = Distance(i,j,k+1);
Dxm = Distance(i-1,j,k);
Dym = Distance(i,j-1,k);
Dzm = Distance(i,j,k-1);
Dxm = Distance(i-1,j,k);
Dym = Distance(i,j-1,k);
Dzm = Distance(i,j,k-1);
// Compute upwind derivatives for Godunov Hamiltonian
if (sign < 0.0){
if (Dxp > Dxm) Dx = Dxp - Distance(i,j,k) + 0.5*Dxxp;
else Dx = Distance(i,j,k) - Dxm + 0.5*Dxxm;
// Compute upwind derivatives for Godunov Hamiltonian
if (sign < 0.0){
if (Dxp > Dxm) Dx = Dxp - Distance(i,j,k) + 0.5*Dxxp;
else Dx = Distance(i,j,k) - Dxm + 0.5*Dxxm;
if (Dyp > Dym) Dy = Dyp - Distance(i,j,k) + 0.5*Dyyp;
else Dy = Distance(i,j,k) - Dym + 0.5*Dyym;
if (Dyp > Dym) Dy = Dyp - Distance(i,j,k) + 0.5*Dyyp;
else Dy = Distance(i,j,k) - Dym + 0.5*Dyym;
if (Dzp > Dzm) Dz = Dzp - Distance(i,j,k) + 0.5*Dzzp;
else Dz = Distance(i,j,k) - Dzm + 0.5*Dzzm;
}
else{
if (Dxp < Dxm) Dx = Dxp - Distance(i,j,k) + 0.5*Dxxp;
else Dx = Distance(i,j,k) - Dxm + 0.5*Dxxm;
if (Dzp > Dzm) Dz = Dzp - Distance(i,j,k) + 0.5*Dzzp;
else Dz = Distance(i,j,k) - Dzm + 0.5*Dzzm;
}
else{
if (Dxp < Dxm) Dx = Dxp - Distance(i,j,k) + 0.5*Dxxp;
else Dx = Distance(i,j,k) - Dxm + 0.5*Dxxm;
if (Dyp < Dym) Dy = Dyp - Distance(i,j,k) + 0.5*Dyyp;
else Dy = Distance(i,j,k) - Dym + 0.5*Dyym;
if (Dyp < Dym) Dy = Dyp - Distance(i,j,k) + 0.5*Dyyp;
else Dy = Distance(i,j,k) - Dym + 0.5*Dyym;
if (Dzp < Dzm) Dz = Dzp - Distance(i,j,k) + 0.5*Dzzp;
else Dz = Distance(i,j,k) - Dzm + 0.5*Dzzm;
}
if (Dzp < Dzm) Dz = Dzp - Distance(i,j,k) + 0.5*Dzzp;
else Dz = Distance(i,j,k) - Dzm + 0.5*Dzzm;
}
norm=sqrt(Dx*Dx+Dy*Dy+Dz*Dz);
if (norm > 1.0) norm=1.0;
Distance(i,j,k) += dt*sign*(1.0 - norm);
LocalVar += dt*sign*(1.0 - norm);
norm=sqrt(Dx*Dx+Dy*Dy+Dz*Dz);
if (norm > 1.0) norm=1.0;
if (fabs(dt*sign*(1.0 - norm)) > LocalMax)
LocalMax = fabs(dt*sign*(1.0 - norm));
}
}
}
Distance(i,j,k) += dt*sign*(1.0 - norm);
LocalVar += dt*sign*(1.0 - norm);
MPI_Allreduce(&LocalVar,&GlobalVar,1,MPI_DOUBLE,MPI_SUM,Dm.Comm);
MPI_Allreduce(&LocalMax,&GlobalMax,1,MPI_DOUBLE,MPI_MAX,Dm.Comm);
GlobalVar /= (Dm.Nx-2)*(Dm.Ny-2)*(Dm.Nz-2)*Dm.nprocx*Dm.nprocy*Dm.nprocz;
count++;
if (fabs(dt*sign*(1.0 - norm)) > LocalMax)
LocalMax = fabs(dt*sign*(1.0 - norm));
}
}
}
if (count%50 == 0 && Dm.rank==0 )
printf("Time=%i, Max variation=%f, Global variation=%f \n",count,GlobalMax,GlobalVar);
MPI_Allreduce(&LocalVar,&GlobalVar,1,MPI_DOUBLE,MPI_SUM,Dm.Comm);
MPI_Allreduce(&LocalMax,&GlobalMax,1,MPI_DOUBLE,MPI_MAX,Dm.Comm);
GlobalVar /= (Dm.Nx-2)*(Dm.Ny-2)*(Dm.Nz-2)*Dm.nprocx*Dm.nprocy*Dm.nprocz;
count++;
if (fabs(GlobalMax) < 1e-5){
if (Dm.rank==0) printf("Exiting with max tolerance of 1e-5 \n");
count=timesteps;
if (count%50 == 0 && Dm.rank==0 )
printf("Time=%i, Max variation=%f, Global variation=%f \n",count,GlobalMax,GlobalVar);
if (fabs(GlobalMax) < 1e-5){
if (Dm.rank==0) printf("Exiting with max tolerance of 1e-5 \n");
count=timesteps;
}
}
}
return GlobalVar;
return GlobalVar;
}
@ -182,270 +183,163 @@ int main(int argc, char **argv)
// Initialize MPI
int rank, nprocs;
MPI_Init(&argc,&argv);
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Comm_rank(comm,&rank);
MPI_Comm_size(comm,&nprocs);
{
//.......................................................................
// Reading the domain information file
//.......................................................................
int nprocx, nprocy, nprocz, nx, ny, nz, nspheres;
double Lx, Ly, Lz;
int Nx,Ny,Nz;
int i,j,k,n;
int BC=0;
char Filename[40];
int xStart,yStart,zStart;
// char fluidValue,solidValue;
//.......................................................................
// Reading the domain information file
//.......................................................................
int nprocx, nprocy, nprocz, nx, ny, nz, nspheres;
double Lx, Ly, Lz;
int Nx,Ny,Nz;
int i,j,k,n;
int BC=0;
char Filename[40];
int xStart,yStart,zStart;
// char fluidValue,solidValue;
std::vector<char> solidValues;
std::vector<char> nwpValues;
std::string line;
std::vector<char> solidValues;
std::vector<char> nwpValues;
std::string line;
if (rank==0){
ifstream domain("Domain.in");
domain >> nprocx;
domain >> nprocy;
domain >> nprocz;
domain >> nx;
domain >> ny;
domain >> nz;
domain >> nspheres;
domain >> Lx;
domain >> Ly;
domain >> Lz;
if (rank==0){
ifstream domain("Domain.in");
domain >> nprocx;
domain >> nprocy;
domain >> nprocz;
domain >> nx;
domain >> ny;
domain >> nz;
domain >> nspheres;
domain >> Lx;
domain >> Ly;
domain >> Lz;
ifstream image("Segmented.in");
image >> Filename; // Name of data file containing segmented data
image >> Nx; // size of the binary file
image >> Ny;
image >> Nz;
image >> xStart; // offset for the starting voxel
image >> yStart;
image >> zStart;
ifstream image("Segmented.in");
image >> Filename; // Name of data file containing segmented data
image >> Nx; // size of the binary file
image >> Ny;
image >> Nz;
image >> xStart; // offset for the starting voxel
image >> yStart;
image >> zStart;
}
MPI_Barrier(comm);
// Computational domain
MPI_Bcast(&nx,1,MPI_INT,0,comm);
MPI_Bcast(&ny,1,MPI_INT,0,comm);
MPI_Bcast(&nz,1,MPI_INT,0,comm);
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
//.................................................
MPI_Barrier(comm);
}
MPI_Barrier(comm);
// Computational domain
MPI_Bcast(&nx,1,MPI_INT,0,comm);
MPI_Bcast(&ny,1,MPI_INT,0,comm);
MPI_Bcast(&nz,1,MPI_INT,0,comm);
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
//.................................................
MPI_Barrier(comm);
// Check that the number of processors >= the number of ranks
if ( rank==0 ) {
printf("Number of MPI ranks required: %i \n", nprocx*nprocy*nprocz);
printf("Number of MPI ranks used: %i \n", nprocs);
printf("Full domain size: %i x %i x %i \n",nx*nprocx,ny*nprocy,nz*nprocz);
}
if ( nprocs < nprocx*nprocy*nprocz ){
ERROR("Insufficient number of processors");
}
// Check that the number of processors >= the number of ranks
if ( rank==0 ) {
printf("Number of MPI ranks required: %i \n", nprocx*nprocy*nprocz);
printf("Number of MPI ranks used: %i \n", nprocs);
printf("Full domain size: %i x %i x %i \n",nx*nprocx,ny*nprocy,nz*nprocz);
}
if ( nprocs < nprocx*nprocy*nprocz ){
ERROR("Insufficient number of processors");
}
char LocalRankFilename[40];
char LocalRankFilename[40];
int N = (nx+2)*(ny+2)*(nz+2);
Domain Dm(nx,ny,nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BC);
for (n=0; n<N; n++) Dm.id[n]=1;
Dm.CommInit(comm);
int N = (nx+2)*(ny+2)*(nz+2);
Domain Dm(nx,ny,nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BC);
for (n=0; n<N; n++) Dm.id[n]=1;
Dm.CommInit(comm);
// Read the phase ID
size_t readID;
sprintf(LocalRankFilename,"ID.%05i",rank);
FILE *ID = fopen(LocalRankFilename,"rb");
readID=fread(Dm.id,1,N,ID);
if (readID != size_t(N)) printf("lbpm_segmented_pp: Error reading ID \n");
fclose(ID);
// make sure communication
// Set up layers in x direction
for (k=0; k<nz; k++){
for (j=0; j<ny; j++){
Dm.id[k*nx*ny+j*nx]=1;
Dm.id[k*nx*ny+j*nx+nx-1] = 1;
}
}
for (k=0; k<nz; k++){
for (i=0; i<nx; i++){
Dm.id[k*nx*ny+i]=1;
Dm.id[k*nx*ny+(ny-1)*nx+i] = 1;
}
}
for (j=0; j<ny; j++){
for (i=0; i<nx; i++){
Dm.id[j*nx+i]=1;
Dm.id[nx*ny*(nz-1)+j*nx+i] = 1;
}
}
// Initialize the domain and communication
nx+=2; ny+=2; nz+=2;
int count = 0;
N=nx*ny*nz;
char *id;
id = new char [N];
TwoPhase Averages(Dm);
// DoubleArray Distance(nx,ny,nz);
// DoubleArray Phase(nx,ny,nz);
// Solve for the position of the solid phase
for (k=0;k<nz;k++){
for (j=0;j<ny;j++){
for (i=0;i<nx;i++){
n = k*nx*ny+j*nx+i;
// Initialize the solid phase
if (Dm.id[n] == 0) id[n] = 0;
else id[n] = 1;
// Read the phase ID
size_t readID;
sprintf(LocalRankFilename,"ID.%05i",rank);
FILE *ID = fopen(LocalRankFilename,"rb");
readID=fread(Dm.id,1,N,ID);
if (readID != size_t(N)) printf("lbpm_segmented_pp: Error reading ID \n");
fclose(ID);
// make sure communication
// Set up layers in x direction
for (k=0; k<nz; k++){
for (j=0; j<ny; j++){
Dm.id[k*nx*ny+j*nx]=1;
Dm.id[k*nx*ny+j*nx+nx-1] = 1;
}
}
}
// Initialize the signed distance function
for (k=0;k<nz;k++){
for (j=0;j<ny;j++){
for (i=0;i<nx;i++){
n=k*nx*ny+j*nx+i;
// Initialize distance to +/- 1
Averages.SDs(i,j,k) = 2.0*id[n]-1.0;
for (k=0; k<nz; k++){
for (i=0; i<nx; i++){
Dm.id[k*nx*ny+i]=1;
Dm.id[k*nx*ny+(ny-1)*nx+i] = 1;
}
}
}
MeanFilter(Averages.SDs);
double LocalVar, TotalVar;
if (rank==0) printf("Initialized solid phase -- Converting to Signed Distance function \n");
int Maxtime=10*max(max(Dm.Nx*Dm.nprocx,Dm.Ny*Dm.nprocy),Dm.Nz*Dm.nprocz);
LocalVar = Eikonal(Averages.SDs,id,Dm,Maxtime);
MPI_Allreduce(&LocalVar,&TotalVar,1,MPI_DOUBLE,MPI_SUM,comm);
TotalVar /= nprocs;
if (rank==0) printf("Final variation in signed distance function %f \n",TotalVar);
sprintf(LocalRankFilename,"SignDist.%05i",rank);
FILE *DIST = fopen(LocalRankFilename,"wb");
fwrite(Averages.SDs.data(),8,Averages.SDs.length(),DIST);
fclose(DIST);
/* // Solve for the position of the non-wetting phase
for (k=0;k<nz;k++){
for (j=0;j<ny;j++){
for (i=0;i<nx;i++){
n = k*nx*ny+j*nx+i;
// Initialize the non-wetting phase
if (Dm.id[n] == 1) id[n] = 1;
else id[n] = 0;
for (j=0; j<ny; j++){
for (i=0; i<nx; i++){
Dm.id[j*nx+i]=1;
Dm.id[nx*ny*(nz-1)+j*nx+i] = 1;
}
}
}
// Initialize the signed distance function
for (k=0;k<nz;k++){
for (j=0;j<ny;j++){
for (i=0;i<nx;i++){
n=k*nx*ny+j*nx+i;
// Initialize distance to +/- 1
Averages.Phase(i,j,k) = 2.0*id[n]-1.0;
}
}
}
MeanFilter(Averages.Phase);
if (rank==0) printf("Initialized non-wetting phase -- Converting to Signed Distance function \n");
SSO(Averages.Phase,id,Dm,100);
// Initialize the domain and communication
for (k=0;k<nz;k++){
for (j=0;j<ny;j++){
for (i=0;i<nx;i++){
n=k*nx*ny+j*nx+i;
Averages.Phase(i,j,k) -= 1.0;
// Initialize distance to +/- 1
// Dilation of the non-wetting phase
Averages.SDn(i,j,k) = -Averages.Phase(i,j,k);
Averages.Phase(i,j,k) = Averages.SDn(i,j,k);
Averages.Phase_tplus(i,j,k) = Averages.SDn(i,j,k);
Averages.Phase_tminus(i,j,k) = Averages.SDn(i,j,k);
Averages.DelPhi(i,j,k) = 0.0;
Averages.Press(i,j,k) = 0.0;
Averages.Vel_x(i,j,k) = 0.0;
Averages.Vel_y(i,j,k) = 0.0;
Averages.Vel_z(i,j,k) = 0.0;
if (Averages.SDs(i,j,k) > 0.0){
if (Averages.Phase(i,j,k) > 0.0){
Dm.id[n] = 2;
}
else{
Dm.id[n] = 1;
}
}
else{
Dm.id[n] = 0;
nx+=2; ny+=2; nz+=2;
int count = 0;
N=nx*ny*nz;
char *id;
id = new char [N];
TwoPhase Averages(Dm);
// DoubleArray Distance(nx,ny,nz);
// DoubleArray Phase(nx,ny,nz);
// Solve for the position of the solid phase
for (k=0;k<nz;k++){
for (j=0;j<ny;j++){
for (i=0;i<nx;i++){
n = k*nx*ny+j*nx+i;
// Initialize the solid phase
if (Dm.id[n] == 0) id[n] = 0;
else id[n] = 1;
}
}
}
// Initialize the signed distance function
for (k=0;k<nz;k++){
for (j=0;j<ny;j++){
for (i=0;i<nx;i++){
n=k*nx*ny+j*nx+i;
// Initialize distance to +/- 1
Averages.SDs(i,j,k) = 2.0*id[n]-1.0;
}
}
}
MeanFilter(Averages.SDs);
double LocalVar, TotalVar;
if (rank==0) printf("Initialized solid phase -- Converting to Signed Distance function \n");
int Maxtime=10*max(max(Dm.Nx*Dm.nprocx,Dm.Ny*Dm.nprocy),Dm.Nz*Dm.nprocz);
LocalVar = Eikonal(Averages.SDs,id,Dm,Maxtime);
MPI_Allreduce(&LocalVar,&TotalVar,1,MPI_DOUBLE,MPI_SUM,comm);
TotalVar /= nprocs;
if (rank==0) printf("Final variation in signed distance function %f \n",TotalVar);
sprintf(LocalRankFilename,"SignDist.%05i",rank);
FILE *DIST = fopen(LocalRankFilename,"wb");
fwrite(Averages.SDs.data(),8,Averages.SDs.length(),DIST);
fclose(DIST);
}
// Create the MeshDataStruct
fillHalo<double> fillData(Dm.Comm,Dm.rank_info,Nx-2,Ny-2,Nz-2,1,1,1,0,1);
std::vector<IO::MeshDataStruct> meshData(1);
meshData[0].meshName = "domain";
meshData[0].mesh = std::shared_ptr<IO::DomainMesh>( new IO::DomainMesh(Dm.rank_info,Nx-2,Ny-2,Nz-2,Lx,Ly,Lz) );
std::shared_ptr<IO::Variable> PhaseVar( new IO::Variable() );
std::shared_ptr<IO::Variable> SolidVar( new IO::Variable() );
std::shared_ptr<IO::Variable> BlobIDVar( new IO::Variable() );
PhaseVar->name = "Fluid";
PhaseVar->type = IO::VolumeVariable;
PhaseVar->dim = 1;
PhaseVar->data.resize(Nx-2,Ny-2,Nz-2);
meshData[0].vars.push_back(PhaseVar);
SolidVar->name = "Solid";
SolidVar->type = IO::VolumeVariable;
SolidVar->dim = 1;
SolidVar->data.resize(Nx-2,Ny-2,Nz-2);
meshData[0].vars.push_back(SignDistVar);
BlobIDVar->name = "BlobID";
BlobIDVar->type = IO::VolumeVariable;
BlobIDVar->dim = 1;
BlobIDVar->data.resize(Nx-2,Ny-2,Nz-2);
meshData[0].vars.push_back(BlobIDVar);
fillData.copy(Averages.SDn,PhaseVar->data);
fillData.copy(Averages.SDs,SolidVar->data);
fillData.copy(Averages.Label_NWP,BlobIDVar->data);
IO::writeData( 0, meshData, 2, comm );
// sprintf(LocalRankFilename,"Phase.%05i",rank);
// FILE *PHASE = fopen(LocalRankFilename,"wb");
// fwrite(Averages.Phase.get(),8,Averages.Phase.length(),PHASE);
// fclose(PHASE);
double beta = 0.95;
if (rank==0) printf("initializing the system \n");
Averages.UpdateSolid();
Averages.UpdateMeshValues();
Dm.CommunicateMeshHalo(Averages.Phase);
Dm.CommunicateMeshHalo(Averages.SDn);
Dm.CommunicateMeshHalo(Averages.SDs);
int timestep=5;
Averages.Initialize();
if (rank==0) printf("computing phase components \n");
Averages.ComponentAverages();
if (rank==0) printf("sorting phase components \n");
Averages.SortBlobs();
Averages.PrintComponents(timestep);
*/
}
MPI_Barrier(comm);
MPI_Barrier(comm);
MPI_Finalize();
return 0;
return 0;
}